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Abstract 

Emotion recognition systems (ERS) have become a popular research field to contribute to human-

machine interaction in different areas. Different kinds of applications on ERS can serve different 
purposes. Artificial intelligence (AI) and the internet of things (IoT) are the technologies behind 

such applications. The main objective of this study is to enable researchers and developers to search 

for the most suitable options to develop an emotional state recognition system. More specifically, 
this paper presents work on ERS, which is built using physiological signals extracted from 

biosensors. It also presents details of how the extracted physiological signals are used to identify the 

user's emotional state. In this review, the sensors are categorized based on their modality: contact-
based sensors and contactless sensors. Next, the ERS process is presented together with the reported 

results for each described technique. Articles from four different research databases were reviewed, 

of which 147 articles from 2009 to 2021 were referred to that are related to ERS using physiological 
signals. This paper should be significant for researchers developing systems that integrate human 

emotion recognition capability. The findings reported here can guide them in choosing suitable 

methods for their systems. 
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1- Introduction 

In engineering and computer science, one of the main objectives of recognizing human emotions is to provide a 

personalized and interactive human-machine interface. The potential applications of such technology are vast. Among 

many applications of emotion recognition (ER) are advanced driver-assistance systems [1], health care [2], social 

security [3], digital multimedia entertainment [4, 5], and other fields. However, recognizing an emotional state is 

complex and challenging due to the many interrelated, complex, objective, and subjective factors. Emotions are complex 

biological phenomena, which are referred to by the subject's physiological system's neural structures. Emotion is also 

affected by external factors such as culture, age, and numerous other social and external matters. 

A machine can understand human emotions through various emotion elicitation protocols, feature extraction 

techniques, and classification methods [5]. An emotion can be recognized by extracting relevant data such as audio/visual 

(voice, facial expression, etc.), physiological measurements (respiration, skin temperature, etc.), and appropriate human 

activities (gesture, posture) [6]. In the past few years, many researchers working in ER have concentrated on analyzing 

data obtained from only one sensor, for example, video (facial expression) / audio (speech) data [7, 8]. These systems 

are known as single-modal ERSs. On the other hand, many other researchers combine the data from different sensors to 

develop multimodality ERSs. These systems' central task is to fuse the data obtained via various sensors attached to a 

human body and detect emotional states [6]. Multimodal ERs are claimed to be more robust [6, 9]. 
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Among all the modalities, physiological-based is attractive as no matter how hard a person tries to mask his/her 
emotions, their bodies usually experience a series of involuntary physiological changes, such as deeper respiratory 
breathing, faster heartbeats, sweating, and other chains of reactions. This is in contrast to facial-based ERS, where the 
recognition system fails when a person is showing a lack of facial expressions or chooses to mask the reaction. 
Physiological data can be obtained from bio-sensors. These sensors are widely available on the market with good 
accuracy. Wearable devices with bio-sensors are also beneficial for obtaining and monitoring different physiological 
measurements like blood pressure, heart rate, movements, temperature, etc. [1]. 

The main objective of this work is to investigate the options available for uncontrollable physiological information 
for the automated ER. Moreover, this work also aims to summarize the state-of-the-art techniques and information for 
further research [1]. The data obtained from one or many sensors needs to be deciphered to identify the emotion. The 
emotional state must first be discretized. It is also challenging to extract valuable features to train the learning models. 
There are several techniques for this purpose. Thus, this aspect is also reviewed in this work. Additionally, deep learning 
research is gaining momentum in this area. Unlike machine learning, deep learning allows learning without feature 
extraction and selection while offering outstanding efficiency and accuracy. Selecting the best model with tuned 
hyperparameters is also very important. Hence, this review also focuses on those learning approaches and their 
advantages and limitations. The review is conducted using the systematic literature review method. The main 
contributions of this study can be listed as follows: 

 Review on the fundamental of ERS which are the emotional models to indicate the emotional states of a subject. 

 The physiological modalities as input data of ERS are presented and discussed. 

 The learning models approaches and the required pre-processing steps which are important in building an ERS are 

reviewed. 

Existing ERS systematic reviews focus on a single emotion induction such as music by Joseph and Lekamge (2019) 
[10] or a single signal retrieval option such as EEG [11, 12] and or ECG [13]. This work provides a more comprehensive 
review. 

The rest of this paper is organized as follows. Section II presents the systematic literature review methodology, 
followed by the review method. The emotion models are presented in section III; these models are commonly used for 
emotion classifications. Further, in Section IV, the widely used modality of ERS based on physiological signals is 
discussed. The common framework used by other researchers for ERS is reviewed in Section V. It describes the pre-
processing steps, the machine learning approach (Feature Extraction, Feature Selection, and Emotion Classification), the 
deep learning (DL) approach, and the performance measurement tools. The reviewed works on ERS using physiological 
signals are summarized in Section VI, and finally, the conclusion and future work are in Section VII. 

2- Methodology: Systematic Literature Review 

2-1- Research Questions 

The key research focus for this study is how an emotion can be automatically recognized from individuals’ 

physiological signals from data collection to the analysis. Based on this, the research questions are as follow: 

RQ1: What is the most common identification of emotional state in the selected research paper? 

RQ2: What are the type of bio-sensors that can be used to recognize emotions? 

RQ3: What is the most used feature extraction and selection approach to obtain features from the physiological signal? 

RQ4: What are the machine learning algorithms frequently used for emotional recognition? 

RQ5: What are the deep learning algorithms frequently used for emotional recognition? 

RQ6: What are the most common methods to evaluate the developed and trained ERS model? 

2-2- Literature Search 

A systematic review is conducted to review the topic presented in this paper using the criteria and databases shown 
in Table 1. The articles published between 2009 to 2022 are researched with specific search terms. However, most 
articles are taken from the most recent research from 2016 to 2022. The search terms mentioned in Table 1 are used to 
search the papers in the four databases; IEEE Xplore, ScienceDirect, Google Scholar, and Springer link. IEEE Xplore 
provided the most relevant articles related to the search, with 373 articles for screening. However, these papers are not 
all precisely related, the papers are filtered further after reading the abstract and conclusion, obtaining 105 papers eligible 
to add in this paper. Google Scholar is also searched for works from 2009 to 2021 with the same search terms, and 460 
articles were obtained, but these papers contain duplicate articles from other three journals which was later filtered. 
Finally, the Springer link database was searched with the selected filtered year, English written, only articles, most 
relevant; and 220 papers were retrieved. The ScienceDirect database provided 400 papers. However, there are few papers 
that do not have evaluated results of accuracy; for example, the work only has target arousal and valence value. After 
filtering the articles, a total of 151 articles are referred. Initially, all related papers' abstracts were reviewed with the 
search term “emotion recognition”. Then the search is narrowed down to only articles containing physiological signal 
input for ERS. For example, a work on facial-based ERS is excluded due to the modality. A summary of the search is 
presented in Figure 1, a PRISMA flow diagram for systematic reviews for the four databases search. 
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Table 1. Literature Search Strategy with Inclusion and Exclusion Criteria for Datasets 

Language English 

Year 2009-2021 

Search terms 

[“emotion” OR “emotional” ] AND [“recognition” OR “classification” OR “Feature Extraction” 

OR “Feature Selection” OR “model”] AND [“physiological signals” 

OR “ECG” OR “EEG” OR “EMG” OR “HRV” OR “PPG” OR “EOG”] 

Survey Resources 

(digital libraries) 

IEEE explore 

ScienceDirect 

Google Scholar 

Springer Link 

Inclusion criteria 

papers that uses machine learning model for emotion recognition 

papers that use deep learning model for emotion recognition 

Papers involving physiological data input 

The accuracy of the proposed ERS is presented clearly 

Relevant to research and published between 2009 and 2021 

Research paper 

Peer reviewer journals 

Exclusion criteria 

Exclude papers that use facial data as input for emotion recognition 

Exclude papers that use speech data as input for emotion recognition 

Review papers 

Proceedings 

  

Figure 1. A PRISMA flow diagram 

Records identified from*: 

4 databases 

 
IEEE explore 405 

ScienceDirect 19,686 

Google Scholar 314,000 

Springer Link 20,783 

 

Databases (n = 354,874) 

 

Records removed before screening: 

IEEE explore 
Papers older than 2009 were removed (n =32)  

Least relevant records removed (n = 196, taken first 4 page) 
 

ScienceDirect 
Review papers records removed (n = 3,218), 

Papers older than 2009 removed (n =7,007). 

Least relevant records removed (n = 4,992, taken first 4 page 100 article each), 
 

Google Scholar 
Papers older than 2009 removed (n =281,700),  

Least relevant records removed (n = 31,840, taken first 46 page 10 article each), 
 

Springer Link 
Not English (n=376) 

Papers older than 2009 removed (n =5,725),  

Not article records removed (n = 10,415)  

Least relevant records removed (n = 4,047, taken first 11 page 20 article each),   

 
Records screened 

IEEE explore 373 

ScienceDirect 400 

Google Scholar 460 

Springer Link 220 

(n = 1,453) 

Records excluded** 

Review paper excluded manually 

IEEE explore   Google Scholar 
(n = 4)    (n = 37) 

 

ScienceDirect   Springer Link 
(n = 6)    (n = 7) 

Reports sought for retrieval 
IEEE explore 369 

ScienceDirect 394 

Google Scholar 423 

Springer Link 213 

(n = 1,399) 

Reports not retrieved 

IEEE explore 
Reason not physiological signal (n = 264) 

 

ScienceDirect 
Reason not physiological signal and recognition system (n = 302) 

 

Google Scholar 
Reason not physiological signal and recognition system, Duplicated in other database 

(n = 310) 

 

Springer Link 
Reason not physiological signal and recognition system, not research paper (n = 302) 

Reports assessed for eligibility 
IEEE explore 105 

ScienceDirect 92 

Google Scholar 113 

Springer Link 95 

(n = 290) 

Studies included in review 

(n = 151) 
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2-3- Limitations of the Search 

A limited number of the database are available, and even from the available database many of the research papers, 

only the abstracts are accessible due to subscription issues. Therefore, only the open access and articles from subscribed 

sources can be properly analysed. This is the main challenge faced in this study. 

