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Abstract 

This study was conducted to investigate if passive cooling technologies have been implemented in 
commercially supplied new residential areas in Bangkok and to observe if there were significant 

differences in the land surface temperature (LST) compared to old residential areas. Values of LST 

were compared among 62 residential areas that differed in completion year. The mean LST for the 
most recent residential areas completed in 2013 or later was significantly less than that for the other 

older categories, suggesting that passive cooling effects were significantly better functioning in the 

new residential areas. A roof treatment on old buildings in a public housing project was still 
quantitatively effective after 8 years. This suggested the possibility of a deteriorated cooling function 

in the older categories among the residential areas. The possibility of deterioration was quantitatively 

investigated. The results stressed the importance of the periodic maintenance of passive cooling 
functions. As an extension of precise basic studies, this is the first study to quantify the passive 

cooling effects on commercially supplied residential areas. In terms of spatial extent, this residential 

area–scale study bridges precise analyses of single buildings/materials and regional observations, 
mainly relying on satellite data. The study results can aid in the mitigation and prevention of the 

urban heat island phenomenon. 
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1- Introduction 

The earth is becoming hotter every day. Especially under warm/summer and tropical climatic conditions, it is growing 

increasingly challenging to obtain thermal comfort. In hot conditions, the use of air conditioners is becoming common, 

although these make the environment even hotter and generate more carbon dioxide, which further increases global 

warming. To cope with this warming, passive cooling is a sound approach to achieving thermal comfort with no or 

minimal energy consumption [1]. Passive cooling includes multiple technologies. Among them, radiative and reflective 

cooling processes minimize the absorption of heat [2]. An example is applying a roof color that prevents solar heat gain 

[3]. Raising roof reflectivity from 10 to 20% to 60% reduced cooling-energy use in buildings by more than 20% [4]. 

In many cities, including those with tropical and warm climatic conditions, urbanization is taking place due to social 

and natural demographic changes. Because urbanization results in an increase in land surface and air temperatures in the 

area [5], applying passive cooling technologies to urban areas is expected to be a sustainable countermeasure. Passive 

cooling technologies have not been well investigated in real urban settings, however, and the extent to which they have 

been employed there to mitigate harsh and uncomfortable conditions is unknown. To date, passive cooling technologies 

have been intensively examined and evaluated in terms of their economic aspects [1], new materials for cooling 

(especially phase change materials) [6, 7], structures involving plant bodies on rooftops and walls [8], and structures for 

effective ventilation [9]. The examination and evaluation of passive cooling technologies described in the latest review 

articles led us to theoretical generalizations, such as reduced energy consumption for active cooling [10]. Passive cooling 
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examples in single buildings and houses have been described in experimental settings [11]. These well-controlled 

settings enable the precise and accurate measurement of passive cooling effects, as demonstrated by Al-Yasiri and Szabó 

[12]. It is of note that there have been no reports that examine and evaluate passive cooling effects in actual commercially 

established residential areas. One experiment involved the construction of a 1:10 scaled miniature town to observe heat 

absorption in the town [13]. 

To resolve the uncertainty surrounding the application of passive cooling technologies in real urban settings with 

warm/summer and tropical climatic conditions, this study investigated if new residential areas in Bangkok are cooler 

than older ones. Bangkok is the capital of Thailand, where the socio-economic profile is rapidly changing. Human 

migration to the capital [14] has resulted in a demand for more houses. Many new residential areas have been constructed 

over the past two decades (Figure 1, [15]). In this study, relatively new and old residential areas were compared in terms 

of land surface temperature (LST) in February 2022. 

 

Figure 1. Maps of Thailand (a), positions of the Bangkok residential areas investigated in this study (b), and true-color 

aerial images of Bangkok and surrounding provinces in 2000 (c) and 2020 (d) 

By extending the above comparison of new and old residential areas in Bangkok, the effects of a roof treatment of 

old buildings in a public housing project were quantified. The results suggest the possibility of deterioration effects on 

the passive cooling function in some residential areas and the possibility was quantitatively investigated. This is the first 

study to quantitatively investigate if new residential areas are cooler than old ones. To the best of the authors’ knowledge, 

this is the first study to investigate the loss of cooling effects in residential areas between 2013 and 2022. 
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2- Methods 

2-1- Site Description 

Sixty-two residential areas, three urban forests, and the Huai Khwang national housing area in Bangkok (Figure 1) 

were selected. The climate is classified as savanna [16]. The 62 residential areas were randomly selected from those 

visually recognized in the latest aerial images. The urban forests were selected as references for the comparison of LST 

values between the forests and the residential areas. The three forests were located in Lumpini Park, the Chitralada Royal 

Villa, and the Queen Savang Vadhana Museum. The buildings of Huai Khwang national housing program underwent 

roof treatment in 2014. 

