
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 7, No. 1, February, 2023 

 

 

Page | 1 

 

A Comparative Study of Collaborative Filtering in Product 

Recommendation 

 

Agori Argyro Patoulia 1, Athanasios Kiourtis 1* , Argyro Mavrogiorgou 1 , 

Dimosthenis Kyriazis 1  

1 Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece. 

 

 

Abstract 

Product recommendation is considered a well-known technique for bringing customers and products 

together. With applications in music, electronic shops, or almost any platform the user daily deals 
with, the recommendation system’s sole scope is to help customers and attract new ones to discover 

new products. Through product recommendation, transaction costs can also be decreased, improving 

overall decision-making and quality. To perform recommendations, a recommendation system must 
utilize customer feedback, such as habits, interests, prior transactions as well as information used in 

customer profiling, and finally deliver suggestions. Hence, data is the key factor in choosing the 

appropriate recommendation method and drawing specific suggestions. This research investigates 
the data challenges of recommendation systems, specifying collaborative-based, content-based, and 

hybrid-based recommendations. In this context, collaborative filtering is being explored, with the 

Surprise library and LightFM embeddings being analysed and compared on top of foodservice 
transactional data. The involved algorithms’ metrics are being identified and parameterized, while 

hyperparameters are being tuned properly on top of this transactional data, concluding that LightFM 

provides more efficient recommendation results following the evaluation’s precision and recall 
outcomes. Nevertheless, even though the Surprise library outperforms, it should be used when 

constructing user-friendly models, requiring low code and low technicalities. 
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1- Introduction 

Recommendation Systems (RS) had a global market value of USD 2.69 billion in 2021, but it is anticipated to grow 

to USD 15.10 billion by 2026, with a CAGR of 37.79 % from 2022 to 2026 [1]. The recommendations that are being 

provided by several companies worldwide are using data analysis to identify items (e.g., products, movies) that best fit 

someone’s preferences and needs. It is not surprising that Amazon knows which book a customer will buy or which top 

news story they intend to read on Twitter, given the proliferation of data on the internet. With the current developments 

and progress in Artificial Intelligence (AI) and the overall competition, which is growing among multiple businesses 

and enterprises, it is considered of crucial importance for a company to be able to search, map, and provide its consumers 

with the relevant data and information to enhance the consumer experience and increase digitalization. This can be 

efficiently achieved through using the appropriate RS. RS can reduce transaction costs of identifying and choosing 

products in an online shop-ping environment [2], while they can also improve decision making process and quality [3]. 

In the field of e-commerce, RS may enhance revenues since they can be transformed into effective means of offering 

and selling more products [4]. Another example includes scientific libraries, where RS can support users to move beyond 
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simple catalogue searches. Therefore, the importance of using efficient and accurate RS techniques within a system to 

offer relevant and dependable recommendations for users can be considered of vital importance and significance. 

In general, a RS is classified based on the information that the RS requires for the recommendations and the way that 

the recommendations are being produced. Two (2) basic kinds, namely (i) content-based filtering and (ii) collaborative-

based filtering, exist to assist the latter. Customer information and product metadata information are two types of data 

utilized in content-based filtering. For instance, in this type of filtering based on a movie’s genre, if someone has 

previously watched a romantic movie, the RS will presume that the customer enjoys romantic comedies, and as a result, 

the suggestion output will include romantic comedies [5]. Making suggestions in a different approach would entail 

examining a customer’s transactions (i.e., interactions with offered products) and attempting to foresee the rating that 

the customer would assign to an unrated item. Regarding collaborative-based filtering, the latter is performed by not 

looking into the different categories and tags but by finding similar customers that have interacted with the same products 

that are of interest to the target customer.  

