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Abstract 

The healthcare sector has been moving toward Electronic Health Record (EHR) systems that 

produce enormous amounts of healthcare data due to the increased emphasis on getting the 

appropriate information to the right person, wherever they are, at any time. This highlights the need 

for a holistic approach to ingest, exploit, and manage these huge amounts of data for achieving better 

health management and promotion in general. This manuscript proposes such an approach, 
providing a mechanism allowing all health ecosystem entities to obtain actionable knowledge from 

heterogeneous data in a multimodal way. The mechanism includes diverse techniques for 

automatically ingesting healthcare-related information from heterogeneous sources that produce 
batch/streaming data, managing, fusing, and aggregating this data into new data structures (i.e., 

Holistic Health Records (HHRs)). The latter enable the aggregation of data coming from different 

sources, such as Internet of Medical Things (IoMT) devices, online/offline platforms, while to 
effectively construct the HHRs, the mechanism develops various data management techniques 

covering the overall data path, from data acquisition and cleaning to data integration, modelling, and 

interpretation. The mechanism has been evaluated upon different healthcare scenarios, ranging from 
hospital-retrieved data to patient platforms, combined with data obtained from IoMT devices, having 

produced useful insights towards its successful and wide adaptation in this domain. In order to 

implement a paradigm shift from heterogeneous and independent data sources, limited data 
exploitation, and health records, the mechanism has combined multidisciplinary technologies toward 

HHRs. 
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1- Introduction 

In today’s globally interconnected world, it is of great importance that the correct information is delivered to the 

appropriate person anywhere at any time. Hence, the healthcare industry is continuously moving towards such a concept, 

fully supporting and evolving the Electronic Health Record (EHR) systems, as indicated in Abul-Husn & Kenny [1], 

where it is stated that the development of population-based biobanks connected to EHRs and increased EHR adoption 

across a variety of clinical settings offer previously unheard prospects for the translational and implementation research 

that underpins personalized medicine. It is now clear that the paper record system is unable to give caregivers all the 

patient information they require in a way that allows them to make use of it. More people are becoming aware of this 

issue, as well as the need for higher quality and lower prices, as described by the authors in Aceto et al. [2], where a 

discussion is being provided on the relationship between Information and Communication Technologies (ICTs) and 

healthcare, identifying the most widely used ICTs-based healthcare paradigms and the primary ICTs supporting them. 

Studies report that the EHR systems not only could save billions of dollars in healthcare costs annually, as provided by 
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the authors in Johnson and Khoshgoftaar [3] where they compare data-level and algorithm-level deep learning methods 

across different class distributions, but also could improve the general quality of healthcare. The Personal Health Records 

(PHRs) and EHRs of today are, however, a long way from what the public views as being valuable to their health. This 

is in line with the ideas of 80% of the population who believe that health encompasses more than just the absence of 

disease, as described by the authors in García [4], where they are discussing the fact that corruption is embedded in 

health systems and also includes a range of components of daily life, such as the environment, an active and healthy 

lifestyle, nutrition, and mental and emotional health. 

It would be beneficial to collect this data and link it to other data in EHRs and PHRs to learn more about the 

effectiveness of patient pathway management, diseases, and the results of prevention measures and health policies. As a 

result, today’s delivery of sustainable healthcare services and platforms is based on data exchange across heterogeneous 

healthcare systems with a focus on healthcare management. Such thing is discussed in Cave et al. [5] where the authors 

describe that the possibility to provide a better characterization of illnesses, treatments, and the performance of 

pharmaceutical goods in various healthcare systems is made possible by the growing volume and complexity of data that 

is currently being recorded across a variety of settings and devices. The healthcare sector generates massive volumes of 

irrelevant data, from ordinary patient treatment to record keeping, which by themselves have little real value, as discussed 

in Asah et al. [6], where the authors refer to the fact that healthcare organizations misplace their attention on what and 

how they should learn. As a result, there is a growing need to develop methodologies and procedures for successfully 

integrating and merging such heterogeneous data. 

At the same time, nowadays, this data derives either from data sources that contain historical or already captured data 

(e.g., online and offline platforms, hospitals’ and laboratories’ databases containing citizens’ healthcare data) or from 

data sources producing real-time data (e.g., Internet of Medical Things (IoMT) devices that automatically measure and 

monitor in real-time various medical parameters in the human body). Even if, for the part of collecting historical or 

already captured data, there already exists a plethora of methods and techniques for automatically capturing such data in 

batches, this is not the case for the ingestion of real-time (i.e., streaming) data. As a result, current assisted living solutions 

need to be enhanced to support such functionalities, since citizens have their personal IoMT devices to monitor their 

individual parameters (e.g., body temperature, breathing activity) and track their daily activities (e.g., distance walked, 

calories burned), giving recommendations for improving their lifestyle, their personal activities in their living 

environments, as well as preventing the onset of health-related problems, as described in an overview of the IoMT in 

Vishnu et al. [7]. All these devices should be uniformly discoverable and able to be integrated with the various existing 

healthcare platforms. However, all the existing IoMT devices most of the times are surrounded by high levels of 

heterogeneity, since they have diverse capabilities, functionalities, and characteristics. In such cases, it becomes essential 

to offer abstractions of these devices to both the platforms and the end-users and develop tools to handle the 

interoperability among them, as provided in Noura et al. [8], where it is being discussed that IoT interoperability, or the 

capacity for numerous IoT platforms from different suppliers to coexist, is being supported by a number of academia, 

business, and standards groups in order to facilitate smooth resource sharing between different IoT vendors. Therefore, 

the first challenge that arises refers to the heterogeneity of all the existing IoMT devices in combination with the difficulty 

of all the existing healthcare systems/platforms to communicate with and interact with these devices. 