The years of completion of construction were confirmed using Google Earth Pro (Google Inc., CA, USA). The Huai 

Khwang national housing buildings have five storeys, while the other residential areas have one to five storey(s). The 

smallest area was represented by a 3×3 pixel square in the Landsat imagery of 30×30 m resolution. Thus, the areas were 

90×90 m or greater. 

2-2- Landsat 8 Imagery for Land Surface Temperature Determination 

Remote sensing imagery datasets acquired by the Landsat 8 Operational Land Imager were used. The datasets used 

in this study were acquired on 20 April 2013, 2 February 2014, 12 April 2016, 22 March 2020, and 24 February 2022. 

The datasets were acquired between 10:37 and 10:39AM, local time. Among these datasets, the 2022 imagery was used 

for the comparison of the 62 residential and the other areas. The flowchart of the research methodology that was used to 

achieve the study's aims is shown in Figure 1. 

The datasets were level-1 products to which had been applied geometric corrections. Images for band 4 (red, central 

wavelength 655 nm), 5 (near-infrared, 865 nm), and 10 (thermal infrared, 10895 nm) were used. DOS1 atmospheric 

correction of values carried by the pixels was conducted using QGIS 3.20.3 (Free Software Foundation, Inc., MA, USA). 

LST values were determined for the 30 m × 30 m resolution pixels applying the method proposed by Valor and Caselles 

[17], which performed well in southern Vietnam where similar climatic conditions and vegetation types exist [18]. The 

equation was also useful in the drier land of Yazd, Iran [19]. To avoid pixels being significantly affected by cloud, cloud 

shadow, and other uncertainties, this study utilized quality assessment images with the aid of the QGIS software. 

The difference in LST between a residential area and the urban forest was determined as: 

𝐿𝑆𝑇𝑟𝑒𝑠𝑖𝑑−𝑓𝑜𝑟𝑒𝑠𝑡  =  𝐿𝑆𝑇𝑟𝑒𝑠𝑖𝑑  −  ∑(𝐿𝑆𝑇𝑓𝑜𝑟𝑒𝑠𝑡𝑁) /3 (1) 

where, 𝐿𝑆𝑇𝑟𝑒𝑠𝑖𝑑 and 𝐿𝑆𝑇𝑓𝑜𝑟𝑒𝑠𝑡𝑁  are the mean 𝐿𝑆𝑇 (°C) for the pixel representing the residential area and that for pixels 

representing the N-th forest. Because pixels representing the three urban forests were used, the sum was divided by three. 

 

Figure 2. Flowchart of this study 
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2-3- Statistical Analysis 

XLStat version 2021.4.1 (Addinsoft Inc., Paris, France) was used for statistical analyses. Analysis of variance was 

performed to compare housing areas of different completion years in terms of LST. In determining values of standard 

deviation, the n-1 calculation method was selected. As a post hoc t-test, the Bonferroni t-test was used. A two-tailed 

paired t-test was performed to evaluate the significance of the observed differences before and after painting the roofs 

of the buildings of the Huai Khwang national housing project. Analysis of variance was also performed to examine the 

significant differences among housing areas and years on the efficiency of passive cooling. 

2-4- Google Document Search 

Google was used to find documents that included keywords. The number of cooling-related documents was 

determined simultaneously using “หลงัคา (langkaa, roof),” “เยน็ (yen, cool),” and “วสัดุ (wasadu, material).” Likewise, the 

number of more general documents was determined simultaneously using “อาหาร (aahaan, food),” “อร่อย (aroy, tasty),” 

and “สุขภาพ (sukhaphaab, health).” The document publication years were limited to single years between 2011 and 2021, 

a period of 2005 or before, and a five-year period of 2006 to 2010. 