2-4- Common Limitations of Existing Systematic Reviews 

Most systematic reviews were focused on a single emotion induction (such as music [10]) or a single signal retrieval 

option (such as EEG [11, 12]). Hence, the existing works did not consider comparing between different index tests. 

3- Emotion Models 

The RQ1 is answered in this section, where a detailed description of the emotional models commonly used among 

researchers is presented. The emotional states must be distinct and assessed quantitatively for effective emotional 

recognition. The primary emotions were defined decades ago by psychologists. Researchers widely adopted two models 

of emotions: a) discrete and b) multi-dimensional emotional state. 

In order to build an ERS, emotional data need to be generated where a group of participants is usually provided with 

a sequence of emotionally evocative materials to induce their emotional state. These materials can be pictures, movies, 

music, situational simulation, computer games, or recollection. The collected data is later used to train and build ERS 

model. 

3-1- Discrete Emotion Models 

The discrete emotion models provide fundamental emotion theories as stated by Ekman (1992) [14], Izard (2007) 

[15], and Plutchik (2007) [16]. No one emotional state is more essential than another state. Two or more emotional states 

might be triggered together in some situations. For instance, the emotional state of admiration and joy can be activated 

as a person falls in love, whereas sadness can be felt once a person is hurt, and hurt might trigger anger. Hence, it is 

possible to get a mixture of emotional feelings. 

In early 1992, Ekman (1992) [14] stated six standard emotion states (i.e., happy, sad, anger, fear, surprise, and 

disgust). He also mentioned other emotional states as producing responses and mixtures of these standard emotional 

states. In 1980 [16], a wheel model was proposed as a discrete emotion model. The wheel of emotions has primary 

emotional states of anger, anticipation, joy, trust, sadness, surprise, fear, and disgust (Figure 2). It also contains the 

weaker and stronger intensity of emotions, where the center includes a more vigorous intensity, and at the flower blooms 

are the weaker feelings. 

 

Figure 2. Plutchik's Wheel of Emotions [17] 
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Izard (2007) [15], also defined a set of basic emotions. According to the author, basic emotions are part of the human 

evolution course, and every essential emotional state is related to simple brain activity. Moreover, he categorized ten 

primary emotional states (i.e., interest, joy, surprise, sadness, fear, shyness, guilt, anger, disgust, and contempt). 

Plutchik (2001) [16] stated 24 pairs of separate work, i.e., feelings that combined two different emotional states. 

Finally, the wheel of emotions can be paired into four classes, as follows: 

Primary pair: e.g., alarm = fear+ surprise (one petal apart) 

Secondary pair: e.g., Envy = Sadness+Anger (two petals apart) 

Tertiary pair: e.g., Delight = Joy+ surprise (three petal apart) 

Opposite pair: e.g., Conflict = distraction+ interest (opposite petal apart) 

Another similar emotion model presented based on Robert Plutchik's model is Hourglass of Emotions (shown in 

Figure 3) Plutchik and Hourglass model uses a similar method, with the difference in the number of variables. There is 

more axis along which the emotion is modeled. On top of it, authors explicitly assigned specific labels to certain regions, 

providing some sort of compatibility with categorical models. These models are more advanced in terms of complexity 

and the ability to express complex emotions. Despite their complexity, the mentioned models do not take into account 

the context and personal typology of the reader or author. 

 

Figure 3. Hourglass of Emotions [18] 

3-2- Multidimensional Emotion Space Model 

An emotional state may contain different concentrations; for instance, sadness can be at a different level, such as very 

sad or moderately sad. Therefore, psychologists proposed multi-dimensional emotion space models to differentiate the 

different levels of emotions. 

Cambria (2012) [18] suggested that these emotional levels can be divided into two categories, i.e., 2D dimension, 

valence, and arousal. In this theory, to specify human feeling, negative valence indicates unpleasant and positive valence 

indicates pleasant, while low arousal indicates passive and high arousal indicates active. For example, in Russell's 

Circumflex Model (presented in Figure 4), 'happy' has positive valence and high arousal, whereas 'sad' has negative 

valence and low arousal. 
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Figure 4. Russell's Circumflex Model of Affect [19-21] 

Although the positive and negative emotional states can be easily differentiated using Russell's Circumflex Model, it 

failed to recognize individual emotional states. To overcome this issue, a 3D model has been proposed (see Figure 5). 

Dominance is the additional dimension axis; it ranges from submissive to dominant. Dominance helps reflect the specific 

emotional state to make the outcome more exact and clear. For example, both anger and fear in the distress quadrant for 

the 2D model can now be easily differentiated due to the dominance axis, where anger is dominant and fear is submissive. 

 

Figure 5. 3D emotion space model [22] 

4- Modality of Physiological Based Emotions Recognition System 

In this section, RQ2 is answered. Physiological measurements are produced from the central and autonomic nervous 

systems. These measurements can be obtained from positioning the biosensors, as indicated in Figure 6. 
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Figure 6. Physiological signals and position of sensors 

4-1- Electroencephalogram (EEG) 

An EEG signal is from electrical activities in the brain and can be extracted using electrodes attached to the scalp. It 

is one of the best inputs to detect emotions with high precision. The standard methods use 8, 16, or 32 pairs of electrodes 

which are attached to four specific places on the scalp (i.e., nasion, inion, and right and left preauricular points) by using 

the frontal, temporal, parietal, and occipital lobes (as shown in Figure 7-a) [23]. These electrodes are typically attached 

to the scalp using headsets or electrically conductive adhesive [24]. An example of placing electrodes on the scalp for 

recording EEG signals is presented in Figure 7-b and proposed by Heng et al. (2020) [25]; the signals were obtained and 

represented in a graph. However, EEG based system is best for clinical use, as it is very time-consuming to set the 

electrodes and overcome the sensible noise characteristics. 

 

 

 
(a) 

 
(b) 

Figure 7. EEG signal reading: (a) EEG electrodes distribution on the scalp [26] and (b) An illustration of EEG recording [25] 

Preauricular 

points (left) 

Preauricular 

points (right) 

Symbols: 

F= Frontal lobe 

T= Temporal lobe 

C= Central lobe 

P= Parietal lobe 

O= Occipital lobe 

“z” indicates electroce placed on the middle line 
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4-2- Electrocardiogram (ECG) 

Electrocardiogram (ECG) signals are frequently used for the valuation of heart functionality. Like EEG, electrical 

activities of the heart are measured. The muscular contraction and relaxation are from the heart. It is obtained using 

electrodes placed on a subject's body [27]. The heart is a vital organ in the human body, and a person's feeling influences 

its rhythm. Therefore, ECG signals can be beneficial for ERS [28]. 

There are various methods to obtain ECG; one standard method is the 12-lead ECG technique. Typically, ten 

electrodes are used to receive 12-lead ECG signals. The ten electrodes are set on limb leads and chest leads, as shown in 

Figure 8-a. Here, four limb sensors are placed on the flat space of the lower innermost legs area and lower innermost 

forearm area, or higher innermost arms area and higher innermost thighs area, or higher innermost arms area and 

innermost abdomen area. Figure 8-b shows the placement of the sensor on the chest area as presented by Tada et al. 

(2015) [29]. 

 

 

(a) (b) 

Figure 8. Schematic representation of electrocardiography (ECG) [30]: (a) 4 limb sensors of ECG: Right Arm, Left Arm, 

Left Leg, Right Leg; (b) Position of a higher resolution, six sensors (V1-V6) [29] 

4-3- Electromyogram (EMG) 

Electromyography (EMG) is an evaluation and recording method for electrical potential generated by muscle cells. 

In different areas, these signals can be used for various purposes. In the ERS case, the signals can be used to find 

perceptive emotions based on physiological reactions. Ekman and Friesen first stated the connection between actions, 

muscles, and emotions in 1978. The selection of muscles depends on the type of analysis; the most common muscles 

used are corrugator supercilii, occipitofrontalis, levator labii superioris, orbicularis oculi zygomaticus major [31-33]. 

Figure 9 shows the electrode placement to obtain emotional expression using EMG. The responses from four selected 

muscles are received using Ag/AgCl miniature surface electrodes by electrolyte gel. Here, the emotional expression can 

be measured by the activity of the Zygomaticus major for smiling, which is connected to happiness; the Corrugator 

supercilii measures wrinkle of one's forehead, which is related to fear, sadness, anger, etc.; the Levator labii Superioris 

measures upper lip, which is connected to worried, nervous, upset, etc.; and the Lateral frontalis measures eyebrow-

raising, which is related to fear, surprise, etc. 

 

Figure 9. EMG electrode placement for emotional expression using Corrugator supercilii, Levator labii Superioris, Lateral 

frontalis and Zygomaticus significant measurement [34] 
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Other possible measurements of EMG for emotional expression are presented in Table 2. 