On top of this, interlinking the data from such heterogeneous devices with citizens’ EHRs and PHRs could create a 

comprehensive picture of individuals’ health parameters, thus detecting conditions that could lead to health deterioration 

and triggering the corresponding interventions by healthcare professionals, resulting in more effective preventive care. 

On top of this, in Miorandi et al. [9], it is discussed that, through the use of the right information and communication 

technologies, the IoT anticipates a time when it will be possible to connect digital and physical entities, opening up a 

whole new range of services and applications. The concept of mapping clinical information with other citizens’ life data 

could create several advantages and benefits for better decision-making and for identifying prevention strategies’ 

outcomes, illnesses, and clinical pathways’ efficiency [10]. All these highlight the need for a holistic approach to gather 

and exploit all the vast healthcare data amounts for achieving better health management and patient outcomes, the 

prevention of diseases, effective and targeted policy making, and health promotion in general. Hence, the challenge that 

emerges is to merge all the data that is available for exploiting the advantages of community knowledge by constructing 

new data structures to contain data of any type and category that is analogous to a citizen’s overall health (i.e., medical, 

nutritional, social care data, lifestyle, etc.). 

Considering all these challenges, by effectively gathering and integrating data from both individuals’ EHRs and 

PHRs, as well as from their personal IoMT devices, collective community knowledge could be extracted, playing a 

significant dual goal to collect, fuse, and analyze information from different entities to extract valuable knowledge 

towards the provision of actionable insights at the point of care. To address such gaps and requirements, this manuscript 

introduces a mechanism that aims to integrate methodologies for a paradigm shift from heterogeneous and independent 

data sources and limited data exploitation and health records (i.e., EHRs and PHRs), to complete integrated data views 

via Holistic Health Records (HHRs). The latter include a newly proposed data model and structure that enable the 

aggregation of real-time and batch data coming from different sources. To effectively construct the HHRs, the 
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mechanism develops various data management techniques that cover the complete data lifecycle, from the collection of 

the heterogeneous data until its aggregation, fusion, and linking. In more detail, the mechanism consists of the functions 

of Data Ingestion, through which it may connect to many heterogeneous data sources and gather their data, and Data 

Processing, where it can process the external healthcare data it receives and store it in its internal datastore. The proposed 

mechanism has been evaluated through diverse scenarios that provide different datasets, ranging from hospital-retrieved 

data to patient platforms, combined with data obtained from IoMT devices and data derived from external data sources, 

proving its applicability and overall efficiency. 

The remaining paper has the following structure. Section 2 describes the overall architecture of the proposed 

mechanism, depicting all its components, combined with the intercommunications among them to achieve heterogeneous 

healthcare data integration towards the construction of the HHRs. Section 3 evaluates the reference implementation of 

the mechanism against a specific healthcare scenario, whereas Section 4 discusses its effectiveness and overall 

contribution. To this end, Section 5 contains the conclusion of this manuscript, outlining our next plans. 

2- Methods & Architecture Overview 

2-1- Architecture 

In this section, a blueprint of the proposed mechanism is presented, along with the internal process that takes place 

for its seamless interaction and integration with either streaming data sources (i.e., IoMT devices) or batch data sources 

(i.e., external systems and platforms), as depicted in Figure 1. In short, the mechanism consists of the operations of two 

(2) discrete pillars: (i) Data Ingestion, in which the mechanism can connect to the various heterogeneous data sources 

and collect their data, and (ii) Data Processing where the mechanism is able to process the received external healthcare 

data and store it in its internal data store. Finally, it must be noted that to perform the mechanism’s operations, it is 

assumed that the subjective citizens own an IoMT device, whereas the external batch data sources contain historical 

personal data of the corresponding citizens. 

 

Figure 1. Overall architecture of the proposed mechanism 

2-1-1- Data Ingestion 

The Data Ingestion pillar is responsible for undertaking all the functionalities that are related to the integration, 

anonymization, and verification of the incoming healthcare data. In this pillar, the mechanism initially takes as an input 

data coming from known and unknown sources. The unknown sources refer to streaming data sources (i.e., IoMT devices 

like wearable IoT devices), whereas the known sources refer to sources that their data, at rest, already exist in diverse 

healthcare datastores and are considered as trustful and reliable without needing to be under further inspection.  