To forecast the overall rating that the target consumer would give to every product that they have not yet engaged 

with, the RS uses these similar customers and their preferences as its source data. Finding products that exhibit some 

similarities to those that the target client has already purchased, however, represents an alternative strategy that could 

help in making this prediction (i.e., item-based recommendations). Hence, in comparison with the collaborative-based 

recommendation, the difference is that now the focus is on the products and not on the customers, to proceed with 

making recommendations. Hence, collaborative-based filtering is based on transactional data, being captured at the point 

of sale [6], dealing with information that is captured through sales transactions. In that case, it records the time of the 

transaction, the location where it occurred, the price points of the purchased items, the payment method, the provided 

discounts, as well as additional quantitative and qualitative metrics associated with the transaction. As soon as it has 

been decided on the methodology to be used, the construction of the RS must be initiated. However, it should be kept 

in mind that each RS suffers from the "Cold Start Problem" [7], a problem that arises when new products or users are 

being added to the system. Having new customers and products means that there is not enough information for them to 

perform recommendations and matches. Hence, a new product cannot be initially recommended to customers efficiently 

when it is introduced to the RS without any ratings or reviews, and as a result, it is hard to predict the choice or interest 

of users correctly and efficiently, leading to less accurate recommendations. 

Having in mind that a RS’s goal is to recommend products to customers, it should be provided an efficient way for 

the system to understand whether a customer prefers one product or not. However, considering that most of the time 

there are no ratings in transactional data, such as in movies, this makes it more difficult to recommend a specific product 

by only using sales logs and transactions. Consequently, it is important to provide an efficient way to help the system 

understand whether the customer is interested in similar products to the ones that have already been purchased or not. 

Towards this goal, the current manuscript dives into collaborative-based filtering methods in the field of product 

recommendation, through analyzing the use of specific collaborative-based RS techniques and performing a comparative 

analysis among them. The overall goal of this research is to: (i) provide the way that a RS works; (ii) identify the method 

that best matches with the provided data (i.e., collaborative-based, content-based, or hybrid-based); (iii) provide the 

importance of a "rating" in order to identify the customer and the interactions with the product; (iv) identify the methods 

and algorithms that create the optimum outcome for each different case; (v) depict the way that a RS could be evaluated; 

and (vi) identify whether the recommendations being produced by the RS are aligned with the customer’s needs and 

requirements. 

The manuscript is structured as follows. Section 2 provides the related work for specific methodologies for 

implementing collaborative-based RS, while Section 3 provides the background and the vision of the proposed 

comparative approach. Section 4 includes the evaluation results of the comparative analysis among the different 

collaborative-based RS, including a short discussion of the outcomes and future steps. Section 5 includes an overview 

of the current research as well as our concluding remarks. 

2- Literature Reviews 

Although the first thing that comes to mind when referring to RS is mostly related to movies and books, multiple RS 

implementations for products exist as well, since businesses and companies need to get closer to all the different types 

of customers. Apart from the automated versions of RSs that are being used in multiple enterprises and that are 

distributed by big companies [8] (e.g., Microsoft, Amazon, IBM), this manuscript follows a bottom-up approach towards 

the most computationally efficient RSs’ approaches. Two (2) of these approaches, which are being further evaluated, 

are studied in this section, namely the (i) Surprise library and (ii) LightFM. 
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2-1- Surprise Library 

The Surprise library [9] offers a selection of estimators for rate prediction that implement traditional techniques, such 

as basic similarity-based algorithms and matrix factorization-based algorithms, like Singular Value Decomposition 

(SVD) or Non-negative Matrix Factorization (NMF). Additionally, the Surprise library offers model evaluation tools 

including built-in metrics and cross-validation iterators. 

2-1-1- Surprise Library: Matrix Factorization-Based Algorithms - SVD Models 

The SVD variant is one of the most effective RSs. It is a type of matrix factorization that minimizes the discrepancy 

between the anticipated ratings and the actual ratings from the original utility matrix by using gradient descent to make 

predictions for a user's ratings. Hence, gradient descent minimizes Root Mean Square Error (RMSE) when predicting 

these new ratings. Considering Figure 1 [10], it should be noticed how the rating matrix ‘R’ includes missing values. 