Table 2. Relations between emotions and facial EMG [35, 36] 

Emotion Involved Muscles Actions 

Happiness 
Zygomaticus Major and 

Orbicularis oculi 

Closing eyelids, Raising and lowering eyebrows, raising and 

lowering lip corners 

Surprise Frontalist and Levator palpebrae superioris 
Raising eyebrows, raising upper eyelid for eyes open and jaw drops 

down 

Fear Frontalist and Corrugator supercilii Raising eyebrows, lowering eyebrows, and raising the upper eyelid 

Anger 
Corrugator supercilii, Levator palpebrae superioris and 

Orbicularis oculi 
Lowering and raising eyebrows, raising and closing upper eyelid 

Sadness Frontalist, Corrugator supercilii and Depressor angulioris Raising and lowering eyebrows, raising and lowering lip corners 

Disgust Levator labii superioris and alaeque nasi Raising upper lip, lips pressed, and wrinkly skin of nasal 

4-4- Heart Rate Variability (HRV) 

Heart rate variability (HRV) is the Heart Rate (HR) weight by average beats per minute. It records the individual 

variations in time (or variability) among sequential heartbeats. HRV measurement provides data about heart variability, 

which can be used to predict emotional states. HRV data can be examined at a particular time in every heartbeat cycle 

and its regularity [37]. An unusual heartbeat can be due to emotional level changes. The sympathetic and parasympathetic 

autonomous nervous system in the human body regulates variability in HR. The parasympathetic nerves slow the 

heartbeat, and the sympathetic nerves accelerate the heartbeat. The variations in emotional levels, such as anxiety and 

physical pressure, influence HR [38, 39]. A low HRV could indicate relaxation, whereas a high HRV indicates 

frustration. 

Furthermore, HRV measurements are also dependent on age, gender, physical condition, mental stress, eating habits, 

weight, blood pressure, and glucose level. Inherited genetic factors also affect HRV. 

The standard method to measure HRV is by using an ECG [37], which gets a reading of the primary electro biological 

signal of heart activity. HRV can be calculated using the RR pulse intervals of the ECG signal. PPG is another method 

to get readings of HRV. PPG can be obtained by placing the probes on the brachial artery, radial or ulnar artery, and 

tibial artery for both hemibodies [40]. Two sensors are used to obtain PPG, the first sensor (emitter) emits light to the 

skin, and the second sensor (detector) detects light emitted back from artery pulse wave. The difference in light emitted 

and reflected is due to the person's blood volume (BV). The BV is produced by capillary dilation and constriction and 

can be used to estimate HR. Moreover, IBI (inter-beat-interval) from the PPG signal is calculated to obtain the HRV 

reading. The electrodes/probes placement to obtain HRV is presented in Figure 10-a. Figure 10-b shows ECG illustration 

and photoplethysmography (PPG) signals. In Figure 11-a, a more detailed operation of PPG sensors is presented. In the 

image, the reflection is from narrow arteries, where the pressure is lower with greater reflection, causing dialosic value. 

Whereas if the reflection is from wider arteries, it will absorb more, and this indicates higher pressure, creating systolic 

value (shown in Figure 10-b). 

 

 

(a) (b) 

Figure 10. Schematic representation of the acquirable ECG and PPG (a) locations to set Electrodes and Probes reported on 

a body template [40]. (b) Schematic illustration of ECG and PPG signals over three heart cycles 
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(a) (b) 

Figure 11. Representative of PPG and rPPG (a) Optical HR sensing. (b) rPPG illustration for obtaining PPG measurement 

Remote photoplethysmography (rPPG) makes it possible to measure the cardiovascular pulse wave via a contactless 

approach by recording different back-scattered light levels remotely using ambient light and vision systems [41]. The 

rPPG measurements read human cardiac activity using a video camera. The process is similar to PPG, but it is a 

contactless process. Figure 11-b shows rPPG that gets reading from different light levels (i.e., red, green, blue) reflected 

from the skin. This processing was used by Benezeth et al. (2018) [39], to detect emotions without contacting the device 

with a human to obtain the measurements. 

4-5- Electrooculography (EOG) 

EOG is one of the standard eye movement measurement techniques. It is processed by assessing corneo-retinal 

polarity. The cornea is set in front of the human eye, which has a positive polarity, while the retina is positioned in the 

back of the human eye, which has negative polarity. Furman and Wuyts (2012) [23] presented a primary implementation 

of EOG for ophthalmological diagnosis. For measuring eye movement, electrode pairs are typically set either on the left 

or right side of the eye (Horizontal) or above and below the eye (vertical), as shown in Figure 12-a. When the eyeball 

moves from the centre towards any one of the electrodes set between the eye's position, a voltage spike is produced 

(Figure 12-b) [42]. The basic concept of using EOG for ERS is to detect eye-blinking, which is beneficial for detecting 

emotional states, such as surprise/ stress [43]. Besides emotions, EOG is also helpful in detecting fatigue, concentration, 

and drowsiness [44]. 

  
(a) (b) 

Figure 12. Schematic representation of EOG: [45] (a) Location to set electrodes to obtain EOG; (b) measurement principle [46] 

EOG extraction can be via contact or contactless methods. Contact measurements can be implemented by similar 

instruments used for EMG signal retrieval. On the other hand, the contactless technique can be accomplished using video 

oculography (VOG) camera systems or using infrared oculography (IROG) cameras [42]. 

4-6- Galvanic Skin Response (GSR)/ Electrodermal Activity (EDA) / Skin Conductance (SC) 

The GSR/EDA/SC is an uninterrupted raw data of electrical factors from the human skin. Here, skin conductions are 

taken as the main factor, where sweet response produces a different amount of salt on the skin and consequently the 

electrical resistance alteration from the skin to skin [45]. Sweat cause moisture on the skin's surface and brings 

fluctuations towards the stability of positive and negative ions in electrodes [47]. Sweat is produced due to the activation 

of the sweat gland. It is the unconscious reaction of a human [9] and a reflection of changes in the sensitive nervous 

system [48]. Some of the emotional responses cause sweat reactions, mostly on hand palms, fingers, and feet soles. 

SC can be obtained by placing electrodes in different positions on the human body. The commonplace of attaching 

sensors is on the palmar surface of the hands/fingers or the foot's plantar surface. van Dooren et al. (2012). [49] had tested 

the emotional sweating across the body on 13 parts and found that attaching sensors on fingers, feet, forehead, shoulders, 

neck, and chest is the best position to get high SC responsiveness from emotional state changes. These positions to obtain 

SC measurements for recognizing emotional states are indicated in Figure 13. 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1177 

 

Figure 13. Skin conductance measurement locations: 1) fingers, 2) wrist, 3) chest, 4) foot (instep), 5) forehead, 6) neck, and 

7) shoulders 

4-7- Skin Temperature (SKT) 

SKT is one of the best parameters for automatic ERS. SKT is the unconscious reaction of a human related to SC and 

also HR. SKT measurement is determined by the thermal radiation of the skin's surface, and it is a valuable indicator of 

emotional states, which is reflected by the Autonomic Nervous System (ANS) activity. 

Similarly, SC, SKT is obtained from palmar surfaces and plantar surfaces (such as nose-tip, and fingertip), as it is 

influenced by endothelial cells. Basically, broken blood vessels present on the skin's surface will increase the temperature 

while relaxing and decrease the temperature if in a state of stress or anxiety [50]. 

The contactless measurement can be processed using electromagnetic radiation released on the skin's surface. It allows 

the measurement of SKT from a distance. However, there are challenges related to the sensor's accuracy and its coverage. 

A contact-less system was developed by Kosonogov et al. (2017) [50] to obtain SKT measurements. The measurement 

is obtained by using an infrared thermal imaging camera FLIR; an example output is presented in Figure 14. SKT data 

can also be obtained by using contact-based SKT sensors in the finger. Ayata et al. (2017) [51] used a Fingertip 

temperature (FTT) sensor for emotion state monitoring and recognition. When the person is relaxed, the fingertip is 

warm than in a tense state of emotion. In a relaxed mood, vessels are dilated, and the fingertip becomes warmer. 

 

Figure 14. Example of obtaining skin temperature measurement using camera [50] 

4-8- Respiration (RSP)/ Respiratory Belt (RB) 

RSP biosensor or RB is commonly a stretchable band made of latex rubber; it is used for recording human breathing 

activity. The RSP is usually worn over the abdomen. The elastic band stretch data is measured as a change in voltage 

level. The standard recording is RSP rate and breathing depth. In Figure 15, a pressure sensor (EMFit) is shown, where 

the sensor is attached to the skin using a belt. Here, the human's ribcage volume changes due to respiration compressing 

the attached sensor [52]. 

RSP measurement is closely related to other cardiac measures; a deep breath can affect RSP, EMG, and SC 

measurements. The rate of RSP is typically reduced while relaxing, whereas when the person is stressed out, it results in 

momentary RSP interruption. In the case of the emotion level, negative emotions contribute to abnormal RSP patterns. 
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However, irregular RSP cycles can be caused while talking too [53]; hence it is essential to keep this in context while 

classifying RSP signals. Another method to obtain RSP is by measuring the carbon dioxide (CO2) contents of inhaling 

and exhaling air. It is known as capnography or measuring chest cavity expansion [53]. Moreover, it is also possible to 

obtain RSP by using EMG data acquired from the respiratory muscles [54]. 