To be more specific, a wearable device (i.e., an IoMT device) owned by a citizen is regarded as an unknown source 

for the mechanism. Thus, the incoming data is immediately delivered to the Trust & Reputation component at the start 

of this pillar. This collects the required reputation and trust ratings for the specified device from an existing trust 

evaluation models' datastore and generates feedback based on those ratings for the associated input. After the evaluation, 

the mechanism ranks the unknown device, deciding whether the device will be characterized as trustful or not, thus 

enabling the device to be connected to the mechanism or not, correspondingly.  

Depending on the data source type that has been connected (i.e., either known or unknown sources) and the 

corresponding way that must be used for ingesting its data (i.e., streaming collection for unknown sources and batch 

collection for known sources), the mechanism flow has two (2) distinct paths, as follows. 

In the primary path (streaming ingestion for unknown sources), initially the Plug’n’play Sources component takes 

place. In this case, multiple methodologies are provided for integrating all the new streaming data sources into the 

mechanism during runtime and finally gathering all their data. To accomplish that, it exploits the approach proposed in 
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Mavrogiorgou et al. [11] to interact with the different heterogeneous IoMT devices of unknown nature and ingest their 

data. More specifically, three (3) layers of this approach are exploited, namely the Devices Connection, the Devices 

Type Recognition, and the Devices Data Collection. In the first layer (i.e., Devices Connection), all the IoMT devices 

available for connection are identified and connected to the mechanism via a Bluetooth interface that is provided, which 

collects their characteristics (specifications) and Application Programming Interfaces (APIs). However, the mechanism 

can interact and communicate only with devices that offer open APIs (i.e., give public access to the methods that they 

include), since the devices that are based on private APIs are not publicly providing information about their incorporated 

methods. As soon as this connection happens, the mechanism retrieves the device’s name and Media Access Control 

(MAC) address, which are provided as inputs into the MAC Vendors API [12], revealing the name of the manufacturer 

of the IoMT device. By identifying the manufacturer of the device, the mechanism gathers from the manufacturer’s 

website information about the offered APIs. Consequently, it gets information about (i) the API Uniform Resource 

Locator (URL) paths that provide access to the different methods of the API and (ii) the descriptions of the API methods. 

In the sequel, in the second layer (i.e., Devices Type Recognition), the mechanism, by applying the approach of 

Mavrogiorgou et al. [13], calculates the syntactic similarity between the connected IoMT device and a list of already 

recognized IoMT devices, based on their specifications (i.e., manufacturer and name), to classify the connected IoMT 

device to the device type of the already recognized ones (known), regarding the similarities that exist among their 

specifications. 

Afterwards, in the third layer (i.e., Devices Data Collection), since the type of the connected IoMT device has 

automatically been identified, in order to find the specific functionality purposes of each distinct API method of the 

device’s manufacturer, the mechanism determines the semantic similarities among all the manufacturer’s available API 

methods’ descriptions and the API methods’ descriptions of the already recognized IoMT devices of the mechanism, 

following the process provided in Kiourtis et al. [14]. Following this step, the techniques for obtaining the device’s data 

are extracted. Finally, since (i) the API calls of the connected IoMT device that were found to be used collecting the 

device’s data may include distinct functions, therefore collecting diverse data from the IoMT device; and (ii) the 

mechanism tells the user about the techniques that can be utilized even though the user may not want to retrieve all this 

data from the device. The user can select which of these methods she would like to utilize to gather data from the device 

as a result. The user must fill up her personal information to verify its accuracy before allowing her personal data to be 

exported and delivered to the device through the offered consent interface. This information relates to her unique login 

information for the online account of the relevant device manufacturer from which she desires to send her data. Thus, 

using this method, she is eventually given the option to transfer her data to the mechanism if the personal information 

she enters matches that of her personal account. After the completion of this process, all the data is provided to the 

Gateway component to be transported into the remaining architecture pipeline. 

In the second path (batch ingestion for known sources), only the Gateway component takes place, where both 

communication and connectivity problems are resolved simultaneously, to collect the data from the connected known 

sources (i.e., sources that are already reliable). Into this context, the Gateway provides a unified and abstracted API [15] 

that collects information from several data sources (and as a result from several interface implementations) including 

but not limited to healthcare organizations, sensors, mobile applications, and laboratories. It facilitates the resolution of 

the connectivity and communication challenges with such information sources, ensuring the interaction with the rest of 

the internal components of the mechanism. 

After the data is successfully passed into the mechanism, the Data Anonymization component acts anonymizing all 

the ingested data, by exploiting the ARX anonymization tool [16]. It should be noted that for the known sources, when 

requested, the whole data anonymization procedure may happen within the various organizations of the provided 

healthcare data, to achieve and enable protection of data, privacy policy, and avoid possible security issues that would 

arise in case of a network transmission. Hence, in this scenario, the data is anonymized at the entities level before entering 

the mechanism. 