3- Results 

3-1- Comparison of the 62 Residential Areas 

Figure 3 indicates that, at the 24 February 2022 time point, the most recent residential areas tended to be cooler than 

the other residential areas. The 2004 or earlier areas were hot. Among the 62 residential areas, the years of completion 

could not be identified in 4. Instead, they were determined to have been completed between 2005 and 2012. Given this, 

the 62 residential areas were categorized as follows: oldest (completion in 2004 or before), newest (2013 or later), and 

in between (2005–2012). 

 

Figure 3. Values of land surface temperature for all pixels representing the residential areas completed in 2021 or earlier in 

the Bangkok region. For some areas, the precise completion years could not be identified although the areas were completed 

between 2005 and 2012. For these areas, land surface temperature values are shown as those for the 2008-

completed areas. 

Analysis of variance showed that the category of residential area was significant as a source of variation of LST (p < 

0.0001, Table 1). LST differed significantly (p < 0.0001) among the years of construction completion. As shown in 

Figure 4, the hottest residential area had a mean LST of 34.6°C (standard deviation 0.4°C) while the coolest had a mean 

LST of 26.6°C (standard deviation 0.6°C). The construction of the hottest residential area was completed before 2005. 

The coolest residential area was completed in 2017. The appearance of the hottest area was visibly different from the 

coolest in that the roofs and roads were darker. The same contrast was observed for the second and third hottest/coolest 

residential areas (Figure 5). 
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Table 1. Mean land surface temperature for the residential area categories 

Residential 

area category 

Number Mean Standard Significance (p value) 

of pixels (°C) deviation (°C) 2004 or before 2005–2012 2013 or later 

2004 or before 424 33.0a* 0.9 Not applicable < 0.0001 < 0.0001 

2005–2012 125 31.5b 1.5 < 0.0001 Not applicable < 0.0001 

2013 or later 459 29.9c 1.3 < 0.0001 < 0.0001 Not applicable 

* Means indexed by different letters differ significantly according to the Bonferroni t-test (p < 0.0001). 

 

Figure 4. Appearance of the hottest and coolest of the 62 residential areas (top) and land surface temperature (bottom). The 

true-color images (top) were acquired in 2021 

 

Figure 5. Second coolest/hottest (left) and third coolest/hottest (right) among the 62 residential areas. The images show the 

2004 or before (top) and the 2013 or later (bottom) residential areas. The images were acquired in 2021 
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In addition to color, differences in material are also perceivable in the images (Figures 4 and 5). As shown in Figure 

6, in the past, wavy slate was widely used as a roofing material. Roads also differ in material and color. 

 

Figure 6. Google street view of the hottest residential area (area 27, Figure 4) in March 2022. Wavy slate is widely used as 

the roofing material. The roads are covered with asphalt 

3-2- Human Recognition and Adoption of Passive Cooling 

The differences between the oldest and newest housing areas are believed to be associated with the results of the 

Google document search (Figure 7). In the 2000s and before, the relative abundance of roof cooling–related documents 

was low. The ratio of cooling-related document abundance increased in the early 2010s, peaked in 2017, and dropped 

again. 
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Figure 7. Relative abundance of roof and cooling-related documents based on a Google document keyword search 

In 2014, when passive cooling technologies were becoming popular (Figure 7), the national housing project 

underwent a roof treatment. In 2013, before the roof treatment in 2014, the national housing area was 5.2°C hotter than 

the urban forests (Table 2). The closest residential area 46 was compared in terms of LST. Residential area 46 was one 

of the oldest among the 62, and already existed in 2002 according to Google Earth Pro. The visual appearance was close 

to that of the hottest residential area in Figures 4 and 5, revealing dark-colored roofs and roads. At the 2013 imagery 

acquisition time, residential area 46 was 8.0°C hotter than the urban forests. This LSTresid-forest value was almost the same 

in the 2022 Landsat data acquisition time when the national housing area had an LSTresid-forest value of 3.7°C. This 

decrease from 5.2°C was highly significant (p < 0.0001, Figure 8) while the change in LSTresid-forest value was much less 

significant (p = 0.022) for residential area 46. Therefore, the cooling effect of the roof treatment in 2014 remained 

pronounced in 2022 in the national housing residential area. The treated roof area was only 25.1% of the entire area 

represented by the 158 pixels. However, the cooling effect was significant for the entire area. 



