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Abstract 

Eye-tracking technology has many useful applications, including Virtual Reality (VR) devices, 
Augmented Reality (AR) devices, and assistive technology. The main objective of eye-tracking 

technology is to detect eye position and track eye movements. It is possible to determine the eye 

position when the pupil center is detected. In this paper, a deep learning-based approach to the 
detection of pupil centers from webcam images is presented. As opposed to all previous approaches 

to object detection based on training the detector with objects to be detected, our object detector was 

trained with both the region surrounding a pupil and the region between an eye and the region 
surrounding a pupil. The latter set of regions has been found to increase the overall detection 

accuracy. A novel post-processing algorithm is also presented to estimate the pupil center from all 

the detected regions. To achieve real-time performance, we have adopted the tiny architecture of 
YOLOv3, which has 23 layers and can be executed without requiring a GPU accelerator. To train 

the detectors, different variations of regions covering a pupil and an eye were used, as well as 

expanding regions surrounding a pupil and an eye. The PUPPIE dataset was used as the primary 
input for training the detector. The setting with the best detection accuracy was applied to all publicly 

available datasets: I2Head, MPIIGaze, and U2Eyes. In terms of accuracy, the results indicate that 
pupil center estimation is comparable to the state-of-the-art approach. It achieves pupil center 

estimation errors below the size of a constricted pupil in more than 98.24% of images. Furthermore, 

the detection time is 2.8 times faster than the state-of-the-art approach. 
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1- Introduction 

As a critical component of Virtual Reality (VR), Augmented Reality (AR) devices, and assistive technology, eye-

tracking requires high accuracy and real-time performance. The purpose of eye-tracking technology is to locate and track 

eye movements accurately. The pupil center estimation is the starting point to providing the information to locate an eye. 

Two main types of pupil center estimation can be distinguished based on two different systems: a head-mounted system 

and a head-free or remote system. The gaze direction is measured relative to the head when a head-mounted system is 

used. A three-dimensional head pose (position and orientation) must be estimated to calculate the pupil center in space. 

Various types of transducers can be used to measure head position, of which the magnetic position transducer is the most 

commonly used. Another approach involves using a head-mounted camera that records scenes in front of the subject. 

Visual cues are then extracted from images captured by the scene camera to determine the head pose relative to the 

observed scene [1]. 
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Scleral coils or Electro-Oculography (EOG) [2] and Infrared Oculography (IRO) are also used for eye tracking. Both 

devices are suitable for controlled environments where the user uses head-mounted devices or whose movements are 

limited, resulting in highly accurate systems [3]. In a head-free or remote system, the pupil center estimation can be 

performed by Video-Oculography (VOG) in a less invasive manner. A Convolution Neural Network (CNN) has been 

proven to provide accurate pupil center estimation for such systems effectively. It has been demonstrated that CNN can 

correctly operate in challenging images with defects associated with poor illumination, reflections, or pupil occlusion 

[4, 5]. In recent years, less invasive technologies have been proposed that do not require body attachment. A popular 

method that utilizes a webcam to provide the image for CNN to perform pupil center estimation is presented by Choi et 

al. [6]. An inherent limitation of CNN-based approaches is that they require a large dataset representing the variability 

of the problem to adapt to the solution and generalize. Additionally, a framework is required to learn and deploy the 

model effectively. 

Herein, we review the related work in pupil center estimation, focusing specifically on neural networks with several 

layers, Deep Neural Networks (DNN). In their study, Xia et al. [7] applied Fully Convolutional Networks (FCN) to 

segment pupil regions. Using a shallow structure with a large kernel convolutional block, they could transfer their 

performance from semantic segmentation to the localization of the eye centers by carefully selecting hyperparameters. 

A heterogeneous CNN model was proposed by Choi et al. [6] for the problem of pupil center estimation. In their 

approach, faces and landmarks on a face in an image were detected. These landmarks were then used to determine the 

eye region. When glasses were present in an image, they were removed by a Generative Adversarial Network (GAN) to 

locate the proper eye region. Next, pupil regions were segmented using an FCN. Finally, the pupil center estimation was 

performed. The proposed approach outperformed the previously proposed approaches on public datasets, such as BioID 

and GI4E. A robust alternative to wearing glasses was proposed by Lee et al. [8]. It utilized appearance-based pupil 

center estimation inspired by the work of Choi et al. [6]. The perceptual loss was also employed to mitigate the blur 

phenomenon resulting from glass removal. Mutual information maximization was additionally integrated to enhance the 

representation quality of the segmentation network. It was claimed that the latency of the proposed approach was 

significantly reduced by employing the concept of non-local block and self-attention block with a large receptive field. 