2-1-2- Data Processing 

The Data Processing pillar is responsible for transforming and cleaning all the ingested data, constructing the 

corresponding HHRs, an extension of EHRs, containing data of any type and category that is relevant to a citizen’s 

overall health (i.e., medical, nutritional, lifestyle, social care data, etc.). As soon as this process is complete, the pillar 

finally stores all the acquired information within the internal datastore of the mechanism for future usage either by the 

mechanism itself or by the involved users of the mechanism (analyzed in Section 2.3). In the beginning of this layer, the 

Data Conversion component retrieves all the ingested data by the Gateway component, implementing two (2) 

functionalities to make all this data interoperable both structure and terminology wised, translating it into the HHR FHIR 

format [17]. 

The first functionality following the approach of Kiourtis et al. [14], seeks the semantic transformation of the 

incoming data, particularly wherever there is a need to translate among terminologies used within different data models, 

or other kind of semantic operations. To this context, it transforms the raw data into HHR FHIR format using the HHR 

model [18] that is being produced by the HHR Creation component. Despite that thousands of medical data models exist 

[19], these are targeting mainly on the integration of data from clinical trials. Hence, the proposed HHR model represents 



Emerging Science Journal | Vol. 7, No. 2 

Page | 343 

in a conformant way all the required data by the underlying data sources, which refer to the same citizen. It implements 

an eXtensible Markup Language (XML) language, developed for the HHR model, which permits to provide in a 

machine-interpretable way the HHR types’ structure and align them to the corresponding FHIR resources’ structure [20].  

With regards to the second functionality of the Data Conversion component, this is responsible for identifying the 

semantics and the terminologies (e.g., SNOMED CT, LOINC, ICD-9, ICD-10) of the transformed HHR data, interacting 

as well with the provided data to understand the terminologies and perform terminological mappings to the content of 

this data among different terminology systems, thus providing a common view upon the ingested data. The mechanism 

offers a collection of operations over terminologies that are described using the HL7 FHIR specifications to accomplish 

this translation. These operations include the: (i) Value Set expansion, (ii) Concept Lookup / Decomposition, (iii) Value 

Set Validation, (iv) Subsumption testing, (v) Batch Validation, (vi) Batch Translation, and (vii) Maintaining a Closure 

Table. This allows for the provision of several functionalities (semantics) about these information elements located 

within more complicated structures. 

As soon as all the obtained data has been converted into HHR FHIR format, as it is critical to have confidence in the 

“freshness” and suitability of the newly created information, the generated HHR FHIR data along with relevant historical 

data that is retrieved from the internal datastore is sent to the Data Cleaning component to be cleaned. To achieve that, 

this component follows a specific procedure [21] in order to: (i) ensure that the data measurements adhere to established 

business rules or constraints by identifying problems related to conformity to specified requirements, (ii) correct/remove 

any problems found throughout the validation procedure, (iii) ensure that the provided data set is accurate, complete, 

and complies with all needed fields and required attributes (required fields which cannot be empty), and (iv) ensure that 

the information provided is accurate. 

In sequel, all the cleaned HHR FHIR data is sent to the Data Aggregation component. The aggregation functionality 

offered by this component communicates with the internal datastore of the mechanism to aggregate and finally store all 

the ingested and processed data. Hence, it gathers all the input HHR FHIR data and aggregates them into the appropriate 

HHRs, storing them into the datastore. To that purpose, it should be emphasized that the HHRs are converted into tuples 

and stored in the data tables of the relational schema of the Data Store, which was created in accordance with the entity-

relationship definition of the HHR model, rather than being saved as raw HHR documents in the datastore. 

To sum up, the proposed mechanism encompasses several data elements that are ingested, processed, stored, 

potentially updated, and analysed to successfully collect citizens’ personal data deriving from different data sources 

(either of known or of unknown nature), and construct their corresponding HHRs, based upon all their existing data. 

2-2- Time Journey of Data 

As it has been described so far, the mechanism encompasses several data elements that are ingested in it, stored, 

potentially updated, and analysed. These data elements refer to heterogeneous types of data, such as raw data, historical 

data, created HHRs, etc., as depicted in Figure 2. The latter provides a snapshot of how these data elements are correlated 

in terms of their time journey across the mechanism and the potential time frames of their updates and processing. Since 

one of the main objectives of the mechanism is to be able to collect the incoming data through either a streaming or a 

batch way, such information is depicted in Figure 2, to make clear the ingested data time journey based also upon their 

type of collection way. 

 

Figure 2. Data time journey 
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In more detail, as depicted in Figure 2, the data time journey follows the identified two (2) key pillars of the 

mechanism: the Data Ingestion, and the Data Processing. In the context of Data Ingestion, the mechanism gathers a 

segment of medical data from various available unknown data sources (i.e., sensors and IoMT devices, online tools) in 

real-time, in a streaming way, while another segment of data is gathered offline in a batch way (i.e., historical data, and 

health records). To this end, as depicted in the figure, some of this data is updated in a frequent manner, while some 

other is updated in an infrequent or even in a sporadic manner. After the data collection, in Data Processing, the Data 

Conversion component takes place followed by the Data Cleaning component that takes as an additional input the 

historical data that exists in the internal datastore of the mechanism, to follow the corresponding removal/corrective 

actions. In sequel, the Data Aggregation component aggregates all the ingested data, which is aggregated into the 

formulated HHRs (through the HHR Creation component) that are finally stored into the internal datastore. 