 

Figure 15. Wearable pressure sensors [52] 

4-9- Discussion 

There are many different ways to obtain data from various sensors and methods. It is essential to select the best 

approach. The selection also depends on the requirement of the user and the application area of the ERS. Here, the basic 

categorization clarifies the standard physiological sensors used for ERS. 

 

Figure 16. Selection of Unconscious Measurement Methods and Input Senor for emotions recognition 
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Figure 16 groups the ERS measurement techniques, which help the selection of the appropriate measurement sensors 

for ERS. This selection is based on unconscious data collection. As in the conscious process, emotion identification is 

made using self-evaluation questionnaires, which is less reliable as the participant may not identify the real emotions or 

provide inaccurate answers due to the inability to understand the questions. However, the unconscious process has many 

varieties for measurement parameters. These physiological signals also are divided into electrical and non-electrical 

categories. It can be stated that these electrical parameters are the main signals, which provide a maximum precise 

outcome, whereas the non-electrical measurements provide human body responses strained by electric signals. The 

electrical parameters measurements consist of two structures a) direct (self-generating) sensors (such as EEG, ECG, 

HRV, EMG, EOG) and b) modulating sensors (such as GSR). Moreover, the non-electrical signal can be obtained using 

contact and contactless approaches like the thermal camera, rPPG, IROG, and VOG. 

An engineer that builds ERS for advanced driver-assistance systems might be interested in a non-invasive approach. 

Hence contactless sensors like the rPPG and video oculography systems are better suited for the project. Whereas 

accuracy is essential in building an ERS-based healthcare system, thus in this case, direct electrical sensors like EEG or 

ECG are the better option. 

5- Emotion Recognition System (ERS) 

In this section, methods for physiological signal-based ERS (RQ3-5) are discussed. The system can be trained using 

two different ways. The most common way is to use traditional machine learning (ML) models, and another option is 

DL training approaches. The conventional method required feature extractions and feature selection techniques, whereas 

DL is free from these methods [55]. DL can train the model without feature extraction due to the capability of inherent 

data information and extracting features by design. The overall ERS process is presented in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Emotion recognition process using physiological signals under target emotion stimulation 

5-1- Pre-Processing 

Preprocessing of physiological signals is essential for both traditional and DL approaches, where noise due to 

crosstalk, electromagnetic interference, etc., was eliminated. 

Baseline wander one of the typical noises presented in ECG and PPF recording, which might be caused usually by 

motion, respiration, and skin-electrode impedance, and so on. For instance, to solve this issue of noisy data, the moving 

average preprocessing technique can be implemented to make the signal smoother. Another standard method is wavelet 

transform (WT), which was also used to eliminate Baseline wander and detection of wave characteristics [56]. The most 

common form of filtering is the "low-pass filter" technique [57, 58], and the "High pass filters" technique [59]. There 

are several other filter methods, such as independent component analysis (ICA), empirical mode decomposition (EMD), 

and discrete wavelet transform (DWT). The EMD is WT; it is used for filtering and noise cancellation, an entirely signal-

dependent and adaptive approach suitable for real-time applications [60]. Lahmiri and Boukadoum (2015) [61] stated 

that DWT is more effective than Fourier-based filtering in the case of filtering noise due to multi-scale approximation 

(MSA). ICA, on the other hand, can extract and decompose multichannel signals from different sources into independent 

components with mixed signals in linear combination [62]. 

In general, in the signal collection, the abnormal data due to noise cannot be avoided. It requires some expertise to 

remove the artifact components through visual observation. Standard original signals contain interference signals. 
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Different approaches (filtering, DWT, ICA, EMD) are needed on distinctive bio-signals and various sensors of intrusions 

to remove the noise related to frequency domain and time domain characteristics. 

5-2- Traditional Machine Learning Method Flow 

There are three main steps in the ML, i.e., feature extraction, feature selection, and emotion classification. In this 

section, RQ3 and RQ4 are answered. 

5-2-1- Feature Extraction 

Feature extraction is a significant step in the ER system. Several feature extraction methods have been popular among 

researchers of ERS. For example, in Hindarto and Sumarno (2016) [63], the Fast Fourier Transform (FFT) was used to 

extract features from EEG signals; FFT lost the little amount of signal data during transformation. However, without 

having enough samples, it could not extract enough frequencies. 

Time-frequency distributions (TFD) method works on obtaining features from time-frequency with stationary 

principle. The features contain both the time and frequency domains data from the provided signal. However, the main 

issue of TFD is it requires noiseless signals to perform effectively, and the data needs to be pre-processed correctly to 

remove the noise from raw data. Another issue is the performance is slow because of the gradient ascent computation 

[64]. 

Meanwhile, Eigenvalue and Eigenvector methods [65] are another option for feature extraction methods. Eigenvector 

only obtains frequency data from the sinusoid signal. Unlike TFD, it can process signals buried with noise by possible 

Eigen decomposition for correlation. The disadvantage of this technique is Eigenvector might produce false zeros for 

the Pisarenko approach of the lowest eigenvalue. 

WT and phase space reconstruction has also been used for feature extraction. WT is known to work better for sudden 

and transient changes in the signal. It also works well in irregular data patterns. It can be used to extract both time and 

frequency features from the data with linear features. However, it is challenging to select a proper mother wavelet for 

extracting valuable features. The WT method can be categorized into continuous wavelet transform (CWT), and discrete 

wavelet transform (DWT). In CWT, the disadvantage is the continuous change in scaling and translation parameters. 

Another WT method approach is the dual-tree complex wavelet transform (DT-CWT) [66]. DT-CWT uses both real and 

imaginary tree wavelet filters to obtain complex shifted and dilated mother wavelets. Unlike DWT, DT-CWT has the 

projecting characteristics of estimated changing value of invariance and higher anti-aliasing [67]. 

Auto-regressive method (AR) [64] is used to obtain a frequency feature from the sharp spectral signal. AR works to 

reduce the loss of signal spectral issues and enhance frequency determination. It performs well even if short data 

segments are provided, as it does not depend on the size of data for the infinite AR spectrum. However, it is challenging 

to estimate model order in the spectral. If the model order is selected wrongly, the AR model will provide a deprived 

spectral value. 

There are other feature extraction methods available. EEG feature extraction using differential entropy (DE) is 

discussed in Chen et al. (2019) [11]. Empirical mode decomposition (EMD) can be used to obtain different time and 

frequency data and obtain a series of intrinsic mode functions (IMFs) data [68]. Researchers used it for extracting 

physiological signals for emotion state recognition, such as ECG [69] and EEG [68]. However, it also suffers from 

unavoidable limitations in some domains. The issues stated by Liu et al. (2018) [70] are the frequency resolution stopping 

criterion, complementary ensemble empirical mode decomposition, and sampling frequency influence. There is no 

specific proven statement for stopping criterion threshold setting for the frequency resolution [70]. 

Deep learning is also applied for extracting valuable features. For example, the deep Belief Network (DBN) can be 

used to extract features for the physiological signal as presented in Hassan et al. (2019) [71] and Asghar et al. (2019) 

[72]. The main benefit of extracting features using DBN is that it is an unsupervised process and can handle many 

unlabeled data [73]. Moreover, DBNs can calculate the necessary variables' output weight by integrating the inference 

procedure approximation. However, few limitations due to the inference procedure of DBNs are only restricted to 

bottom-up pass. It contains a greedy layer that only learns a single layer's features and does not adjust again with the rest 

of the layers [74]. 

The features extracted depend and vary based on the type of the physiological signals and also the features extraction 

method used. Some of the features are presented in Table 3 according to the physiological signal. 
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Table 3. Type of features based on physiological signals 

Types of Signal Features 

w, W Energy density 

N, D Demagnetizing factor 

ECG 
Mean Amplitude Rate, Mean, Root Mean Square, Max, Average and Standard Deviation of HRV [75, 76] Mean of Absolute 

values of first differences, Mean Frequency, Median Frequency [77] 

EDA 
Mean Amplitude Rate, Conductance Responses[78], Rate of Skin Conductance [51], Mean of Absolute values of first 

differences [79], Mean rise duration of skin [78] 

RSP 
Respiratory Rate, Average level of Breathing, the Longest time between breaths, the Shortest time between breaths, RSPmax, 

RSPmin [76] 

EMG Mean Value, Root Mean Value, Standard Deviation 

EEG 

GFP, Zscore, log(Zscore), Interest Index (II), Memorization Index (MI), Power Spectral Density (PSD), Brainrate [76], mean 

absolute value (MAV) [66]; Pleasantness Index (PI), Fpz Alpha Band, Fpz Beta Band, F3/F4 Alpha Band, Fpz Beta Frequency. 

F3/F4 Beta Power or Power Ratio, Fpz Alpha and Beta band Power, F3/F4 Alpha and Beta Band Power [66, 80] 

EDA/GSR 
Decomposition algorithm as a sum of tonic component and phasic component [81], statistical properties such as Variance of 

amplitude, Standard deviation, Skewness, Kurtosis etc. [82] 

SKT SKTavg, SKTslope, and SKTstd [83] 

5-2-2- Feature Selection & Reduction 

Once features are extracted from the raw data, it is essential to find the quality and informative features that might be 

correlated with each other and remove the features which might be unrelated. Useless features may cause the following 

issues: 

 It can cause data analytics overfitting issues and weak outcomes, which leads to low prediction accuracy. 