Kitazumi and Nakazawa [9] proposed a CNN-based approach for pupil segmentation and pupil center estimation. The 

dlib [10] was used to detect the eye region. A five-layer architecture called U-Net [11] was exploited to perform pupil 

segmentation. Zdarsky et al. [12] presented an approach for gaze estimation. Landmarks on a face were estimated using 

DeepLabCut [13], an open-source toolkit for estimating the pose of body parts based on deep learning. The algorithm 

uses a subset of the DeeperCut feature detectors [14] which connects a pre-trained ResNet-50 network with 

deconvolution layers to sample the visual information and produce spatial probability densities. Various layers of 

deconvolution are applied to different parts of the body. Probability density represents “evidence” that this specific body 

part is located in a particular area [15]. However, Zdarsky et al. [12] failed to provide information regarding the accuracy 

of the estimated landmarks. 

There are also several publications on real-time pupil center estimation on a low-performance platform, i.e., on a 

platform without GPU acceleration or with low performance. Kim et al. [16] presented the approach which was based 

on using a cascade deep regression forest instead of DNN. It provided an accurate real-time pupil center estimation 

running on the CPU platform. Cai et al. [17] also proposed an approach for pupil center estimation with a low 

computational cost based on hierarchical adaptive convolution. Convolution of the eye image was performed using 

different hierarchical kernels. A kernel was selected for each image based on the user's 3D head pose as part of the 

localization process. Lee et al. [18] presented the network that uses mutual information during the training stage to 

increase the accuracy of pupil center estimation. A general-purpose computer platform that operated the proposed 

approach achieved a real-time performance of 52 frames per second. At the same time, precisions of 96.71 percent, 99.84 

percent, and 96.38 percent were obtained for the BioID, GI4E, and Talking Face Video datasets, respectively. 

Blousseau et al. [19] introduced a new center-of-mass output layer to their CNN to increase the accuracy of pupil 

center estimation. The estimation accuracy was 400% greater than the traditional approach. Unfortunately, only eight 

subjects were used for benchmarking. Ou et al. [20], and Poulopoulos et al. [21] proposed an approach to avoid using 

large datasets for training the network to perform pupil center estimation. The approach performed image-to-heatmap 

translation and trains them on an adversarial training framework. It was reported to achieve an accuracy of 96.86% (for 

normalized error less than 0.05) only on the BioID dataset with the maximum processing time per image of 34 𝑚𝑠. In 

order to meet two critical requirements of low complexity and algorithm performance, Kang and Chang [22] proposed 

a pupil-tracking approach applicable to both drivers with and without sunglasses. To generate bare faces, a regression-

algorithm-based approach was employed that utilizes scale-invariant feature transforms. A supervised regression-based 

pupil center estimation approach was additionally proposed to estimate pupil centers in eyes covered by sunglasses. The 

approach achieved high accuracy and speed, with a precision error of less than 10 mm and a 5 𝑚𝑠 processing time on a 

limited proprietary test dataset. Larumbe-Bergera et al. [23] provided the research community with an improved version 

of the facial landmark dataset. They also proposed a novel pupil center estimation approach that extends the Resnet-50 

backbone by incorporating a pooling layer and four additional fully connected layers to detect eye landmarks used to 
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estimate a pupil. The approach was validated using both realistic and synthetic datasets. It achieved an estimation error 

below the size of an unconstricted pupil in more than 95 percent of the images. It was claimed to be 3 to 8 times faster 

than current state-of-the-art approaches. The preliminary result of real-time pupil center estimation to the problem of 

Chinese reading tests was presented by Lin et al. [24]. The detection accuracy of eye movement events was as high as 

97% on a limited-size test dataset. 

Upon reviewing this literature, it becomes apparent that almost all previously proposed approaches share the 

following limitations: 

 Using a limited-size dataset for creating DNN models for pupil center estimation 

 Increasing the number of layers of processing on DNN 

 Testing/validating the model on a small and proprietary dataset 

 Having solutions optimized for high-performance platforms, such as those with GPU acceleration 

It has long been perceived that the best DNN detector, or the detector from now on, requires training on a large 

dataset, which is not practical. This paper presents a novel approach to creating the pupil detector that is, in turn, used 

for pupil center estimation from a limited-size dataset. We propose that training the detector can be accomplished not 

only by using the region covering the object to be detected, the pupil in this context, but also by using the surrounding 

regions. The reason for this is that a region surrounding the object contains a limited set of features and a limited 

variability that DNN can effectively extract and learn. Accordingly, the detector is limited in its applicability. 