Emerging Science Journal | Vol. 6, No. 6 

Page | 1352 

Table 2. Effects of 2014 roof treatment on land surface temperature in the national housing area of Huai Khwang district. 

As a reference, the closest residential area (area 46) among the 2004 or before housing areas was compared 

Area  
Number of 

pixels 

20130420 20220224 

Mean 

(°C) 

Standard 

deviation (°C) 

Mean 

(°C) 

Standard 

deviation (°C) 

Residential 
National housing 158 35.0 0.4 30.3 0.8 

Residential area 46 16 37.8 0.1 34.5 0.2 

Urban 

Forests 

Lumpini 18 29.6 0.4 26.6 0.2 

Museum 23 30.2 0.3 26.4 0.2 

Chitralada 53 29.5 0.2 26.7 0.2 

  

 

Figure 8. Results of the paired t-test to examine the significant difference in LSTresid-forest (°C) between 2013 and 2022. The 

buildings in the area of the national housing project in Huai Khwan district underwent roof treatment in 2014. The bottom 

diagram indicates changes in LSTresid-forest (°C) in residential area 46. The top and bottom of the box indicates the 25 and 75 

percentile values, respectively. The red cross indicates the mean. The black dot indicates an outlier. 

3-3- Investigation of Deterioration Effects 

As demonstrated by the example of the national housing project, roof cooling treatments are worthwhile because they 

reduce the LST, which is significantly associated with room temperature and thus, electricity consumption. Here, a 

question arises. Did the 2005 to 2012–completed residential areas lose their cooling function over time? To investigate 

this possibility, the 2005 to 2012 residential areas were analyzed. Table 3 indicates the changes in LST within the 2013 

to 2022 period in six residential areas completed between 2005 and 2012. There were two more residential areas, but 

their LST values were unavailable for some years due to an unknown computer glitch. Among the six areas, residential 

area 32 was the hottest in 2016 when an extreme weather anomaly was observed in Southeast Asia [20], including 

Thailand [21]. The 2022 acquisition time was the coolest. 
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Table 3. Land surface temperature between the 2013 and 2022 Landsat 8 data acquisition times for selected 2005 to 2012–

completed residential areas and urban forests as the references 

Area 

20130420 20140202 20160412 20200322 20220224 

Mean 

(°C) 

Standard 

deviation 

(°C) 

Mean 

(°C) 

Standard 

deviation 

(°C) 

Mean 

(°C) 

Standard 

deviation 

(°C) 

Mean 

(°C) 

Standard 

deviation 

(°C) 

Mean 

(°C) 

Standard 

deviation 

(°C) 

Residential 

5 32.6 0.3 30.9 0.1 33.9 0.1 31.8 0.2 29.0 0.1 

32 31.6 1.1 33.4 0.3 38.2 0.1 35.1 0.2 33.6 0.2 

34 34.7 0.1 32.6 0.1 37.3 0.1 33.5 0.2 32.9 0.2 

39 33.2 0.2 31.8 0.2 37.2 0.2 32.8 0.2 31.5 0.2 

49 31.0 0.3 29.6 0.3 34.6 0.3 31.3 0.1 29.0 0.2 

55 33.1 0.2 31.9 0.3 37.1 0.3 32.9 0.4 31.8 0.3 

Urban 
Forest 

Lumpini 29.6 0.4 28.0 0.3 31.5 0.3 28.5 0.2 26.6 0.2 

Museum 30.2 0.3 28.4 0.3 31.6 0.4 27.8 0.4 26.4 0.2 

Chitralada 29.5 0.2 27.9 0.2 30.8 0.2 28.9 0.3 26.7 0.2 

Based on the values in Table 3, LSTresid-forest values were determined for the six residential areas at the timepoints 

between 2013 and 2022 (Figure 9). Analysis of variance resulted in p < 0.0001 for both year and residential area; thus 

LSTresid-forest significantly fluctuated over the 10-year period and among the residential areas. For residential areas 32, 

34, 39, and 55, in the later years, a tendency to become hotter was revealed. In contrast, residential area 5 was constant 

in terms of LSTresid-forest within the decade. Residential area 49 experienced an increase in LSTresid-forest at one point but 

achieved a decrease in LSTresid-forest. Residential area 32 clearly lost its cooling function. At the 2013 timepoint, LST 

values for area 32’s pixels showed large intra-variation among them. This suggests that residential area 32 was indeed 

losing its cooling function which used to cover the area. 