 It might take a long time to process data with useless features. 

Hence, feature optimization is a necessity. The popular techniques for feature selections are reliefF, linear 

discriminant analysis (LDA), principal component analysis (PCA), and kernel-PCA. 

ReliefF algorithm is a filter method that ponders each feature according to its relevance to each class. For example, 

Gómez-Lara et al. (2019) [84] used a relief algorithm to filter each feature according to its relevance to each class from 

EEG signals. Another researcher proved that the feature selection of EEG signal data with reliefF algorithm could 

improve classification accuracy [85]. The reliefF algorithm can also select ECG signals [86]. 

The LDA and PCA are traditional linear techniques and technically are features reduction methods. Zhang et al. 

(2018) [56] recommended feature reduction rather than feature selection method. Goshvarpour et al. (2017) [87] applied 

PCA and obtained great accuracy of 100% for ECG data input for all levels of emotional states and dictionaries. The 

Kernel PCA feature selection uses a global nonlinear approach. However, with feature reduction techniques, a few 

important data might be lost in the reduction process. 

Stepwise regression (SW) consists of regressing multiple variables by removing the most minor contributing 

predictors step by step. Only independent variables with non-zero coefficients are included in the final regression model. 

The Akaike information criterion (AIC) is used in SW as the stopping criterion. However, it also contains a few 

significant issues, as presented by Smith (2018) [88]. One of the issues is a local optimization calculated by involving 

parameters one-by-one is not guaranteed to be a global optimum. Another problem is it follows automatic rules that take 

in statistical correlations value without concerning whether or not it is sensible. 

Genetic algorithm (GA) has also been applied to the features selection method. In GA, the selection is based on the 

natural biological evaluation. In nature, organisms have evolved over generations to better adapt to their environment. 

GAs can be used to maximize the performance of a predictive model on an unseen data set. GAs need a population of 

individuals and several generations to produce better approximations depending on some mutation and crossover 

probability parameters. At each generation, according to a fitness criterion, a new set of individuals, i.e., subsets of 

predictors, is created and also recombined using operators from natural genetics. As GA is processed using global 

optimization calculations, it is susceptible to being over-fitted, mainly when it is integrated with distance-based 

classifiers [89]. 

Random forest (RF) is a known Machine Learning algorithm that contains a feature selection function using the Gini 

value. Resampling methods such as cross-validation and bootstrap are helpful for feature selection during model 

building. These methods can maximize the model’s performance but increase the computational cost. RF – recursive 

feature elimination (RF-RFE) provides a reliable assessment of predictors and presents a ranked set of the best predictors 

at the end. 
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5-2-3- Machine Learning Algorithms for Emotion Classification 

After identifying the useful features through feature selection, the ML model must be trained using the selected input 

data, and the outcome is the class of each data; this is known as classifications. There are multiple classification 

techniques that are popular in ERS, namely; probabilistic neural network (PNN) [87], linear discriminant analysis (LDA) 

[28], recurrent neural network (RNN) [66], quadratic discriminant analysis (QDA) [66], K-nearest neighbor (KNN) [66], 

random forest (RF) [90] and support vector machine (SVM) [91]. 

Artificial Neural Network (ANN) 

ANN based classifiers are commonly used in this field. A multilayer perceptron (MLP) is a class of feedforward 

artificial neural networks (FANN). The term MLP is used ambiguously, sometimes loosely to any feedforward ANN, 

sometimes strictly to refer to networks composed of multiple layers of perceptron (with threshold activation). For the 

introductory presentation of MLP, a diagram is presented in Figure 18 with one hidden layer, which is connected with 

every node of the input and output layer. The basic formula of the ANN hidden layer calculation is using Equation 1, 

and the output layer is calculated using Equation 2. 

ℎ𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖𝑖 ), (1) 

𝑦𝑘 = 𝑓(∑ 𝑤𝑘𝑗ℎ𝑗𝑗 ), (2) 

Here, the wlj and wkj are weight vectors. Input data vector is ‘x’, output data vector is ‘y’, and hidden data vector is 

‘h’. The input word vector position is ‘i’, the position of the hidden layer node is ‘j’, and the position of the output work 

vector is ‘k’. 

 

Figure 18. MLP 

MLP can tolerate and be correctly trained even with missing data. It has fault tolerance capability; thus, a single node 

corruption does not prevent correct output calculation. However, it has a few limitations, such as relying on lag 

observations. Moreover, it is essential to map correctly between input and output to get good performance with static 

mapping function and fix output and input. Another variant of the ANN classifier is the recurrent neural network (RNN). 

In RNN, the current hidden state and current input data are calculated by the previous hidden state. For a clearer picture 

of RNN, an unfolded view is presented in Figure 19. The basic formula of RNN is presented in Equation 3. 

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡; 𝜃),  (3) 

where, ℎ𝑡 presents hidden state at t. Where t is time-step. 𝑥𝑡 is current input data. The final parameter for 𝑓 is theta 

(which encapsulates the weights and biases for the network), for example, Wy and Wx. 

 

Figure 19. RNN Unfold 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1183 

Here, Wy and Wx are weight vectors for output and hidden layer respectively. Where W value is weight vector for 

different time-step t. Input word vector is ‘x’ and output word vector is ‘y’. Moreover, to calculate the activation function, 

Equation 4 is used, and Equation 5 is used to calculate the output: 

ℎ𝑡 = tanh(𝑊 ℎ𝑡−1 + 𝑊𝑥𝑥𝑡),  (4) 

𝑦𝑡 = 𝑊𝑦ℎ𝑡, (5) 

RNN is capable of taking any dimension of input data. The trained model can remember every information throughout 

time, which makes it a valuable model for time-series data. It can share weights across the time-steps. Even if the training 

dataset is large, the model size is not large. An improved version of RNN, namely simple recurrent units (SRU), has 

been implemented by Wei et al. (2020) [66] as EEG-based ERS, and it is proven that SRU is better than MB and SVM. 

However, RNN has a few drawbacks. Due to the recurrent processing, the complete computation process is slow. It also 

does not work well in exploding or gradient vanishing data. 

Support Vector Machine (SVM) 

SVM performs classification by finding the best and optimal hyperplane for separating the data into two classes with 

maximum margin and no interior points. Hence to obtain the optimal hyperplane, Equation 6 is used. 

𝐻: 𝑙𝑡(𝑝)  +  𝑏 =  0, (6) 

Here, b indicates value for Intercept and bias term of the hyperplane equation 

The distance of a hyperplane presented in Equation 6, from a given point vector 𝑝 = ∅(𝑥𝑜) can be calculated using 

Equation 7. 

𝑑𝑖𝑠𝑡𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒(∅(𝑥0)) =
|𝑙𝑡(∅(𝑥0)) + 𝑏|

‖𝑙‖2
  (7) 

Here, for length (l), Euclidean norm is ‖𝑙‖2, and is calculated using Equation 8: 

‖𝑙‖2 =: √𝑙1
2 + 𝑙2

2 + 𝑙3
2 + ⋯ 𝑙𝑛

2 ,  (8) 

SVM is one of the researchers’ choices due to its effectiveness and memory efficiency. SVM is more effective in 

high-dimensional spaces. In Elsayyad et al. (2017) [86], SVM is used for classifying ECG signals. Another work that 

also used SVM is by Domínguez-Jiménez et al. (2020) [91]. They compared the classification using mean accuracy and 

ROC and concluded SVM with the linear kernel (SVML) provided good performance for identifying sadness and 

amusement. Nevertheless, there are a few downsides of SVM, such as not being able to make multi-class classification, 

SVM optimization, and correct probability estimates and parameter selection. It was then improved by Chang and Lin 

(2011) [92], and it was also implemented by a researcher for emotion recognition [93]. 

Random Forest (RF) 

For each decision tree, calculating the importance of a node using Gini Importance as presented in Equation 9, here 

assumed there is only child nodes (binary tree): 

𝐼𝑚𝑝(𝑚) = 𝑤𝑚𝐺𝑚 −  𝑤𝑙𝑒𝑓𝑡(𝑚)𝐺𝑙𝑒𝑓𝑡(𝑚) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑚)𝐺𝑟𝑖𝑔ℎ𝑡(𝑚), (9) 

Here, 𝑤𝑚 is weight of samples to reach node m. Where as 𝐺𝑚 is calculated impurity for the node m. 𝑙𝑒𝑓𝑡(𝑚) and 

𝑟𝑖𝑔ℎ𝑡(𝑚) is a child node from left and right split on node m, respectively. 

And by involving the predictor variable, all splits are averaged in the forest, which can be used to average splits on 

variables contained in a group. If considering dataset C splatted into two class, T1 and T2, with the amount of data N1 

and N2, respectively, then the Gini index for T is defined in Equation 10. 

Ginisplit(T) =
N1

N
Gini(T1) +

N2

N
Gini(T2), (10) 

The smallest split Gini (T) is selected to split the node, as it has lower impurities. The Gini index value of one class 

node will be 0. As mentioned in the previous section, RF calculates the importance of a node using Gini Importance. 

Peker et al. (2015) [85] compared RF with feedforward neural network (FFNN), SVM, NB, C4.5 decision tree 

algorithm, and radial basis function (RBF) network of ANN and found that RF provides the best classification accuracy. 

The main reason RF gives good performance is the reduced overfitting issue in decision trees due to the learning process. 