Fortunately, additional features can be enhanced from the surrounding regions. A noteworthy contribution of this paper 

is that it proposes a novel approach to creating a pupil detector by training it on both the region surrounding the pupil 

and the region between an eye and the region surrounding a pupil. Additionally, a lightweight post-processing algorithm 

is presented that estimates pupil centers by using all the detected regions and their geometric relationships. Using a 

shallow layer DNN detection framework, we demonstrate that our approach generates an effective pupil detector that is 

comparable to the current state-of-the-art one in terms of detection accuracy and error. 

This paper is organized as follows. Materials and methods are presented in Section 2. The experimental results and 

discussion follow in Section 3. Finally, the paper is concluded in Section. 

2- Materials and Methods 

2-1- Dataset 

2-1-1- The Datasets of Training the Detector 

In the course of this research, we used the pupil annotations from the PUPPIE dataset and the facial point annotations 

from the datasets referred to by PUPPIE. In total, there are 1,791 images in the PUPPIE dataset. The following describes 

the steps to prepare the training dataset. On each image, the pupil annotations are retrieved first for the left and right 

eyes. After this, the point annotation files associated with the image in the original datasets are visited. Only the relevant 

members of the point annotations between 37 and 42 and 43 and 48 are extracted. These points correspond to the point 

annotations surrounding the left and right eyes, respectively. A Python script that we developed is used to automatically 

create the bounding boxes for these two sets of point annotations. The bounding boxes for the left and right eyes, 

respectively, are designated as KL and KR. As a pupil annotation is defined as a 2D point, in contrast to a bounding box 

surrounding the pupil, our Python script has the additional responsibility of creating the bounding box around each pupil 

annotation.  

The bounding box is defined as the area whose center is at the annotation point of a pupil. Rather than restricting the 

bounding box size, it can be adjusted; to be detailed later, to cover a more prominent region around a pupil. The left and 

right pupil bounding boxes are designated as PL and PR, respectively. The KL and KR bounding boxes and PL and PR 

bounding boxes are used to automatically create a set of bounding boxes surrounding a pupil BB. Considering the left 

eye, the BBL consists of all boxes within the KL, but outside the PL. By using these approaches to build and annotate BB, 

a Python script was developed by our team member to define BB with different classes, which include UL, UM, UR, ML, 

MR, LL, LM, and LR. For these classes, the left alphabets indicate the vertical locations of the bounding box relative to 

the bounding box surrounding a pupil, i.e., U, M, and L indicate upper, middle, and lower, respectively. Similarly, the 

right alphabets indicate the horizontal positions of the bounding box relative to the bounding box surrounding the pupil, 

i.e., L, M, and R indicate left, middle, and right. As an example, a bounding box whose class is UM corresponds to the 

upper middle region of a bounding box surrounding a pupil. Additionally, two additional parameters are defined to 

control the expansion of the bounding boxes surrounding a pupil and an eye in order to provide flexibility when creating 

the appropriate training datasets. These parameters are designated α and β, respectively. Increasing the α parameter 

expands the surrounding area of a pupil P. Similarly, increasing the β parameter expands the bounding boxes surrounding 
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an eye K. There is only one restriction on the choice of β: it must not make P larger than K. Otherwise, the complete set 

of BB cannot be constructed. According to preliminary results on the PUPPIE dataset, the α parameter can be chosen 

between 1 and 5. The α = 1 indicates that P is equal to the greater between the width (W) and height (H) of the input 

image divided by 200; i.e.: 

𝐵𝐵𝑃 =
𝑚𝑎𝑥(𝑊,𝐻)

200
  (1) 

The size of K is controlled by adjusting its β parameter in the range of 1.0000 to 1.8175 with an increment of 0.0625. 

That is to say, the maximum size of K is 1.8175/2 expanded from its original size. 

By extending both P and K's surrounding areas, a variety of features are created for the pupil and its immediate 

surroundings. Figure 1 exhibits some sample images along with a set of non-overlapping bounding boxes BB where α 

equals 1 in (a) and (c) and α equals 3 in (b) and (d). In addition, the figure presents two different sizes of BB: (a) and (c) 

the original size and (b) and (d) with the β of 1.125. In the figure, small red circles indicate the members of point 

annotations around the left and right eyes. The blue and white rectangles represent P and K, respectively. BBs are 

automatically generated by our Python script and displayed in green rectangles. Increasing the α and β parameters also 

produces a variety of features in a pupil and out of the pupil, but within an eye. 