2-3- Involved Users 

In the healthcare ecosystem, multiple end users can provide their data and benefit from the field’s results. To the 

context of the proposed mechanism, there exists a plethora of users that can take advantage of the mechanism’s 

functionalities, as they are depicted in Figure 3. More specifically, these users include healthcare professionals, 

healthcare providers, and citizens. However, the most critical stakeholder among them is the citizens, since the whole 

ecosystem of the mechanism has been built based on medical data that is provided by them. Apart from the citizens, a 

major role in this concept is played by the healthcare providers. The latter provide healthcare diagnosis and treatment 

services, while the healthcare professionals provide healthcare advice and treatment according to formal experience and 

training. In both cases, these users can retrieve from the mechanism the HHRs that have been constructed for the required 

citizens, thus obtaining information about the complete view of their health, making the appropriate diagnosis and care 

treatments. 

 

Figure 3. Involved users 

3- Performance Evaluation 

In this section, the performance of the core components of the proposed mechanism are analyzed, investigating its 

feasibility and efficiency in the healthcare domain. In deep detail, we focus on evaluating the effectiveness of the 

operation of the Data Ingestion and Data Processing pillars. To this end, it should be noted that the evaluated 

components have been developed in Java SE. For our proof-of-concept both pillars are implemented on a desktop PC 

equipped with an Intel i7-4790 at 3.60 GHz, 16GB RAM utilizing as operating system Windows 10. 

3-1- Data Ingestion 

For the evaluation of the Data Ingestion pillar, we created a representative use case analyzing critical information for 

the technical infrastructure of the mechanism performing all the steps described in Section 2. The use case has been 

staffed with data from the CareAcross platform [22], which aims to connect cancer patients with peers and doctors. The 

chosen dataset deals with the condition of breast cancer representing the known source that feeds the mechanism. A 

snapshot of the underlying original dataset coming from the CareAcross platform is depicted in Table 1. The data 

provided by the CareAcross platform is fully anonymized by the source itself, due to (i) GDPR regulations, (ii) ethical 

concerns, and (iii) terms of the CareAcross service agreed by the patients. Thus, it is immediately delivered as input to 

the Gateway component as raw data in Comma Separated Values (CSV) format, bypassing the Data Anonymization 

component. 
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Table 1. Snapshot of CareAcross produced data 

DiagnosisID GroupID Variable Value 

1 1 CancerDiagnosis Oestrogen Receptor (ER) positive 

1 2 CancerDiagnosis  

1 3 Comorbidities Acid Reflux 

1 3 Comorbidities Cholesterol 

1 3 Comorbidities Hypertension 

1 74 Treatments Paclitaxel (Taxol ®) 

1 74 Treatments Tamoxifen (Nolvadex ®) 

1 1 CancerDiagnosis Oestrogen Receptor (ER) positive 

Apart from the known source, the iHealth Feel device [23] is utilized, serving as the connected IoMT device of 

unknown source type for the purposes of the experiment. Thus, in this pillar, following the process described in Section 

2.1.1, through the Plug’n’play Sources component, the mechanism starts retrieving the device’s required specifications 

(i.e., name and MAC), while the fields of device manufacturer and type are unknown having not yet been identified by 

the mechanism (Table 2). To this end, it should be noted that this device belonged to one of the patients of the CareAcross 

platform. 

Table 2. Connected IoMT device’s specifications 

Name MAC address Manufacturer Type 

iHealth Feel 00070D621C4B Unknown Unknown 

Then, through the MAC vendors API, the mechanism identifies the manufacturer of the connected device, which is 

iHealth, and automatically retrieves from the iHealth API information regarding: (i) the API methods, regarding their 

requested URL paths and endpoints that are available, and (ii) the API methods’ specific functionalities, regarding their 

general descriptions (Table 3). To this context it should be noted that since the mechanism is not yet aware of the type 

of the connected device, it retrieves from the iHealth API all the methods for all the supported types of devices (i.e., 

glucometers, blood pressure monitors, activity trackers, pulse oximeters, and thermometers). 