It works for classification and regression cases and even for categorical and continuous data. It also overcomes the data 

quality issue of missing data. However, the number of many trees processing requires higher computational power and 

even higher processing time. 
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Naive Bayes (NB) 

Bayes Theorem provides a way of calculating posterior probability P(𝑥|𝑓) from P(x), P(𝑓), and P(𝑓|x) using Equation 

11. 

𝑃(𝑥|𝑓) =
𝑃(𝑓|𝑥).  𝑃(𝑥)

𝑃(𝑓)
, (11) 

Here, ‘x’ is class and ‘f’ is features for presenting the class. P(x) is the prior probability of the class ‘x’ occurring 

independently. The prior probability of features ‘f’ is P(f). P(x|f) is the posterior probability of the class ‘x’ occurring in 

a given ‘f’. Whereas P(f|x) is the likelihood, which is the probability of features occurring, given class ‘x’. 

One of the known classification algorithm is NB. It is used commonly for text classification spam filtering, multiclass 

prediction, etc. However, the main issue of NB is it provides output considering the input features as independent. It 

limits the use of the learning algorithm in a few cases. The algorithms set the probability to zero for the unknown test 

data set. Hence, it is essential to process the smoothing technique before training the model. 

Adaboost 

Adaboost works as a boosting algorithm for decision trees on binary classification cases. It basically strengthens up 

a group of weak classifiers to achieve reasonable accuracy. Every weak value is assigned with a weight to boost up the 

learning. Initially, the weight (w) is set to each instance by using Equation 12. 

𝑤𝑥𝑖
=  

1

𝑙
, (12) 

where, 𝑥𝑖 is the input data of position 𝑖, and the size of data used to train is 𝑙. 

Next, a weak classifier will be trained using the weighted samples by using the training dataset. Then the 

misclassification rate is obtained using Equation 13. 

𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑟𝑜𝑟 =
𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑛

𝑛
, (13) 

where, 𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the total value of correctly predicted output by the trained model. 

Equation 8 is then modified with the weighting value of the training input and obtained in Equation 14: 

𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑟𝑜𝑟 =
𝑠𝑢𝑚(𝑤𝑖𝑡𝑒𝑟𝑟𝑜𝑟𝑖

)

𝑠𝑢𝑚(𝑤)
, (14) 

Here, 𝑤𝑖  is weight calculated and 𝑡𝑒𝑟𝑟𝑜𝑟𝑖
 is prediction error for input value i. The 𝑡𝑒𝑟𝑟𝑜𝑟𝑖

𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 1 if misclassified 

and 𝑡𝑒𝑟𝑟𝑜𝑟𝑖
𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0 if correctly classified. 

Another necessary calculation is to obtain a stage value; this can be done using Equation 15. It provides the weight 

of any predictions made by the model. 

𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑠𝑡𝑎𝑔𝑒 = ln(
1−𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑟𝑜𝑟

𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑟𝑜𝑟
)  (15) 

Here, ln is the natural logarithm and 𝑎𝑑𝑎𝑏𝑜𝑜𝑠𝑡𝑒𝑟𝑟𝑜𝑟  is misclassification rate calculated by Equation 14. 

Adaboost classification is known to be very simple for implementation. However, the algorithm only supports binary 

classification. Adaboost is also not tolerable to outliers and noisy data. 

5-3- Deep Learning Algorithms for Emotion Classification 

In this section, the RQ5 is answered. Five deep learning algorithms that are used in ERS are discussed. 

5-3-1- Convolutional Neural Network (CNN) 

CNN is a class of DL algorithms and a type of FFNNs. Its architecture contains shared weight values with conversion 

invariance features. CNN is famous in many different domains, and it is also currently gaining popularity for classifying 

physiological input signals (such as ECG, and EEG) of ERS. 

Martinez et al. (2013) [94] used CNN for classifying mental states (i.e., excitement, relaxation, fun, and anxiety) 

using SC and BV pulse signals. In another research, different statistical features were obtained from the benchmark 

dataset DEAP and passed to the CNN model for emotional state classification [95]. The combination of CNN with the 

ability for dynamic learning of a new system was proposed by Song et al. (2020) [96] as dynamical graph convolutional 

neural networks (DGCNN). The dynamical architecture helps to learn information connections between various EEG 

channels. The EEG channel data can be presented in an adjacency matrix in rows and columns to generate different 

features and classify them in the SEED dataset. 
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Santamaria et al. (2018) [97] implemented deep CNN (DCNN) on a dataset of bio-signals (ECG and GSR) from the 

AMIGOS database for emotional state detection by associating the ECG and GSR signal data with arousal and valence 

level. Al Machot et al. (2019) [98] implemented human ERS by proposing a CNN and proved that the system would 

perform effectively for both subject-dependent and independent human ER using DEAP and MAHNOB datasets. They 

had explicitly worked with the stress detection of an individual. CNN's main issue is it requires a large dataset to get an 

effective trained model, and hyper-parameter tuning is non-trivial [99]. 

5-3-2- Deep Belief Network (DBN) 

The deep belief network (DBN) is another DL technique containing more straightforward Restricted Boltzmann 

machine (RBM) models. DBN can learn in-depth by inputting features through pre-training. From the input data, DBN 

extracts the deep features gradually. 

Hassan et al. (2019) [71] implemented DBN for ERS using EDA, PPG, and zygomaticus EMG (zEMG) bio-sensors 

data. The proposed ERS classifies the signals into five basic emotional states (i.e., Neutral, Happy, sad, Relaxed, and 

Disgust). Chao et al. (2018) [100] proposed a combined DL architecture of DBNs with glia chains known as DBN-GCs. 

The experiment was conducted using the DEAP benchmarking dataset and achieved good performance for arousal and 

valence states classification. In the work of Huang et al. (2017) [101], before training DBN, they extracted DE features 

and mapped them, where they found outstanding multi-classification performance. 

Deep learning does not require any feature extraction. DBN itself is capable of extracting high-level features from 

different types of data. Kawde & Verma (2017) [55] ignored the feature extraction step and directly entered the four bio-

signal into DBN. These data (i.e., EMG, EEG, GSR, and EOG) were obtained from the DEAP dataset. They achieved 

greater than 70% accuracy for valence and arousal. 

5-3-3- Probabilistic Neural Network (PNN) 

Probabilistic neural network (PNN) is an FFNN based algorithm that follows the Bayesian approach. PNN is known 

as fast training capability due to the ANN structure. It is also proven to give a more accurate classification performance 

with greater noise tolerance due to the insensitivity to outliers. Nakisa et al. (2018) [102] applied PNN in an EEG-ERS 

and evaluated its performance using three datasets MAHNOB, DEAP, and a mobile EEG sensor. They had only used 

PNN and fed the feature vector for the emotional system classification using GSR and ECG signals. However, PNN 

takes relatively more time for classifying new cases and requires more excellent storage to store the trained model. 

5-3-4- Long Short Term Memory (LSTM) 

Another deep learning architecture of artificial recurrent neural network (RNN) is long short-term memory (LSTM). 

LSTM contains feedback connections, which can handle the vanishing issues of RNN. LSTM can process single data 

points and a sequence of data. Hence, it can process a sequence of data obtained from the physiological signals as 

implemented by Wöllmer et al. (2013) [103]. 

Li et al. (2016) [104] presented a framework involving LSTM as classifier and EEG signal as input data and found 

the classifier's performance was fitting and provided accurate output each time of prediction. Another research extracted 

rational asymmetry (RASM) features from EEG signals, trained LSTM to explore EEG signal correlations and obtained 

76.67% classification accuracy [105]. In the research of Xing et al. (2019) [106], a framework was proposed; it used 

EEG signal and trained the classification of LSTM-RNN by integrating context relations between the feature sequences 

and achieved an enhanced performance. Another similar work was done by Alhagry et al. (2017) [107]; the researchers 

presented an end-to-end design involving LSTM classification by learning features for arousal, valence, and liking. 

Basically, LSTM is designed to overcome the fundamental issue of RNN, i.e., the vanishing gradient problem. 

However, it does not entirely overcome the issue due to the transferring of data from one cell to another for evaluation. 

To get the architecture's effectiveness, it requires a large number of training data and higher configured hardware. 

Moreover, LSTM models are susceptible to overfitting issues. 

5-3-4-1- SincNet - Customized Deep Learning 

SincNet is a customized CNN-based algorithm designed by Ravanelli and Bengio (2018) [108], for a speech 

recognition system. A bandpass filtration parameterized sinc was used. The classifier is only trained by high and low 

cutoff frequencies in the raw dataset rather than training using each element from filters in a typical CNN algorithm. 

SincNet classifier was proven to be efficient for speaker recognition. 

SincNet can also handle the classification of EEG measurement data. In Zeng et al. (2019) [109], and improved 

SincNet-based classification method SincNet-R was proposed. It contains three CNN and three DNN layers. The 

proposed technique was tested using EEG measurements and proven to perform better than other classification 

techniques, such as CNN, LSTM, and SVM. 
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5-4- Performance Evaluation 

In this section, RQ6 is answered. The trained classification needs to be evaluated to make sure the classification 

prediction accuracy is accurate. The most common method to test the classification is by calculating the accuracy rate 

and error rate. For more details, precision rate, (P) and recall rate (R) are calculated. These rates can be defined using 

the confusion matrix, as shown in Table 4. 