 

Figure 1. Sample images along with the definitions of a set of non-overlapping bounding boxes with two sizes of P: α = 1 in (a) 

and (c) and α = 3 in (b) and (d), and two sizes of K: original size in (a) and (c) and the β of 1.125 (b) and (d). These images are 

part of the 300W dataset, which is freely available for non-commercial use. 

Following the steps previously described to prepare the training dataset, several datasets were produced by varying 

the α and β parameters as indicated. Each dataset was used to train the detector in a ratio of 80:20 between the training 

and testing datasets. In terms of the number of images, this is equivalent to 1433:358. 

2-1-2- The Validation Datasets 

To compare our approach to the state-of-the-art one proposed by Larumbe-Bergera et al. [23], all the datasets used in 

their publication were also used in our experiments. Briefly, these datasets include: 
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 GI4E: The GI4E dataset consists of 103 users looking at 12 different points on a screen under standard laboratory 

conditions. The dataset includes annotations for the pupil center and eye corner. It is considered to be the best dataset 

and has accurate annotations 

 I2Head: The I2Head dataset consists of a ground-truth dataset for head pose, gaze, and a simplified head model for 

12 individuals. The annotations of this dataset have been improved by Larumbe-Bergera et al. [25]. 

 MPIIGaze: The MPIIGaze dataset comprises 213,659 images collected from 15 participants during natural 

everyday laptop use over a period of more than three months. There are some images which include the entire face, 

while others only include a cropped version of the eye region. Annotations in the dataset include eye corners, pupil 

centers, and specific facial landmarks. 

 U2Eyes: The U2Eyes dataset consists of binocular images that reproduce real gaze tracking scenarios. The publicly 

accessible version of the dataset consists of images from 20 users. A user examines two grids of 15 and 32 points, 

respectively, with 125 different head poses, resulting in 5,875 images per user. The annotated data includes head 

pose information, gaze direction information, and 2D/3D landmarks. 

Table 1 summarizes the number of images in these datasets and those we used during our validation process. 

Table 1. A summary of the total number of images within the datasets and the images used during our validation process 

Dataset Total size Validation size 

GI4E 1,236 1,236 

I2Head 2,784 2,784 

MPIIGaze-subset 10,848 585 

U2Eyes 117,500 117,500 

2-2- Method 

2-2-1- The Detector 

The YOLO version 3 (YOLOv3) [26] framework was used in this experiment to train a detector with nine classes of 

P and BB. Within the framework, we did not intend to modify or increase the number of layers and additional image 

enhancements. To investigate the effectiveness of the detectors, we have employed all default configurations except for 

the number of classes, n, which is 9 (UL, UM, UR, ML, MR, LL, LM, LR, and P (for the pupil class)) in all experiments, 

dependent parameters, i.e.: 

 The number of iterations for training the detector, which is defined by: n × 2,000, and; 

 The number of filters in the layers preceding the YOLO-layer, which is determined by: (n + 5) × 3. 

It was decided to use the tiny configuration of YOLOv3 with 23 layers (tinyYOLOv3). Because of its shallow network 

architecture, this configuration has demonstrated real-time detection performance even without GPU acceleration on the 

computer platform [26]. It should be noted that the state-of-the-art approach presented by Larumbe-Bergera et al. [23] 

makes use of the Resnet-50 backbone with the integration of five additional layers. Layers are more than double the 

number of YOLOv3 in the tiny configuration. Our training method was based on transfer learning. As a starting point, 

darknet53.conv.74 was provided to the detector. In order to train the detector with all datasets, the open-source darknet 

was utilized. We used the Google Colab platform with GPU-assisted acceleration to speed up the training stage. The 

training stage of each detector took approximately four hours on average. A loss function was recorded for all detectors 

during the training stage. A model checkpoint was saved every 200 iterations for the first 2,000 iterations and every 

1,000 iterations thereafter. 

Figure 2 illustrates the steps involved in producing the training dataset from the PUPPIE dataset and training the 

detector with respect to the α and β parameters. 