When predicting current ratings using the matrix factors, the Matrix Factorization algorithm employs a technique like 

gradient descent to reduce inaccuracy. In order to “fill in the gaps” in the rating matrix and forecast the ratings that each 

user would give to each item in the dataset, an algorithm like SVD is used. 

 

Figure 1. Matrix factorization 

The SVD process is like other Machine Learning (ML) models, where the steps include the instantiation of the model 

and the fitting on the train set, leading to the test set prediction. Grid Search can also be incorporated to the SVD models, 

for further tuning. Nevertheless, there exist several parameters which should be noted, including: (i) the number of 

factors, (ii) the number of iterations (i.e., epochs) to run, (iii) the learning rate, and (iv) the regularization term. 

Considering the SVD family, Surprise library supports the following algorithms: 

 SVD: It breaks down a matrix into its individual feature vector arrays, one for each row and column; 

 SVDpp: It is a development of SVD that takes implicit ratings into account; 

 NMF: It is a non-negative matrix factorization-based collaborative filtering approach. 

2-1-2- Surprise Library: Similarity-Based Algorithms - K-Nearest Neighbors (KNN) Models 

KNN is another often employed model. These algorithms select which recommendation to predict by looking at the 

nearby neighbors. Compared to SVD, KNN includes additional hyperparameters, such as the similarity measure (e.g., 

cosine, Pearson), and the minimum number of neighbors to consider. Considering the KNN models, Surprise library 

supports the following algorithms: 

 KNN Basic: It works on top of the basic KNN algorithm; 

 KNN with Means: It considers the mean ratings of each user; 

 KNN with Z-Score: It considers the Z-Score normalization of each user; 

 KNN Baseline: It considers a baseline rating. 

Moreover, Surprise library has implementations of clustering models, which are mainly used in combination with 

different algorithms, to produce the final recommendations. The reason behind this is that even though clustering models 

can be straightforward, they lack in delivering efficient results. Considering the clustering models, Surprise library 

supports the following algorithms: 

 Slope One: It is an implementation of the Slope One algorithm; 

 Co-clustering: It is based on the co-clustering data mining technique. 
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2-2- LightFM 

Python-based recommendation engine LightFM implements several well-known algorithms for both implicit and 

explicit feedback. In a hybrid matrix factorization approach, users and objects are represented as linear combinations of 

the latent factors underlying their content attributes. The method outperforms both collaborative-based and content-

based models in “Cold Start” or sparse interaction data scenarios (using both user and item information) when interaction 

data is copious, doing at least as well as a pure collaborative matrix factorization model [11]. A LightFM model learns 

embeddings (i.e., latent representations in a high-dimensional space) for users and items to convey user preferences over 

objects. These representations are multiplied together to produce ratings for each item for a specific user, with items 

with higher scores generally being those that the user is more interested in Tagliabue et al. [12]. The representations of 

the user and item are expressed in terms of the representations of their features, with each feature's embedding being 

estimated separately before the features are combined to provide the representations of the user and thing [13]. The 

latent vector sum of user “u” determines the user’s latent representation (Equation 1): 

𝑞𝑢 = ∑ 𝑗 ∈ 𝑓𝑢  (1) 

The same goes for the item “i” (Equation 2): 

𝑝𝑖 = ∑ 𝑗 ∈ 𝑓𝑖  (2) 

The dot product of the item and user representations, with item and user feature biases applied, gives the prediction 

of the model for a user “u” and an item “i” (Equation 3): 

𝑟𝑢𝑖
^ = 𝑓(𝑞𝑢 ∗ 𝑝𝑖 + 𝑏𝑢 + 𝑏𝑖)  (3) 

It should be noted that the structure of the LightFM model is motivated by two considerations: (i) the model must 

learn user and item representations from interaction data, and (ii) the model must compute recommendations for new 

items and users. 

3- Proposed Approach 

The approach relies on recommending foodservice products to customers. Through foodservice transactional data 

(January 2020 - August 2020) and taking advantage of the collaborative-based filtering methods of Section 2, the overall 

goal is to find the most efficient RS, as to bring customers and products together. 