Table 3. API methods of iHealth devices 

Method ID Device Type Method URL Method Description 

IH1 Blood pressure monitor user/user-id/bp/ Blood Pressure Data 

IH2 Blood pressure monitor application/bp/ All Blood Pressure Data 

IH3 Glucometer user/user-id/glucose/ Glucose Data 

IH4 Glucometer application/glucose/ All Glucose Data 

IH5 Pulse oximeter user/user-id/spo2/ Blood Oxygen Data 

IH6 Pulse oximeter application/spo2/ All Blood Oxygen Data 

IH7 Activity tracker user/user-id/activity/ Activity Report Data 

IH8 Activity tracker application/activity/ All Activity Report Data 

IH9 Activity tracker user/user-id/sleep/ Sleep Report Data 

IH10 Activity tracker application/sleep/ All Sleep Report Data 

IH11 Thermometer user/user-id/temperature/ Temperature Data 

IH12 Thermometer application/temperature/ All Temperature Data 

By the time that all the methods are retrieved, the mechanism finds the type of the connected device. To achieve that, 

the Plug’n’play Sources component calculates the syntactic similarity between the connected IoMT device’s name and 

each different already known device’s name from its internal list. When all the different comparison combinations 

occure, the mechanism concludes into the results of Table 4 that depicts the top-5 calculated percentages of similarity 

among the devices’ names. 
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Table 4. Connected IoMT device specifications 

Unknown Device Known Device Device Type Syntactic Similarity 

iHealth Feel 

Omron BP7450 Blood pressure monitor 10% 

iHealth Track Blood pressure monitor 72% 

Fitbit Flex Activity Tracker 56% 

iHealth Ease Blood pressure monitor 83% 

iHealth View Blood pressure monitor 77% 

Based on the captured results, due to the fact that the estimated similarity between iHealth Ease and iHealth Feel is 

the highest among the rest of the calculated percentages (highlighted with grey), and the device type of iHealth Ease is 

known for the mechanism that it is a blood pressure monitor (since it already exists on its list with the recognized IoMT 

devices), the unknown device of iHealth Feel is identified to be a blood pressure monitor, as well. Once the type is 

recognized, all the iHealth API methods are retrieved, using the ones that correspond to the devices of type “blood 

pressure monitors (BPM)” (Table 3). Then, the available methods are displayed to the user to decide the one that she 

prefers to use to send her data to the mechanism. To this end, it should be noted that for the user to have access to these 

methods, she must successfully login into her iHealth personal account, as described in Section 2.1.1. In this example, 

the user successfully logins into her account, finally retrieving the device’s chosen data, which were all the blood pressure 

data of the device. A snapshot of the collected data of iHealth Feel is depicted in XML format in Figure 4. 

 

Figure 4. Data ingested from the iHealth Feel IoMT device 

Once the Gateway component retrieves all the sent data (both from the CareAcross platform and the connected IoMT 

device - iHealth Feel), it converts it into XML format to be processable and understandable by the other components of 

the mechanism. At the same time, the Gateway component is responsible for replacing possible missing/empty values 

of the received data with the default value of -999999. A snapshot of the current output of the Gateway component is 

presented in Figure 5, referring into the first two entries of the received dataset from the CareAcross platform. 

 

Figure 5. Output of CareAcross data from the Gateway component 
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3-2- Data Processing 

In sequel, in the Data Processing pillar, the Data Conversion component takes place that takes as an input all the 

provided raw data in XML format, to convert it to HHR format. For that purpose, it uses the HHR model provided by 

the HHR Creation component in combination with the converter provided within the Data Conversion component, to 

convert all the XML data into HHR XML format. Additionally, during this phase, the used codes are automatically 

translated into a set of agreed standardized terminologies that are commonly used, in order for different codes from 

different countries to be translated into a common terminology. Particularly, the code “Oestrogen Receptor (ER) 

positive” is translated to the formal terminology of ICD-10 using the code “Z17.0 Estrogen receptor positive status 

[ER+]”, allowing the coexistence of different datasets to the mechanism, enabling the successful usage of their contained 

data. A snapshot of the output that is provided by the Data Conversion is depicted in Figure 6, illustrating the transformed 

first two entries of the received raw XML data from the CareAcross platform into the corresponding HHR XML data. 

In short, the XML file of Figure 6 is mapped to the HHR format, where the “system” XML element represents the source 

of the data, the “identifiers” element represents the diagnosis and group identifiers, the “type” element represents the 

ICD-10 mapped terminology of the “Oestrogen Receptor (ER) positive” value, while the “type” attribute of the 

“member” element represents that this listing refers to a specific type of diagnosis. The same procedure is applied to the 

XML data retrieved from the connected IoMT device, producing the corresponding XML file. 

 

Figure 6. Output of CareAcross data from the Data Conversion component 
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Afterwards, in the same component, the converted HHR data is converted into FHIR data, to be compliant with the 

HL7 FHIR standard. For that reason, the Data Conversion component uses as an input the previously converted HHR 

XML data, and by combining it with the same HHR model provided by the HHR Creation component, it converts all 

the HHR XML data into HHR FHIR XML format. A snapshot of the final output of the Data Conversion component is 

illustrated in Figure 7, outlining the transformed first two entries of the HHR XML data into the corresponding HHR 

FHIR XML data. Shortly, the XML file of Figure 7 is mapped to the HHR FHIR format, where the “Group” XML FHIR 

element represents the source of the data, the diagnosis and group identifiers, the “coding” element represents the ICD-

10 mapped terminology of the “Oestrogen Receptor (ER) positive” value, while the “category” element represents that 

this listing refers to a specific type of diagnosis. The same procedure is applied to the XML data retrieved from the 

connected IoMT device, producing the corresponding XML file. 