After each detector was trained, it was validated against the validation datasets described in Sec. 2-1-2. Our research 

team developed a Python program that utilizes the detection results and a post-processing algorithm, which will be 

described in Sec. 2-2-2, in order to estimate a pupil center. For the implementation of the detector and the post-processing 

algorithm, we utilized the OpenCV library [27]. The additional parameters passed to the OpenCV library functions that 

facilitate the task of object detection, the blobFromImage, and NMSBoxes functions, are as follows: the scale factor for 

the blobFromImage function is 1/512, and the confThreshold and nmsThreshold values are 0.625 and 0.875 

respectively. Lastly, the detection confidence, which is used to remove non-relevant bounding boxes, was set to 0.25. 



Emerging Science Journal | Vol. 6, No. 5 

Page | 990 

 

Figure 2. Summary of the details of the dataset preparations for training the detector 

2-2-2- The Post-Processing Algorithm 

The results of the detector for a single eye are expected to consist of a single P and a set of BB as shown in Figure 1. 

For best-case scenarios, all nine bounding boxes are expected to be detectable. These detected bounding boxes fall into 

the following classes: UL, UM, UR, ML, MR, LL, LM, LR, and P. However, our initial experimental results indicated 

that in some cases the detector failed to detect P. This may be due to the fact that P is relatively small compared to the 

total image size. In addition, it was only able to detect some members of BB. As a result, in order to leverage the accuracy 

of detection for a pupil, a post-processing algorithm is required to approximate the pupil from some detected members 

of BB. The algorithm is only activated if and only if P cannot be detected. In this way, it means that we give higher 

priority to approximating the location of a pupil to P. In this instance, the location of a pupil is taken to be the center of 

P. Otherwise, the algorithm utilizes the geometric relationships between the detected members of BB to estimate a pupil 

center. Let us define the horizontal extension of the bounding box of B, or B′, as the box with the same height as B, while 

its width is increased to be equal to the width of the image. In addition, the vertical extension of the bounding box of B 

is the bounding box with the same width as B, but its height is extended to match the height of an image. Additionally, 

we define two functions, max(a,b) and min(a,b), which produce as their output the minimum and maximum values 

between a and b, respectively. Assume that the coordinates of a bounding box X are (LX, TX, RX, BX). Moreover, all 

detected members of BB have already been clustered into the appropriate group; that is, all detected members of BB 

around the left eye pupil are all clustered within the same group. In practice, these members of BB can be processed 

trivially without adding the additional processing time to the algorithm. This is due to the fact that all members of BB 

appear to be grouped separately. Several are found in close proximity to the corresponding eye within the image. 

To estimate P using a set of detected BB, the following rules can be drawn: 

 For a pair of UM and LM bounding boxes, P is estimated by: P∗ = (min(LUM,LLM),BUM,max(RUM,RLM),TLM) (see 

Figure 3-a), 

 For a pair of ML and MR bounding boxes, P is estimated by: P∗ = (RML,min(TML,TMR),LMR,max(BML,BMR)) (see Figure 

3-b), 

 For a pair of UL and LR bounding boxes, P is estimated by: P∗ = (RUL,BUL,LLR,TLR) (see Figure 3-c), 

 For a pair of UR and LL bounding boxes, P is estimated by: P∗ = (RLL,BUR,LUR,TLL) (see Figure 3-d), 

 For a pair of UL and MR bounding boxes, one possible P is: P∗ = (RUL,BUL,LMR,BMR) (see Figure 3-e), 

 For a pair of UL and LM bounding boxes, P is estimated by: P∗ = (RUL,BUL,RLM,TLM) (see Figure 3-f), 

 For a pair of UR and LM bounding boxes, P is estimated by: P∗ = (LLM,TUR,RLM,TLM) (see Figure 3-g), 

 For a pair of UR and ML bounding boxes, P is estimated by: P∗ = (RML,TML,LUR,BML) (see Figure 3-h), 

 If a pair of closed neighbor members of BB is either UM - ML or UM - MR or LM - ML or LM - MR, P is estimated 

by the intersection region between the appropriate horizontal and vertical extensions of these bounding boxes. The 

examples for the cases of UM - ML and LM - MR are illustrated in Figures 3-i and 3-j, 
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 Otherwise, no P can be estimated. 

In practice, a set of BB gives rise to multiple P∗. Our algorithm finds the intersection between all members of P∗ and 

the result is finally used to represent a single P. 