3-1- Overall Process 

3-1-1- Recommendation Procedure 

Figure 2 represents the problem that the RS must solve. Each RS has users/customers who have already bought some 

products, where the numbered values in the figure’s cells represent the relationships between products and customers. 

However, a customer cannot have bought every existing product, and as a result there exist cells marked with “?”. 

 

Figure 2. Users and Items matrix 

The RS will try to predict and fill in the “empty” cells through the collaborative-based filtering methodology of 

Figure 3, where five (5) different steps are included and further explored within the document. 
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Figure 3. Collaborative filtering methodology 

In more detail, every algorithm from Surprise library and LightFM’s embeddings, can predict the “rating” that the 

customer would give to an unrated product (i.e., cells marked with ‘?’). Then, to get the ‘Top N’ recommended products 

for each customer, this list of predictions must be sorted in descending order and only the first ‘N’ products should be 

kept. However, apart from that, one should consider the rating metric, prior to concluding to any results. 

3-1-2- The Rating Metric 

An important issue to be considered deals with the rating metric. A classification or ranking of someone or something 

based on a comparison of their quality, standard, or performance is the best way to define rating [14]. In this case, the 

rating metric helps the RS to understand the degree of likeness, between a customer and a product. For example, in 

Figure 2 the user ‘U2’ has given a ‘2’ rating to ‘i2’ product and a ‘4’ rating to ‘i5’ product. Anyone could tell, that the 

user ‘U2’ preferred ‘i5’ over ‘i2’. As a result, improvisations should be performed to determine the degree of likeness 

among the customers and products. 

The graph of Figure 4 depicts the distributions of four (4) different rating metrics used by the RS, namely: 

 Quantity: It refers to the number of units that a product can be found into an invoice 

Example: Ann bought 3 sandwiches.  

Quantity = 3 

 Frequency per Invoice (Frequency1) - Per customer and product: 

Example: Ann came yesterday and bought sweets, coffee, donuts. Ann came today and bought only sweets.  

Frequency1(Ann, sweets) = 2/2 = 1 

Frequency1(Ann, coffee) = 1/2 = 0.5 

Frequency1(Ann, donuts) = 1/2 = 1 

 Frequency per Quantity (Frequency2) - Per customer and product: 

Example: Ann came yesterday and bought 3 sweets, 2 coffee, 1 donut. Ann came today and bought only 2 bags 

of sweets.  

Frequency2(Ann, sweets) = (3 + 2)/(3 + 2 + 1 + 2) = 5/8 = 0.6  

Frequency2(Ann, coffee) = 2/(3 + 2 + 1 + 2) = 2/8 = 0.25 

Frequency2(Ann, donuts) = 1/(3 + 2 + 1 + 2) = 1/8 = 0.1 

 Remove Bias: Biases are easily incorporated into the data since user interaction data is observational rather than 

experimental. They frequently originate from various subsets of data and create recommendation models that 

capture and even scale these prejudices, which results in systemic racism and unsatisfactory decisions [15]. In our 

situation, the distribution of training data would differ from the distribution of test data due to a number of 

unfavorable circumstances, such as the RS exposure mechanism or public opinion. Consequently, this metric is 

attempting to reduce the bias in the data, by subtracting the mean (i.e., average rating per product) from each rating 

score. 
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Figure 4. Rating metrics’ distributions 

3-1-3- Filtering  

Prior to using some algorithms to make predictions, the “Cold Start Problem” should be also addressed. To avoid 

unfortunate situations with new customers or new products, meaning that the RS has not enough data to match new 

customers and new products, there must be filtered out the customers with fewer than 9 invoices, while both the train 

set and the test set must include the same customers and products. It should be mentioned that the period for the train 

set is five (5) months (January 2020 - May 2020), while the period for the test-set is two (2) months (June 2020 - July 

2020). The total number of customers was 5548, while the products were 421. 

3-2- Surprise Library 

Several built-in algorithms from the AlgoBase base class are implemented in this library (e.g., predict, fit, test). The 

documentation for the prediction algorithms package contains a list and descriptions of the available prediction 

algorithms [9]. 