 

Figure 9. Changes in LSTresid-forest (°C) for six residential areas completed between 2005 and 2012 
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4- Discussion 

4-1- Main Findings 

This is the first study to demonstrate that new residential areas were cooler than older ones in the same region, 

indicating the application of passive cooling technologies to new houses, roads, and other components. The application 

of a roof treatment to the national housing project was retaining significant cooling effects even 8 years after the 

treatment. This national housing project result suggests that older residential areas experienced a deterioration in passive 

cooling effects. This hypothesis was demonstrated by comparing residential areas of different completion years. These 

findings indicate the importance of the periodic maintenance of the passive cooling functions of roofs, roads, and other 

components in residential areas. 

4-2- Comparison with Other Studies 

This study extended the established basic knowledge described in the latest review articles [1, 6-9], which summarized 

the passive cooling effects of materials and on single houses or buildings. In addition to this prospective nature, the 

findings in this study bridge pieces of knowledge related to precise house/building/material-scale experiments and 

regional analyses largely supported by remote sensing. Urban heat islands and suburban green areas have been 

intensively observed within 100 km2 areas or greater regions [22]. The heat island phenomenon is elucidated by the 

current findings, which demonstrate the results of the precise passive cooling mechanisms generalized and systematized 

in the aforementioned review articles. Thus, residential area–scale cooling implementations such as rooftop treatments 

would be useful for urban heat island mitigation. 

4-3- Implication and Explanation of Findings 

It is very likely that, at the February 2022 data acquisition time in the hottest area, the roofs and roads absorbed more 

solar radiation than the coolest residential area [23]. It is evident that recently constructed residential areas employ more 

cooling measures than the older residential areas (Figures 4 and 5). The coolest three areas have light-colored roofing 

materials. In contrast, the hottest residential areas have dark-colored roofs. Asphalt roads were also recognized using 

Google Earth’s street view function (Figure 6). In the hottest residential area (area 27), typical houses had wavy slate 

roofs. Material-wise, the coolest and hottest residential areas are visually very different. Various roofing materials are 

currently available in Bangkok. The materials differ in solar reflectance and accompanying solar energy absorption. 

Passive cooling effects of color and physical structure have been precisely and accurately demonstrated. For example, 

Akbari et al. [4] analyzed various pigments in order to identify highly solar-reflecting pigments for roofing materials. 

Super white roofing material had a solar reflectance value of 60% while that of a black one was 5%. When the black 

material was exposed to light, it reached 82°C while the super white one was 53°C. The differences in the color of the 

roads and roofs shown in Figures 4 and 5 contribute to the differences in LST. On a summer day in Oak Ridge, Tennessee, 

USA, the air temperature of a small gap under a slate roof was approximately 50°C whereas that under a clay-type 

material was 43°C [24]. Similarly, different road materials exhibit different temperatures when exposed to solar 

radiation. In Sarawak, Malaysia, an asphalt road surface was 6°C hotter than a nearby concrete surface [25]. Differences 

in road material among the residential areas contribute to the temperature differences (Figures 4 to 6) 

Regarding the changes in the appearance of documents on passive cooling technologies in the Internet space (Figure 

7), a possible explanation is that up until the 2010s, roof materials for passive cooling became popular among some 

stakeholders and specialists, especially housing developers [26]. At the February 2022 timepoint, cooling materials for 

roofs and other parts were already highly recognized among builders. This assumption is reflected in the cooler 

residential areas completed in 2013 or later. Probably associated with the trends in the actual housing and material 

market, the number of papers on passive cooling research increased rapidly after 2000 [27]. 