 

Figure 3. Different cases to estimate P based on using the detected set of BB 
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2-2-3- Evaluation 

Our proposed approach is benchmarked against the state-of-the-art approaches using the relative error measure emax, 

a measure proposed by Jesorsky et al. [28]. The error is defined as follows: 

𝑒𝑚𝑎𝑥 =
𝑚𝑎𝑥(𝑑𝑙,𝑑𝑟)

𝐼𝑃𝐷
  (2) 

Here, dl and dr are the Euclidean distances between the ground truth and the approximated locations of the left and 

right pupils, respectively. The IPD can be calculated as follows: 

𝐼𝑃𝐷 = √(𝑥(𝑝,𝑙) − 𝑥(𝑝,𝑟))
2
+ (𝑦(𝑝,𝑙) − 𝑦(𝑝,𝑟))

2
  (3) 

where (x(p,l),y(p,l)) and (x(p,r),y(p,r)) correspond to the centers of the left and right pupils, respectively. Accuracy is calculated 

as a percentage of images for which this error falls below certain thresholds. State-of-the-art approaches, especially the 

one benchmarked by our approach [23], are commonly compared using emax ≤ 0.025(2.5%), emax ≤ 0.050(5%) and emax ≤ 

0.100(10%). 

Contrary to the previously proposed approaches that derived the accuracy of detection from the ratio of a true positive 

(TP) to the sum of a true positive and a false positive (FP), we used the relative error as a basis for determining the 

accuracy of detection. The reason for this is that a single detection of the pupil cannot be used as a basis for determining 

the emax. Therefore, it should not be regarded as a positive result. The accuracy of detection is redefined in this context 

as a function of the contribution of detection results derived from an image in which left and right pupils are detected. 

3- Results and Discussion 

Different experiments were carried out to create the detectors from the PUPPIE dataset with variations of the α and 

β parameters: α was between 1 and 5, and the β parameter was in the range of 1.0000 to 1.8175 with a 0.0625 increment. 

Figure 4 presents a summary of the steps involved in finding the best detector from a set of detectors that are trained 

with different combinations of α and β parameters using a variety of datasets. Our observations of the loss values recorded 

during the detectors' training stage found adequate detectors with α = 3 and β between 1.1250 to 1.8175 with a 0.0625 

increment. These detectors were likely to produce a similar characteristic of loss curves that sharply drops after the first 

800 iterations and gradually decay to around 0.0 at the end of the training stage. Figure 5 illustrates the comparative loss 

curves of these detectors. Obviously, concerning the training dataset, these detectors seemed to learn to detect all the 

classes successfully. These detectors were elaborately compared to find the most effective one regarding the accuracy 

of detection and the relative errors: emax ≤ 0.025, emax ≤ 0.050, and emax ≤ 0.100. The GI4E dataset was used to serve this 

purpose. The experiment results for the top ten most effective detectors are presented in Table 2. From the results, the 

winner detector was the one that was trained with α = 3 and β = 1.8125 datasets at the checkpoint of 6,000 because this 

detector gave rise to the best accuracy of detection and almost all the best relative errors. 

 

Figure 4. A summary of the steps involved in finding the best detector from a set of detectors that are trained with different 

combinations of α and β parameters using a variety of datasets 

Table 3 compares the relative error for pupil center estimation on the GI4E dataset between the winner detector 

against the previous approaches, which produced the relative error emax ≤ 0.025 greater than or equal to 79.50% [23]. It 

is noticeable that all previous approaches employ DNN to create the detectors. However, they mainly focus on adding 

new processing layers or increasing the number of layers to the architectures to extract more valuable features and train 

their detectors. Our winner detector is superior to almost all these approaches. It is only less effective but comparable to 
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the state-of-the-art approach of Larumbe-Bergera et al. [23]. It can be explained that since the approach of Larumbe-

Bergera et al. [29] relies on using the deeper ResNet-50 backbone with additional five layers for pupil detection. It also 

requires an external library to perform face detection, the MTCNN, before performing a pupil center estimation. It seems 

to be less effective when the computation time is considered. The experiment results in terms of the computational time 

will be provided shortly. 