3-2-1- Cross Validation 

There is still a chance of overfitting on the test set when comparing various settings (i.e., hyperparameters) for 

estimators, such as the number of latent factors - n factors – a setting that must be manually set for an SVD. This is 

because the parameters can be adjusted until the estimator performs at its best. In this method, the model may pick up 

information about the test set, and assessment metrics may no longer reflect generalization performance. Another portion 

of the dataset can be used as a “validation set” to overcome this problem. Then, training is carried out on the training 

set, followed by assessment on the validation set, and when it appears that the experiment has been successful, final 

evaluation can be carried out on the test set. The quantity of samples that can be used for model learning, however, is 

substantially decreased by splitting the available data into three (3) groups, and the outcomes may vary depending on 

the random selection of the train and validation sets. Cross validation (CV) is a method for resolving this issue. In that 

case, the validation set is no longer mandatory for doing CV, but a test set should still be stored for final evaluation. The 

training set is divided into “k” smaller sets in the basic technique, known as “k-fold” CV. Each of the “k” folds is created 

following [16]. Another practical use of CV is to have a first look at which algorithm best fits the data, before undergoing 

any data modifications through scaling or hyperparameter tuning. Looking into the Quantity-rating metric - CV results 

(Figure 5) it is apparent that the SVD algorithms could not fit the data and as a result they need Hyperparameter Tuning 

as to provide better results. On the other hand, the BaselineOnly algorithm managed to rank first with a RMSE score 

around ~28 (27,129). 
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Figure 5. CV results for quantity 

3-2-2- Prediction Evaluation - RMSE 

RMSE (Equation 4) is a standard way to calculate the model’s error in forecasting data of quantitative type, where 

‘𝑦𝑖
^’ are predicted values, ‘𝑦𝑖’ are observed values, and ‘n’ is the number of observations. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖

^−𝑦𝑖)
2

𝑛

𝑛
𝑖=1   (4) 

3-2-3- Hyperparameter Tuning 

Hyperparameter Tuning depicts the process of evaluating different settings (i.e., hyperparameters) for estimators. 

These include: (i) Grid Search and (ii) Randomized Search. In the current research, it has been performed Randomized 

Search for the SVD model, using the Quantity rating metric and the following parameter grid: (i) Number of factors: it 

deals with the latent factors, which are the characteristics of the items (e.g., music genre). By removing its latent 

components, the SVD reduces the utility matrix’s dimension while mapping each user and each object into an r-

dimensional latent space. This mapping makes it easier to represent the connections between users and items [17], (ii) 

Number of epochs: it includes the number of iterations of the Stochastic Gradient Descent (SGD) procedure, (iii) lr_all: 

it has to do with the learning rate for all the parameters, and (iv) reg_all: it represents the regularization term for all the 

parameters. In Figure 6, it can be seen a graphic representation of the Randomized Search, with five (5) iterations for 

SVD, using the above parameter grid and Quantity rating metric. 

 

Figure 6. Hyperparameter tuning for SVD with Quantity 

The parameters that provided the lowest RMSE score are the ones, given to the SVD model for the data fitting. Figure 

7 depicts a visual representation of the distribution of the SVD estimations, and the training data provided to the model. 



Emerging Science Journal | Vol. 7, No. 1 

Page | 8 

 

Figure 7. Estimated and train set values 

Through Figure 7, most of the estimated values is accumulated around [2.5 - 5.0]. This does not create major concern, 

because the RS’s goal is not to provide accurate predictions but to recommend products among the ‘Top N’ that the 

customer prefers and would purchase in the future. Hence, to proclaim each customer’s ‘Top N’, it must be sorted the 

customer’s estimated values in descending order and keep the first ‘N’, as for those with the highest estimated values. 