In contrast, around 2010, passive cooling measures were not yet well recognized by the residents in the region. This 

behavior may be reflected in the finding that the relatively old residential areas continued to be hot despite opportunities 

for applying passive cooling technologies. In and around 2010, passive cooling was not yet popular among home buyers 

according to Yacoulby et al. [28]. Adhikari et al. [26] put forth that the Thai government should play an important role 

in disseminating information regarding passive cooling technologies, and it is of note that the Thai National Housing 

Authority implemented a roof treatment in 2014 (Figure 8). 

Table 3 and Figure 9 demonstrates that depending on materials and other conditions, passive cooling effects may be 

well or poorly retained. Residential areas 32, 34, 39, and 55 become hotter. In these four residential areas, roads may 

have been darker. Also, the areas are largely occupied by roofs, which may have been affected by roof deterioration 

effects. According to Berdah et al. [29], there are several causes of roof deterioration. Among them, photodegradation, 

high temperatures, moisture, pollutants, biological growth, and soiling are common in Bangkok. Strong solar radiation 

can decompose surface materials, and then rain washes the fragments away. Dust deposition is nearly constant [30]. As 

a result, cooling effects and agents are easily disabled. The roofs are prone to become dark, mostly as a result of the 
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alluvial soil distributed in the lowland [31]. Dark roofs attract more solar radiation. These factors negatively affect the 

cooling effects of roofs. Hence, as the above results indicate, restoration measures every few years are needed. In Athens, 

three to four years after applying a cooling paint on a building roof, various signs of deterioration were revealed, such 

as visually perceivable corrosion of the surface, various microbial species, and, most importantly, a several degree 

Celsius higher surface temperature [32]. Some buildings of the Huai Khwan national housing project underwent a roof 

treatment in 2006, but the surface was obviously deteriorated until 2013 (Table 2). Thus, quality-wise, the 2014 treatment 

seemed to be better than the 2006 treatment. 

4-4- Strengths and Limitations of This Study 

LST values for the residential areas are efficiently retrieved from Landsat imagery data. A single scene of remote 

sensing imagery covers a wide area, such as 34,000 km2 (Landsat 8). The Landsat 8 satellite provides imagery datasets 

with a resolution of 30 m and is thus suitable for obtaining LST values for residential areas. Also, the LST determination 

method is well-established, especially for Landsat imagery datasets [33]. For convenience and reliability, this satellite-

supported measurement would be widely applicable to various residential areas around the world as long as remote-

sensing imagery datasets are available. However, a clear limitation is that users do not retrieve accurate air temperature 

values, although LST and air temperature roughly correlate [34, 35]. To address this uncertainty, the accurate 

determination of passive cooling effects such as the reduction of electrical consumption is difficult. This limitation is, 

however, expected to be overcome by combining LST and actual air temperature values for residential areas and rooms. 

The best passive cooling technologies for each residential area would be drawn in terms of electrical consumption or 

similar measures that are significantly associated with human health [36]. Based on this information, employing an 

empirical approach, satellite-supported observation may more accurately evaluate the passive cooling effects. 

5- Conclusions 

Over the past two decades, passive cooling technologies have been intensively investigated for single 

houses/buildings and on precise material-level scales. This is the first study to extend the precise investigation of passive 

cooling effects to commercially supplied residential areas. Also, with regard to spatial extent, the current residential 

area–scale study connects the precise house/building/material-scale and region-scale studies, especially those on urban 

heat islands relying on satellite data. Though LST correlates to air temperature, accurate values of temperature in the 

rooms of residential areas are difficult to estimate by the current satellite-supported observation. It is thus meaningful to 

conduct accurate measurements of air temperature within the residential areas, adopting different passive cooling 

treatments to clarify the optimal application of passive cooling technologies. Applying an empirical approach, the 

cooling effects would then be more accurately estimated by LST and other measures derived from remote sensing to 

facilitate the quick and convenient evaluation of the cooling effects. 

The most recent residential areas in Bangkok were demonstrated to be significantly cooler than the older ones. Roof 

cooling treatment on old buildings significantly drops the LST of the area. This suggests that older residential areas have 

lost their cooling effects. Indeed, it was demonstrated that some of the residential areas completed between 2005 and 

2012 lost cooling functions, and the loss was very likely due to roof deterioration. Thus, to maintain passive cooling 

effects in residential areas, renewal activities are necessary every few years. These findings are meaningful because they 

aid in the prevention and mitigation of the urban heat island phenomenon. 
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