 

Figure 5. Comparison of the detectors' loss curves trained from the datasets with α = 3 and β between 1.1250 to 1.8175 with 

a 0.0625 increment 

Table 2. Comparison of experiment results between the ordinary detector and several detectors produced by training with 

our datasets. Acc. of det. is the accuracy of detection 

Eye Expansion (%) Iteration Acc. of Det. 
Relative errors (emax) 

emax ≤ 0.025 emax ≤ 0.050 emax ≤ 0.100 

1.5625 4000 98.14 93.73 97.61 98.19 

1.3125 4000 97.49 91.29 92.37 92.37 

1.8125 5000 97.41 97.59 99.67 99.92 

1.8125 6000 96.84 98.24 99.75 99.92 

1.3125 3000 96.52 97.49 98.58 98.66 

1.5625 5000 96.52 96.81 99.66 99.75 

1.8125 8000 95.23 97.45 99.07 100.00 

1.1250 8000 95.15 99.57 100.00 100.00 

1.1875 15000 94.74 98.21 99.66 99.74 

1.6875 9000 94.74 95.47 97.01 97.01 

Table 3. Relative errors comparison for pupil center location on the GI4E database for the approaches which produced the 

relative error 𝒆𝒎𝒂𝒙 ≤ 0.025 greater than or equal to 79.50% [18]. 

Publications 
Relative errors (emax) 

emax ≤ 0.025 emax ≤ 0.050 emax ≤ 0.100 

Kim et al. [16] 79.50 99.30 99.90 

Lee et al. [8] 79.50 99.84 99.84 

Cai et al. [17] 85.70 99.50 - 

Larumbe et al. [23] 87.67 99.14 99.99 

Levinshtein et al. [30] 88.34 99.27 99.92 

Choi et al. [6] 90.40 99.60 - 

Kitazumi et al. [9] 96.28 98.62 98.95 

Larumbe-Bergera et al. [25] 98.46 100.00 100.00 

Our approach (α = 3, β = 1.8125, 6000) 98.24 99.75 99.92 
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The winner detector with the configuration of α = 3 and β = 1.8125 at the checkpoint of 6,000 was then further used 

to estimate a pupil center on the I2HEAD, MPIIGaze, and U2Eyes datasets. Figure 6 illustrates some samples of 

randomly selected output images from the winner detector on these datasets; the GI4E dataset is also included, arranged 

on the dataset basis from top to bottom: GI4E, I2Head, MPIIGaze, and U2Eyes; respectively. In each column within the 

figure, the images demonstrate the cases where pupils are estimated from (1) both detected pupils, (2) one detected pupil 

and the other from operating the post-processing algorithm, and (3) both from operating the post-processing algorithm; 

respectively. It is noted that all the white bounding boxes indicate the member of BB. All the green boxes indicate the 

member of P. The white and the green plus signs are the ground truths and the estimated pupil centers, respectively. The 

results from benchmarking between the winner detector and the state-of-the-art approach of Larumbe-Bergera et al. [23] 

are summarized in Table 4. Considering the emax ≤ 0.025, it is apparent that the winner detector produces comparable 

relative errors to the state-of-the-art one on all the datasets. It is significantly more effective to operate on the U2Eyes 

dataset. Overall, the winner detector and the state-of-the-art one produce a similar trend of relative errors. That is to say, 

they are arranged in the following order: GI4E, MPIIGaze, I2Head, and U2Eyes. The relative errors of the first three 

datasets are comparable between the winner detector and the state-of-the-art one. It can be explained that the nature of 

the U2Eyes dataset consists of synthesized close-up images. All features within the pupils and eyes are apparent, sharp, 

and seem to be free from any disturbances. Some natural features inherent in an image, which the detectors require to 

indicate a pupil correctly, are failed to imitate. It results in a significant failure to correctly locate a pupil. The table 

shows that the winner detector lags behind the state-of-the-art counterpart on the MPIIGaze dataset. It can be explained 

that the nature of the MPIIGaze dataset consists of a high percentage of persons wearing eyeglasses (see one example in 

Figure 6-g)). In contrast, the PUPPIE dataset used to create the winner detector contains only a few samples. It could 

affect the features of eyeglasses' appearance unknown to the winner detector. It is especially true when parts of eyeglasses 

partially cover a person's eye. 

 

Figure 6. Randomly selected samples output images from the proposed approach on a dataset basis from top to bottom: GI4E, 

I2Head, MPIIGaze and U2Eyes. Each column demonstrates the cases where pupils are estimated from both detected pupils, 

from one detected pupil and from the result of the post-processing algorithm, and both from the post-processing algorithm, 

respectively. All the white bounding boxes are the members of BB. All the green boxes are the members of P. The white and 

the green plus signs are the ground truths and the estimated pupil center locations, respectively. 
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Table 4. Accuracies of detection (Acc. of det.) and relative errors for pupil center location on GI4E, I2HEAD, MPIIGaze 

and U2Eyes datasets 

Approaches Datasets Acc. of Det. 
Relative errors (emax) 

emax ≤ 0.025 emax ≤ 0.050 emax ≤ 0.100 

Larumbe-Bergera 
et al. [18] 