3-3- LightFM 

A hybrid latent representation recommendation model is offered by LightFM. The model learns embeddings (i.e., 

latent representations in a high-dimensional space) for users and items to convey user preferences over objects. Higher 

scores indicate that the item is more likely to be of interest to the user; these representations are multiplied together to 

generate ratings for each item for a single user. Each feature's embedding is approximated before the features are 

combined to create the representations for users and items. The descriptions of the people and things are expressed in 

terms of descriptions of their features. For instance, if the features “musical fantasy”, “Judy Garland”, and “Wizard of 

Oz” are used to describe the movie “Wizard of Oz” then the embedding of the film will be found by adding the 

embeddings of the individual features. The same guidelines apply to user features. The embeddings are learned using 

SGD methods, as indicated in Kulkarni [17]. 

3-3-1- Generate Numeric Identifier 

LightFM only expects numeric identifiers (ids). However, the provided foodservice data contains ids for identifying 

products and customers. Hence, there must be created unique identifiers for each product and customer. 

3-3-2- Hyperparameter Tuning 

As in the previous case, before training the model, it must be performed some sort of Hyperparameter Tuning. Below 

is provided the parameter grid for the LightFM model tuning: (i) Number of components: it deals with the dimensionality 

of the latent embeddings, (ii) Learning schedule: (a) ADAptive GRADient (Adagrad): it is a class of sub-gradient 

methods that accomplish more informative gradient-based learning [18], and (b) ADAptive Learning Rate (Adadelta): 

it is a brand-new per-dimension learning rate gradient descent approach. Beyond the standard stochastic gradient 

descent, the method dynamically adapts over time using only first order information and has a low computing overhead 

[19], (iii) Loss function [20]: (a) Logistic: it is useful when both positive and negative interactions are present, (b) 

Bayesian Personalized Ranking (BPR) pairwise loss: it maximizes the difference in prediction be-tween a chosen 

negative example and a positive example. When there are solely positive interactions and Receiving Operating 

Characteristic (ROC) curve/Area Under Curve (AUC) optimization is sought, this can be helpful, (c) Weighted 

Approximate-Rank Pairwise (WARP) loss: by repeatedly sampling negative examples up until a rank-violating one is 

discovered, it maximizes the rank of positive examples. When there are only beneficial interactions, it is helpful, and 

the top of the recommendation list should be optimized, and (d) k-Order Statistic (OS) WARP: it is the ‘kth’ order 

statistic loss, dealing with a modification of WARP that uses the ‘kth’ positive example for any given user as a basis for 

pairwise updates, and (iv) Learning rate: it is the primary learning rate for the Adagrad learning schedule. 
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4- Evaluation 

Having foodservice transactional data (January 2020 - August 2020) and taking advantage of collaborative filtering, 

the goal is to find the most efficient RS, as to bring together customers and new products, or products that customers 

have not purchased. 

4-1- Hit Rate 

In settings of the recommender, the Hit Rate (HR) is simply the fraction of users for which the correct answer can be 

found in the recommendation list of length ‘L’ [21], where ‘|⋃ |𝐿
ℎ𝑖𝑡 |’ is the number of users for which the correct answer 

is included in the top L recommendation list, and ‘|⋃ 𝑎𝑙𝑙|’ is the total number of users in the test set (Equation 5). 

𝐻𝑅 =
|⋃ −𝐿

ℎ𝑖𝑡 |

|⋃𝑎𝑙𝑙|
  (5) 

As it can be seen, the larger the ‘L’ is, the higher the HR becomes, because the likelihood that the right response will 

be in the recommended list is higher. There-fore, it is important to choose a reasonable value for ‘L’. The HR is the 

main evaluation metric and depicts how successful a model is at making recommendations. The graph of Figure 8-a 

depicts the HR results per rating column for LightFM, while Figure 8-b depicts the HR results per rating column for 

Surprise library. LightFM with the highest HR was executed through using the Quantity rating metric. 

  
(a) (b) 

Figure 8. (a) LightFM HR per rating metric, (b) Surprise library HR per rating metric 

Figure 9 displays Surprise library’s HR results, per rating metric and algorithm. SVD, and Quantity rating metric 

were the golden combinations for the Surprise library. 