Table 4. The confusion matrix of classification 

Symbol 
Emotion Predicted 

Positive Negative 

Positive 
True Positive (TP) 

Predicting positive emotion state correctly 

False Negative (FN) 

Predicting positive emotion state wrongly 

Negative 
False Positive (FP) 

Predicting negative emotion state wrongly 

True Negative (TN) 

Predicting negative emotion state correctly 

The accuracy rate (A) is the percentage of adequately classified output by the total input, and the calculation is defined 

by Equation 16. At the same time, the error rate (e) is the classification error and is calculated by the misclassified output 

to the total input by Equation 17. 

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,  (16) 

𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,  (17) 

P and Rs are opposite, dependent on each other. They can be calculated using Equations 18 and 19, respectively. If 

the R output rises, the accuracy output will decrease and vice versa. F1 is the P's harmonic mean, and the R. An F1 score 

reaches its best value at 1 (perfect precision and recall). The formula for calculating F1 is given in Equation 20. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (18) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,  (19) 

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅
,  (20) 

Receiver Operating Characteristic (ROC) can be useful for selecting the best classifier. The ROC's horizontal and 

vertical axis is the false positive rate (FPR) and the true positive rate (TPR), respectively. The FPR and TPR can be 

calculated using Equations 21 and 22, respectively. 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 ,  (21) 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,  (22) 

An example of ROC is presented in Figure 20, and the two lines represent two different classifiers. If the line is nearer 

to the upper left corner, then the trained classifier has a good performance. In the example given, the blue line is nearer 

to the upper left corner than the green line, which indicates the blue classifier is better than the green classifier. 

Additionally, the blue line contains a bigger area under the ROC (AUC). It can also indicate that the blue line's classifier 

works better than the classifier represented by the green line. 

 

Figure 20. ROC example 
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6- Previous Work on ERS 

This section summarized the reviewed ERS, which are tabulated in Table 5, where "Ref" contains a citation number 

of the referred work, "Signal" presents the type of input data the researcher used, "No. of participant/dataset" contains 

information for how many participants were involved in generating the dataset or which benchmark dataset was used, 

"Emotion stages" presents which classes of emotions were adopted. Next, "Inducement" contains the methods of 

inducing emotions in the participants. The "Technique and Features" column presents the techniques used for feature 

extraction and selection. Next, "Classification" contains information on the ML model used by the researchers. Finally, 

"Accuracy (%)" presents their outcome in percentage. 

Table 5. Related Works on emotion recognition using physiological signals 

Ref Signal 
No. of 

participant/dataset 
Emotion states Inducement 

Technique and 

Features 
Classification Accuracy (%) 

[31] 
ECG, EMG, SC, 

RSP 
MIT database 

Joy, Pleasure, Anger, 

Sadness 
Music 

Hilbert Huang 

Transform (mean 

frequency) 

Support vector 

Machine 

76(Fission) 

62 (Fusion) 

[110] 
ECG, BVP, SC, 

EMG, RSP 
- Valence, Arousal 

Images (28 

International 

Affective 

Picture System) 

GA 

kNN 

LDA 

QDA 

78.04 (Arousal) 

75.93 (Valence) 

[111] 
Blood Volume 

Pulse, EMG, SKT 

10 (International 

Affective Picture 

System) 

Fear, Disgust 

Contentment, Neutral, 

Sadness, Amuse 

Images 

Statistical features 

(Mean, Standard 

deviation, etc.) 

Support vector 

Machine Fisher linear 

discriminant analysis 

45 (subject 

independent) 

100 (subject 

dependent) 

[112] ECG 31 

Excitement, Erotica, 

Disgust, Fear, Gore, 

Neutral 

Passive: IAPS 

Active: Video 

games 

Instantaneous frequency, 

the local oscillation 

Linear discriminants, 

leave-one-out cross-

validation 

52.41 % passive, 

78.43 % active 

[112] ECG 44 subjects Valence, Arousal 

International 

Affective 

Picture System 

Hilbert-Huang transform 

Empirical Mode 

Decomposition (EMD) 

LDA 89 

[113] ECG 60 
Basic Emotions except 

for Anger 
Audio Visual 

Rescale Range Statistics, 

Finite Variance Scaling, 

Higher-order Statistics 

(Hurst, Skewness, 

Kurtosis) 

Finite Variance scaling 

and Higher-order 

statistics 

92.87 (random) 

76.45 (subject 

independent) 

[65] SC, SKT, and BVP four 
Fear, Disgust, Joy, and 

Neutrality 

IAPS image 

slide-show 

Kernel Principal 

Component Analysis 

(KPCA), 

eigenvector 

SVM 
SC-SKT 

60-100 

[114] EMG 12 
Joy, Affection and 

Humor 
Pictures ICA ANN 

>98 (Precision) 

>97 (recall) 

[115] EMG 

Inter National 

Affective Picture 

system 

Fear, Disgust, Sadness Images Wavelet Transform 
Support Vector 

Machine 

81.82 (subject 

Dependent) 

[69] ECG 30 
Basic emotions except 

for anger 
Audiovisual 

Hilbert Huang 

Transform and Discrete 

Fourier Transform 

K-Nearest Neighbour 48.53(DFT) 

Linear discriminant 

analysis 
52.11 DFT 

[57] EMG 
 

15 

Sad-Happy, Afraid, 

Disgust, and Neutral 

 

Audiovisual 
Higher-order statistics 

K Nearest Neighbour 

K Nearest Neighbour, 

Principal component 

analysis 

64.89 

69.5 

[116] ECG, EDA, SKT 217 
Boredom, Pain, 

Surprise 
Audio 

HR, HRV, Ratio of low 

to high-frequency power 

Discriminant function 

analysis 
84.7 

Linear discriminant 

analysis 
74.9 

Support vector 

machine 
62 

Classification and 

regression tree 

67.8 

 

Naive Bayes 71.9 

Self-organizing map 61.5 

[117] 
EEG 

facial expressions 
MAHNOB-HCI Valence, Arousal Videos 

Power spectral density 

(PSD) 
LSTM-RNN - 

[118] ECG 25 
Sad, Angry, Fear, 

Happy, Relax 

Movie clips 

 

Time, frequency, 

Poincare, statics 

Support vector 

Machine 
56.9 

[119] ECG, RSP 11 
Joy, Sadness, Anger, 

and Pleasure 
Video 

Low-pass filter, 

Genetic algorithm 
SVM 

Joy: 81.82, 

Sadness: 63.64, 

Anger: 54.55, 

Pleasure: 30.00 

[120] EEG DEAP Valence, Arousal Videos 

Minimum-Redundancy-

Maximum-Relevance 

(mRMR) 

SVM 
Arousal: 60.7 

Valence: 62.33 
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[121] EEG 21 
Sad, Scared, Happy, 

Calm 
IAPS 

Frequency bands (delta, 

theta, alpha, beta, 

gamma) 

KNN, SVM 
55 (KNN) 

58 (SVM) 

[122] ECG Augusberg database 
Joy, Anger, Sadness, 

Pleasure 

Music 

 

Db5 Multi-scale wavelet 

Decomposition 

(maximum and standard 

deviation) 

Neural Network 

91.67 (RBF) 

87.5(BP) 

[123] EDA 25 Valence, Arousal IAPS picture 
Leave-One-Subject-Out 

procedure (LOSO) 
K-NN 

77.33(Arousal) 

84(Valence) 

[124] EEG DEAP Valence, Arousal Videos -  86.67 

[125] EEG DEAP Valence, Arousal Videos - 
Ensemble deep 

learning model 

84.63(Arousal) 

88.54(Valence) 

[126] ECG, EEG, RSP 6 Negative Neutral Videos 
Hilbert Huang 

Transform 
SVM 

92.5(subject 

dependent) 

[127] EEG DEAP 
Valence, Arousal, and 

Liking levels 
Film clips Liquid State Machines 

ANN, SVM, K-NN, 

DT, LDA 

84.63(Arousal) 

88.54(Valence) 

87.03(Liking) 

[128] EEG, BVP MAHNOB Valence, Arousal Videos 

Particle Swarm 

Optimization, Simulated 

Annealing, Random 

Search and Tree-of-

Parzen-Estimators (TPE) 

LSTM 77.68 

[129] EEG 10 Valence, Arousal Videos Radial Basis Function SVM 60 

[130] GSR, PPG DEAP/32 Valence, Arousal Videos Time domain, Statistics 
decision tree, RF, 

SVM, K-NN 

GSR: 71.53 

(Arousal) 

GSR: 71.04 

(Valence) 

PPG: 70.92 

(Arousal) 

PPG: 70.76 

(Valence) 

[68] EEG 10 
Happy, Calm, Sad, and 

Fear. 