 

Figure 7. Final output of CareAcross data from the Data Conversion component 

As soon as all the provided data is successfully transformed into HHR FHIR XML format, all this data feeds the Data 

Cleaning component to apply data quality assessment techniques. This action includes data cleaning, originality, and 

quality, informing the mechanism for any possible faults/errors that have occurred. In this case, an alert is triggered, 

stating that the acquired dataset contains an undefined value, and for that reason the specific measurement is erased 

(cleaned). Particularly, the second entry of the dataset does not contain the code of the diagnosis and was erased. A 

snapshot of the output of this process is illustrated in Figure 8, depicting the cleaned version of the second entry of the 

dataset into HHR FHIR XML format. Regarding the iHealth Feel device, it contained two (2) erroneous data attributes 

(referring to the values of HP and HR that were out of the accepted range values), which were successfully corrected by 

the mechanism. All the applied cleaning actions are depicted in Table 5. 



Emerging Science Journal | Vol. 7, No. 2 

Page | 349 

 

Figure 8. Output of CareAcross data from the Data Cleaning component 

Table 5. Overall cleaning results 

Dataset Erroneous Data Corrective Actions Missing Data Corrective Actions 

CareAcross Platform 0 None 1 Dropped record 

iHealth Feel 2 kNN imputation 0 None 

Since the data is fully cleaned and interoperable, it is time to be aggregated with possible already existing 

measurements of the same patient, and finally be stored into the internal datastore of the mechanism. By taking as an 

input the cleaned HHR FHIR data in XML format, the Data Aggregation component accepts and extracts the relevant 

data based on the existing HHR model. Thus, it checks whether the data already exists in the mechanism, and based on 

the specific group identifier, it correlates it with the corresponding already existing patients of the mechanism. In this 

case, the Data Aggregation component provides as an output the same HHR FHIR data in XML format, since there was 

not any correlation that took place, indicating that the patients had not provided any data in the platform. In sequel, the 

internal datastore gets as an input the HHR FHIR data in XML format, and finally stores it in it, in the form of a relational 

schema that is compliant with the ER schema of the constructed HHR model. 

4- Discussion 

According to the architecture depicted in Section 2 and the experimental results stated in Section 3, the proposed 

mechanism successfully achieved to satisfy its main purpose of designing, implementing, and providing a data 

integration healthcare framework for exploiting non-homogeneous healthcare data while addressing different healthcare 

aspects. In more detail, the mechanism incorporates technologies for a paradigm shift from heterogeneous and 

independent data sources, from siloed exploitation of data, and from health records (i.e., EHRs and PHRs), to complete 

integrated data views through the HHRs. This makes it feasible to precisely target treatment on a personalized basis 

since it enables the derivation of fine-grained patient profiles from HHR data, which complements the increasingly 

detailed characterization of disease correlations. The information gathered by the mechanism expedites the identification 

of new possibilities and diagnostics. With patient consent on sharing in-depth information on treatments, symptoms, and 

outcomes, anyone who is interested in medical research can sample information, looking at different variables to see 

who responds to what treatments. In this context, the mechanism allows patients to share information about treatment 

outcomes, creating a functioning system so that errors, best practices, or effective treatments will be able to become 

visible and connected. In this way, it supports the vision of a learning healthcare model where every patient’s experience 

informs the next patient’s experience so that the system is learning in real time. On top of that, it should be considered 

that the healthcare system is constantly evolving, and to keep up with the changes, learning healthcare models are 

becoming more and more popular. The Agency for Healthcare Research and Quality (AHRQ) developed a series of case 

studies to help health system chief executive officers and stakeholders better understand the concept of a learning health 

system and the value of making investments in transformation [24]. Building this understanding is part of the AHRQ’s 

ongoing effort to accelerate learning and innovation in healthcare delivery to ensure that people receive the highest 

quality, safest, and most up-to-date care. 
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Among its main advantages, the mechanism’s solution allows healthcare professionals and caregivers to 

synchronously monitor the progress of their patients, allowing a better coordination of their care. What is more, the 

mechanism comprises a valuable tool in the day-to-day operations of people across the healthcare spectrum. In summary, 

it gives healthcare providers a more effective approach to administer care through better planning, to better manage 

fewer pointless consultations, and to better prepare for providing treatment and prescription recommendations, as all 

their data are stored in a one location - the HHRs. In particular, it facilitates well-informed decision-making through the 

continuous and substantive flow of the data described above. Healthcare professionals can have access to all the available 

knowledge that is related to each patient they are treating. Towards this direction, the mechanism contributes to the shift 

from acute-based to community-based care by providing improved access to patient-related information across 

disciplines. So, from preventive to follow-up, care delivery may be integrated across the continuum of services, and it 

can be coordinated across all sites. Finally, it contributes to the reduction of the financial pressure on healthcare systems 

driven by a more active and healthier population, since the emphasis on preventive care and managing chronic diseases 

can help to keep people healthy and out of the hospital, ultimately leading to cost savings. 