4-2- Recommendation Preview 

A recommendation preview is provided, for a specific customer (with a unique identifier), where food purchases’ 

recommendations are provided concerning prior food purchases and food purchases based on the recommendations. 

Customer Id: B1A3085E-3617-EA11-A81C-000D3A497E15, 

Customer Name: Ann Brown Recommendations: ['CAP CALDO REGULAR, 'BOTTLED WATER 0,5L', 'ESPRESSO 

FREDDO BRAZILIAN', 'ESPRESSO FREDDO ARABICA', 'CAP CALDO REGULAR ARABICA' 

Will buy: ['CINAMON ROLL', 'BOTTLED WATER 0,5L', 'ESPRESSO FREDDO ARABICA', 'FREDDO REGULAR 

ARABICA', 'ESPRESSO FREDDO BRAZILIAN', 'ΚΟΥΛΟΥΡΙ ΘΕΣΣΑΛΟΝΙΚΗΣ', 'FREDDO REGULAR BRAZILIAN'] 

Hits: 3 ['ESPRESSO FREDDO BRAZILIAN', 'ESPRESSO FREDDO ARABICA', 'BOTTLED WATER 0,5L'] 

Prior Purchases: ['TOAST', 'SANDWICH', 'PIE', 'BREAD'] 

Prior Purchases in Recommendations: (0, []) New Products: 6 ['ESPRESSO FREDDO BRAZILIAN', 'ESPRESSO FREDDO 

ARABICA', 'CINAMON ROLL', 'FREDDO REGULAR BRAZILIAN', 'FREDDO REGULAR ARABICA', 'BOTTLED WATER 

0,5L']. 
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Figure 9. Surprise library HR per algorithm 

4-3- Long Tail 

The Long Tail (Figure 10) is being utilized to examine popularity trends in click-, rating-, and purchase-related user-

item interaction data. Only a small portion of things typically have a high number of interactions; this is known as head. 

The majority of products are in the Long Tail, although interactions with them are rather rare [22]. 

 

Figure 10. Long Tail (sales per product) 
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It is not difficult for an RS to learn to correctly predict these items because there are many observations of popular 
items in the train data. Most users are already familiar with these products, thus recommending them may not provide a 
personalized experience or aid consumers in finding fresh, pertinent merchandise. Relevant recommendations are those 
of goods the user has given high marks for in the test data. 

4-4- Comparison based on Precision & Recall 

Prior to referring to the Precision & Recall metrics of the results, there should be identified the following attributes: 

 True Positive (TP): On TP, the algorithm predicts that the user is going to purchase the product (recommendation) 

and the user purchases the product. 

 False Positive (FP): On FP, the algorithm recommends the product, but the user does not purchase it. 

 False Negative (FN): On FN, the algorithm does not recommend the product, but the user purchases it. 

 True Negative (TN): On TN, the algorithm does not recommend the product, and the user does not purchase the 

product. 

Concerning the Precision metric, this is defined as the percentage of predictions per the recommendations that are 
provided correctly. On the other hand, the Recall metric refers to the portion of relevant products in the recommendations 
(i.e., Relevant recommendations are those for products that the user has given a favourable rating in the test data). 
Through the graphs of Figures 11 and 12, LightFM reached higher Precision and Recall results. This results into a variety 
of products being recommended and more personalized recommendations for the customers. Surprise library on the 
other hand, suffer from its model limitations and had relatively low Precision and Recall results. This affects the final 
recommendations, as to use only a small portion of the available products and to have repetitiveness of the ‘Top N’ set, 
resulted into not efficient personalized recommendations for the customers. 

  
Figure 11. LightFM Precision and Recall 

  
Figure 12. Surprise library Precision and Recall 
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4-5- Discussion of Results 

Based on the results, the best model to be used in this case is LightFM. “Less is better” when it comes to LightFM 

model (Figure 13). Both highest HR scores were made using loss function as warp and 30 epochs. Regardless of data 

type, the Frequency2, or the Quantity, the best solution is the simplicity for this scenario. 