GI4E  98.46 100.00 100.00 

I2Head  96.88 100.00 100.00 

MPIIGaze-subset  97.09 99.83 100.00 

U2Eyes  93.44 99.93 100.00 

Present Study 

GI4E 96.84 98.24 99.75 99.92 

I2Head 99.14 96.68 98.00 98.00 

MPIIGaze-subset 84.27 96.84 97.62 98.41 

U2Eyes 94.34 94.70 97.37 98.41 

Finally, the average detection times between our detector and the state-of-the-art one were measured on the common 

computer platform. These are compared and shown in Table 5. The state-of-the-art one was claimed to take about 2.00 

𝑚𝑠 to operate on an Intel Xeon E5-1650 v4 CPU with an Nvidia Titan X (Pascal) GPU and about 5.00 𝑚𝑠 using an Intel 

i7-6700k CPU and Nvidia GTX 960 GPU. Our winner detector takes 0.80 and 1.97 𝑚𝑠 for the same procedure on the 

former and latter platforms. Our approach improves computational time performance by up to 2.5 times. The average 

detection time of our detector was also tested on a popular low-performance platform; the Raspberry Pi 4, with the 

following specifications: Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC running at 1.5GHz with 

Broadcom VideoCore VI. The average detection time is 158.95 𝑚𝑠. It is equivalent to the frame rate of 6.25. It is a 

promising performance for the detector to be employable on a popular low-performance platform. It would open further 

applications that rely on a less invasive camera-based eye-tracking technology. 

Table 5. Comparison of the average detection time between the winner detector and the state-of-the-art one  

Approaches 
Detection times (ms) 

Xeon E5-1650 + Titan X i7-6700k + GTX 960 Raspberry Pi 

Larumbe-Bergera et al. [18] 2.00 5.00 NA 

Present Study 0.80 1.97 158.95 

At this point, it can be seen that our proposed approach has been proven to be more effective in creating a pupil center 

estimator regarding the accuracy of detection, the relative errors, and the detection time. The detected regions 

surrounding a pupil and the algorithm to post-process these regions significantly enhance the effectiveness of the 

detector. Our proposed approach contradicts the previous understanding that (1) a detector must be trained from a large-

sized dataset and (2) a detector can be tailored to be more effective either by incorporating more processing layers into 

its architecture or fine-tuning some training hyperparameters. Our proposed approach also produces a comparable 

detection accuracy on a shallower layer of detector compared to the state-of-the-art one. The enhanced effectiveness of 

our detector comes from the fact that it learns a variety of features from the surrounding regions of a pupil. These are 

valuable for being post-processed to determine the pupil center if the detector fails to detect a pupil directly. 

4- Conclusion 

In this paper, a novel approach to pupil center estimation is presented. As opposed to increasing the size of the dataset 

for training or adding more layers of processing to a DNN detector, this approach involves training the detector with the 

region surrounding the pupil and the region between the pupil and the eye. This latter set of regions is divided into eight 

subregions. Each subregion has an annotation indicating its class and its position relative to the pupil's region. In order 

to determine the pupil center, the proposed post-processing algorithm is used in conjunction with the detected results. 

The size of a pupil and an eye were varied during experimentation to generate several different detectors. These detectors 

were derived from the PUPPIE dataset. A tiny-YOLOv3 with 23 layers was trained to make real-time performance 

available even on computer systems without GPU processing power. A winner detector has been selected by validating 

the detectors against the GI4E dataset in order to achieve the best detection and estimation accuracy, which is determined 

by the percentage of pupil center estimation errors below the size of a constricted pupil 𝑒𝑚𝑎𝑥. Additionally, the winner 

detector was examined with the following datasets: I2Head, MPIIGaze, and U2Eyes. The results indicate that the 

accuracy of pupil estimation is comparable to that of the state-of-the-art approach. It achieves pupil center estimation 

errors that are below the size of a constricted pupil in more than 98.24% of the images. In addition, the average detection 

time of the winner detector is 2.8 times faster than the state-of-the-art approach. A low-performance platform was tested 
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on the Raspberry Pi 4 and achieved 6.25 frames per second. It would allow for further applications involving less 

intrusive camera-based eye-tracking technology that can be processed on a low-performance computing platform. 

Additionally, the approach is highly expected to be applicable to the DNN detection problem, whose objects share similar 

characteristics to a pupil. 
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