Videos 

 

Empirical Mode 

Decomposition (EMD) , 

eigenvectors 

Deep Belief Network 

and SVM 
83.34 

[131] EEG DEAP Arousal, Valence Videos 
Power Spectral Density 

(PSD) 
Deep Learning 93.6 

[56] 
ECG, GSR, EMG, 

PPG 
29 

Happy, Fear, Sad, 

Anger 
Video 

Augsburg Biosignal 

Toolbox (AuBT): 

Statistical features 

SVM, KNN and 

Gaussian Naive Bayes 
93.42 

[72] EEG 
DEAP/32 

SEED 
Arousal, Valence Music videos 

Time and Frequency 

domain (AlexNet tool): 

Deep neural network 

SVM/K-NN 

DEAP 

93.8 (SVM) 

91.4 (k-NN) 

SEED 

77.4 (SVM) 

73.6 (k-NN) 

[132] ECG DECAF/10 Happy, Sad Movie clips 

Discrete wavelet 

transform and Hilbert 

Haung transform 

SVM, k-NN 

db7 (DW T) 

75 (subjective) 

HHT 

65 (Non-subjective) 

ST 

65 (Non-subjective) 

[133] ECG, EEG SEED, DEAP Arousal, Valence Music video Wavelet Transform RF, SVM 
83.33 (SEED) 

59.06 (DEAP) 

[134] EDA, HR MAHNOB Valence, Arousal Videos 

Multi- Dimensional 

Dynamic Time Warping 

(MD-DTW) 

k-NN 
Arousal: 93.6 

valence: 94 

[135] EEG 39 Valence, Arousal Videos EEGLAB software 

Liblinear, REPTree, 

XGBoost, 

MultilayerPerceptron, 

RandomTree, and 

RBFNetwork 

Arousal: 97.79 

valence: 96.79 

[136] 
ECG, GSR, HR, 

GSR, SKT, etc. 
32 

Anger, Happy, Sad, 

Joy 
Videos ANN neural networks (NN) 75.38 

[90] 

EEG, GSR, RSP, 

blood volume 

pressure (BVP), 

EMG, EOG 

DEAP 

Valence, Arousal, 

Dominance, and 

Liking 

Movie 
Bag of Words (BoW) 

framework 

Naive Bayes (NB), the 

linear SVM, RF 

MI-SVM 

68 (Valence) 

EMDD-SVM 

69.1 (Arousal) 

[71] EDA, PPG, zEMG DEAP 

Happy, Relaxed, 

Disgust, Sad and 

Neutral 

Video 
Deep Belief Network 

(DBN) 

Gaussian Support 

Vector Machine 
89.53 
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[11] EEG SEED 
Positive, Neutral, and 

Negative 
film clips 

Differential entropy with 

Linear Discriminant 

Analysis (LDA) 

k-NN, LR, MLP, RF, 

and SVM. 
68 

[71] 
EDA, PPG and 

zEMG 
DEAP/ 32 

Happy, Relaxed, 

Disgust, Sad and 

Neutral 

Video 
Deep Belief Network 

(DBN) 
SVM 89.53 

[137] EEG 20 
Happy, Fear, Sad, and 

Relax 
 

Variational Mode 

Decomposition (VMD) 
SVM 90.63 

[138] EEG DEAP Valence, Arousal, Video 
Variational Mode 

Decomposition (VMD) 
Deep Neural Network 

Arousal-61.25 

Valence-62.50 

[139] HRV 25 
Happy, Neutral, and 

Sad 
Videos 

Statistical method, 

PCA (principal 

component analysis) 

KNN 70.4 

[140] EEG SEED, DEAP 
Arousal, Valence, 

Dominance and Liking 
Video 

CNN 

Fourier transform (FT) 

deep model transfer 

learning 

90.59 

82.84 

[141] EEG DEAP Valence, Arousal, Video - CNN 
Arousal- 96.13 

Valence- 96.79 

[93] 
EEG 

 
20 Valance, Arousal videos 

Empirical Mode 

Decomposition(EMD) 
LIBSVM 

Arousal: 82.63 

Valence: 74.88 

[142] 

RB, PPG, and 

fingertip 

temperature (FTT) 

DEAP Valence, Arousal, Video 

Statistical functions, 

mRMR (minimum 

redundancy maximum 

relevance) algorithm 

RF,SVM,LR 

Arousal: 69.86- 

73.08 

Valence: 69.53-

72.18 

[143] EEG 
SEED, 

DEAP 

Valence-Arousal-

Dominance 
Video DWT 

Echo State Network 

(ESN): a recurrent 

neural network 

with intrinsic plasticity 

DE: 83.98 

Raw EEG: 89.01 

[144] EEG DEAP, DREAMER 
Valence, Arousal and 

Dominance 
Video - CNN 

DEAP 

Valence: 97.97 

Arousal: 98.31 

Dominance: 98.32 

DREAMER 

Valence: 94.59 

Arousal: 95.26 

Dominance: 95.13 

[66] EEG SEED/15 

Negative, 

Neutral, 

Positive 

Film clips 

Dual-tree Complex 

Wavelet Transform 

(DT-CWT) 

Recurrent Neural 

Network (RNN) 
83.13 

[91] 
PPG, HR, and 

GSR/ EDA 
DEAP 

Amusement (joy, 

happy, fun) and 

Sadness (depressing, 

sadness) 

Video 

Short-time 

Fast Fourier Transform 

(ST-FFT), 

Random-forest recursive 

feature elimination, 

Genetic Algorithm 

SVM 97.78 

[145] EEG , BVP 
MAHNOB/ 

17 

Arousal, 

Valence 
Video Sliding window strategy CNN, LSTM 71.61 ± 2.71 

[146] EEG 
DEAP/ 

MAHNOB-HCI 

Arousal, 

Valence 
Video LRFS LSSVM, NB 

Arousal: 0.65/0.67 

Valence: 0.68/0.70 

[147] EEG, ECG,GSR AMIGOS 
Arousal, 

Valence 
Video - LSTM-RNN 

Arousal: 83.3 

Valence: 79.4 

[148] ECG 

AMIGOS, 

DREAMER, 

WESAD, 

SWELL. 

Arousal, 

Valence, 

Stress 

Video Self-supervised network Self-Supervised CNN 

AMIGOS 

Arousal: 79.6 

Valence: 78.3 

DREAMER 

Arousal: 77.1 

Valence: 74.9 

WESAD 

Affect State (95.0) 

SWELL: 

Arousal: 92.6 

Valence: 93.8 

Stress: 90.2 

[149] EEG DEAP 

Valence, Arousal, 

Dominance, and 

Liking 

Video 

Eigenvector matrix 

linear discriminant 

analysis 

Adaboost 88.70 

[150] EEG DEAP High and Low arousal Video 
Empirical Mode 

Decomposition 

SVM and Multilayer 

Perceptron 
100 

[151] EEG DEAP/32 

Happy, Pleased, 

Relaxed, Excited, 

Neutral, Calm, 

Distressed, Miserable, 

and Depressed 

Video 
time, wavelet, and 

frequency 
SVM 65.92 
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The systematic review shows that the researchers' most common biosensor data are ECG and EEG signals. Some of 

them preferred multimodality data. However, most of them used a single modality. The most common single modality 

data used is EEG from the DEAP dataset. 

In recent work, even though deep learning models are becoming popular among researchers working with 

classifications, including ERS, ML continues to be chosen by researchers. From Table 3, it can be seen that ML such as 

SVM, RF, and NN are still commonly used in classifying emotions, where SVM classification accuracy is comparatively 

better than other ML models. In ML-based ERS, feature extraction is necessary to form the data signal as most 

physiological data is in time-series format. Deep learning requires less pre-processing compared to regular ML model 

training. That is the reason that motivates researchers to adopt deep learning so that the feature extraction and selection 

process can be avoided. Due to the capability of the deep learning feature extraction and selection process in hidden 

layers, few researchers also used it as a pre-processing technology. 

The dataset used for training the learning models is developed by inducing emotion in individuals. Unconscious 

emotion inducement is commonly used rather than conscious. The most common materials used are music, movie clips, 

audio, images, and video games. The most common pictures/images used to induce emotion are obtained from the 

International Affective Picture System (IAPS) [152]. 

Both discrete and arousal/valence are popular in this field. However, only arousal and valence are not enough for a 

user to understand the individual's exact feelings. The rule of thumb for ML classification states that training samples 

should be significant to get the best classification result. The minimum number of participants used is six from the work 

tabulated above, and the maximum is 60. Different researchers obtained different accuracy and performance levels for 

different input data. It shows that there is no fixed method for the required case. A multimodal model, as researched by 

Jang et al. (2015) [116], was found to be the best model for the input and output data. Many physiological signals are 

non-stationary and chaotic. Commonly, time and frequency data can be extracted from these non-stationary 

physiological signals and reduce the impact of non-stationary characteristics on subsequent processing. 

7- Conclusion and Future Work 

In this paper, an initial systematic review was presented to answer research questions for developing ERS. It was 

concluded that the discrete and multi-dimensional emotional state models help distinguish between different emotional 

values, which are usually used as output classes of ERS. Input data can be obtained from various physiological signals 

(ECG, EEG, EMG, HRV, EOG, EDA/GSR/SC, SKT, RSP) by using biosensors. The ERS can be built using one source 

or a fusion of sources of signal data. However, single-modality is preferred due to reducing hardware cost. This paper 

describes the whole framework of ERS. Physiological measurement processing and data exploration methods play an 

essential role in selecting the best classification method and biosensors. Emotion classification can be implemented using 

traditional ML and deep learning models. ML model requires feature extraction and feature selection. Deep learning 

models automatically extract features instead of manual extraction. It is crucial to evaluate the trained classifiers' 

performance before integrating the model into the actual system. The evaluation can be processed using the confusion 

matrix value. Current research indicates that the most effective ERS methods are Deep Learning Models (CNN, DBN, 

PNN, LSTM, and SincNet). However, some traditional ML models (such as SVM and RF) can also provide classification 

with reasonable accuracy. According to the accuracy obtained by different researchers, there is room to improve the 

model performance. In particular, work with single modality needs to improve, as single input will reduce overall system 

expense. 

The findings from this systematic review are going to be used as guidelines in building and designing the final ERS. 

In the future, the presented system will be implemented to detect emotions in real-time. 
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