 

Figure 13. LightFM best evaluation results 

For Surprise library (Figure 14), SVD combined with the Quantity data, outperformed by far the other models, with 

a HR of 0.45. In any case, Surprise library’s best run did not reach LightFM’s 0.6 HR score. Moreover, Precision (0.11) 

and Recall (0.17) did not provide promising results for the variety in the provided recommendations. 

 

Figure 14. Surprise library best evaluation results 

A results’ overview of the LightFM and Surprise library best runs is displayed in Figure 15, through a radar plot. 

 

Figure 15. Radar Plot of LightFM in comparison with Surprise library 
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Based on the derived results, our next steps include additional evaluations among different libraries, algorithms, and 

embeddings, with respect to the Surprise library and LightFM, considering more complex RS, with more complicated 

recommendations, training, testing, and validation tests. Furthermore, it is within our next goals to perform additional 

experiments in diverse areas and domains, covering not only the product sales domain but also cross-sector domains 

combining knowledge and requirements from the entertainment and product sales sectors (e.g., recommendations of 

products based on movie preferences). To this end, we focus on extending the Hyperparameters Tuning methodology, 

to be performed more efficiently following our previous research in Lytra et al. [23], into a more domain-specific way, 

where hyperparameters would be finetuned without any user input, considering past domain-specific tunings performed 

for other scenarios and use cases, addressing data preprocessing [24] and interoperability [25] challenges. To this end, 

it is within our next plans to also consider additional evaluation metrics within upcoming RS analyses, such as: (i) 

Unique Top N Recommendations: It deals with the percent of unique Top N-sets, recommended per customer, (ii) 

Unique Products in Top N: It has to do with the percent of the available products, that got included in all the Top N – 

sets, or (iii) Hit Products: It deals with the products that got a ‘Hit’ (i.e., the product made it to the Top N and the 

customer bought it.) and the number of ‘Hits’ each product made. Above all, our further goals include additionally 

evaluating the derived RS methods deployed in the infrastructure of the Diastema project [26], exploiting high-end 

hardware specifications (e.g., Solid State Drives (SSD) compared to Hard Disk Drives (HDD), DDR4 memories instead 

of DDR3 with higher capacities and more efficient CPUs), and integrating the derived RS techniques within the 

microservices platform of beHEALTHIER [27]. 

5- Conclusion 

It is undeniable that RSs have become an essential feature in the current digital world. Since it is almost impossible 

to discover all the products or content on a website, a RS can have an important role in improving the overall user 

experience by exposing additional products and inventories with such characteristics. In this research, it was provided 

an efficient way to facilitate a RS to understand whether the customer is interested in similar products to the ones that 

have already been purchased or not, through specific collaborative-based filtering methods in the field of product 

recommendation. The Surprise library and LightFM were introduced, while a comparative analysis was performed 

between them. The derived results from executing the Surprise library’s algorithms and LightFM’s embedding model 

show that embedding implementations (i.e., LightFM) surpass basic or more mainstream techniques (e.g., KNN-based 

approaches, matrix factorization) that the Surprise library uses. Indeed, the embedding method is based on matrix 

factorization calculations, but LightFM is a relatively new library that uses SGD as its core. LightFM has also different 

learning rates techniques (Adagrad, Adadelta) and loss functions like WARP, terms being used in Neural Networks, 

which can be best described as more complicated and sophisticated models from SVD, SVDpp, and NMF. The Surprise 

library includes a variety of models but also suffers from these models' limitations. For that reason, LightFM has 

established its position as a well-known and widely used RS implementation library, also supporting hybrid-based 

collaborative filtering techniques through enabling processing metadata for users and items as well as implicit feedback. 

For the Surprise library, this result in comparison with LightFM was apparent, but it is still a popular library among the 

ML cycles as it is widely used to facilitate the construction and evaluation of low-technicality and complexity models. 

As a result, both LightFM and Surprise libraries should be used, targeting different target groups depending on the 

complexity and the details of the RS that should be specified and implemented. 
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