Among its indirect impacts, by effectively gathering data both from individuals' EHRs and PHRs, as well as personal 

IoMT devices, collective community knowledge could be extracted, playing a significant dual goal: (i) fusing, collecting, 

and performing analysis on information from multiple entities to gather valuable knowledge towards providing 

actionable insights at the point of care, and (ii) offering the way for targeted and efficient policy making at all levels. 

The impact of such solutions using community knowledge, which is collective, in the domain of healthcare is apparent, 

since, according to the research of Busse et al. [25], information sharing has changed their overall approach towards 

healthy life. Such a fact highlights the need for a holistic approach to exploit all the existing huge amounts of healthcare 

data for achieving better health management and patient outcomes, personalized medicine, the prevention of diseases, 

effective and targeted policy making, and health promotion in general. Especially the construction of effective and 

targeted policies making nowadays is more than obligatory and vital due various viruses’ outbreaks (e.g., COVID-19) 

[26, 27]. Building a model of healthcare that would meet all patients’ needs is one of the main challenges to be faced. 

To achieve this, the 7th World Health Assembly (WHA) declared the Universal Health Coverage (UHC) as a priority 

[28]. This is an initiative to provide equitable access to quality health services for all, at affordable costs by the year 

2030 as part of the Sustainable Development Goals (SDGs). Currently, the UHC initiative is led by the World Health 

Organization (WHO), in collaboration with the governments of different countries of the world. At present, only around 

one third of the world’s population is covered under basic health insurance schemes. Consequently, the importance of 

schemes and policies is vital since recognizing for example that the symptoms of COVID-19 may be mild, the 

development of pragmatic policies both for healthcare professionals and for patients who have respiratory illness should 

be considered [29]. 

It is worth mentioning that the overall environment of the mechanism has been designed and implemented in such a 

way that it allows several cases of extensibility. First, it allows for extensibility in terms of new datasets, since the 

functionalities of the Gateway, the Data Aggregation and the Data Conversion components enable new datasets to be 

directly ingested into the internal datastore by following the corresponding path, finally being represented in the 

mechanism as HHRs. Apart from this, the mechanism allows for extensibility in terms of new data sources, since the 

architecture introduces the Plug’n’play Sources component that allows for new (i.e., unknown) data sources to be 

identified, mapped to specific (i.e., known) data sources, and thus facilitates data acquisition from these sources. As soon 

as these new data sources are identified, the overall data ingestion flow can be followed as described in the 

abovementioned extensibility case. 

5- Conclusions 

The current manuscript has further described and examined a mechanism that provides a holistic environment, 

allowing the health ecosystem to collect and analyze actionable knowledge from healthcare data in a multi-modal way. 

The mechanism includes techniques for obtaining information from heterogeneous data sources, fusing it, and 

aggregating it into new data structures (i.e., HHRs). This set of information provides the groundwork and the support 

for the health ecosystem entities, opening opportunities for successfully achieving personalized medicine, disease 

prevention, and effectively leading to a reduction in readmission rates. The crux of the mechanism is the adaptation to 

unknown devices, which offers undeniable interoperability and assertions in the ecosystem. Having designed and 

quantitatively evaluated the mechanism through different use case scenarios, it was proven that the mechanism is a 

turnkey solution towards the successful collection and integration of wither streaming or batch data from heterogeneous 

data sources. We anticipate that the study findings from this work will help in the development of plans, frameworks, 

and tools for boosting the data management and interoperability capabilities of the healthcare ecosystem and improving 

patient care. 

The findings of this paper’s research can be expanded in a variety of ways for subsequent work [30]. We created and 

constructed a prototype for the mechanism’s proof-of-concept implementation. Different use case scenarios were used 

to evaluate the mechanism’s applicability in terms of gathering and processing data from heterogeneous data sources of 

the real-world, having a variety of data formatting, analytics requirements, knowledge to be provided in HHRs, focus 
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populations (such as those with chronic illnesses, youth, and children), and environments (e.g., living labs, care centres, 

public environments, social networks). However, in this manuscript, only a specific use case was examined, verifying 

the applicability of the mechanism that could be considered a potential limitation. Towards this direction, concerning 

the future research and further updates on the mechanism, it is among our plans to evaluate the mechanism with more 

use case scenarios in the field of healthcare, whereas improve its individual mechanisms. What is more, the future work 

of the mechanism includes the provision not only of a Bluetooth interface for the connection of the available IoMT 

devices but also a general Wireless Sensor Network (WSN) interface, to which all the devices will be able to be connected 

independently of their communication protocol. In addition, a main goal is to implement a security level above the 

existing Bluetooth interface [31] to ensure the authenticity of the collected names and MAC addresses of the connected 

devices, avoiding the possibility of deliberate falsification of those, which could lead to misleading decisions and 

erroneous functionality of the middleware. Furthermore, it is within our overall plans to disseminate the outcomes of the 

mechanism, to receive valuable feedback, and to adapt the implemented components to the current needs, considering a 

self-flexible and self-adjustable HHR model [32], which is the basis of the overall functionality of the mechanism. 
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