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Abstract 

In this study, we have established two-dimensional quantitative structure propriety relationships (2D-

QSPR) model, for a group of 78 molecules based on pyrazine, these molecules were subjected to a 

2D-QSPR analyze for their odors thresholds propriety using stepwise Multiple Linear Regression 

(MLR). The 35 parameters are calculated for the 78 studied compounds using the Gaussian 09W, 

ChemOffice and ChemSketch softwares. Quantum chemical calculations are used to calculate 

electronic and quantum chemical descriptors, using the density functional theory (B3LYP/6-31G (d) 

DFT) methods.  

The model was used to predict the odors thresholds propriety of the test and training set compounds, 

and the statistical results exhibited high internal and external consistency as demonstrated by the 

validation methods. 
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1- Introduction 

Pyrazine derivatives, a class of heterocyclic nitrogen-containing compounds, can be formed chemically or 

metabolically through different reaction processes [1, 2], and have been reported as important flavor ingredients and 

arouse great interest because of their high odor and flavor characteristics [3, 4]. 

The rapid development of computer science in relation to theoretical chemical studies makes it possible to obtain 

quickly and precisely the physico-chemical parameters (descriptors) of the molecules by calculation. These structural 

parameters introduce as variables used to construct models of the multidimensional quantitative structure activity / 

property relationship (QSAR / QSPR) can increase the interpretability and predict the activity / property of new organic 

compounds using statistical methods that relates these descriptors with a biological activity or a chemical property of 

molecules [5, 6]. The two-dimensional quantitative structure activity / property relationship (2D-QSAR / QSPR) is one 

of the most widely used calculation methods for predicting the activities and properties of existing or hypothetical 

molecules, and this is the goal of several studies [7-9]. 

Numerous studies on the structure-activity relationship of odor property of pyrazine derivatives suggest that 

variations in odor activities depend on the chemical structure of these molecules and more precisely on the type of 

substituent groups and the location of the substituents attached in the pyrazine ring. Mihara et al. showed that there is a 

good relationship between the odor thresholds of disubstituted pyrazines that have nut or brown notes [3, 10, 11]. Grosch 

et al. studied the odor thresholds of many alkylated pyrazine derivatives and found that the substituents at the 2, 3 and 5 

positions in the pyrazine ring should play an important role in causing odor property, and predict this property afterwards 

for other molecules [12-16]. So the aroma quality can be done with QSAR/QSPR studies by a good prediction accuracy, 

built-in descriptor selection and a method for assessing the importance of each descriptor to the model [17-19]. 
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In this work, we developed two-dimensional quantitative structure property relationships (2D-QSPR) for a series of 

78 pyrazine derivatives based odorant molecules, using 35 descriptors to construct a 2D-QSPR model. In addition, the 

statistical consistency of the developed model was evaluated on the basis of their correlation capability for the training 

set, as well as their predictive power for an external test set. Different sets of molecular descriptors were calculated to 

predict the studied property of the 78 pyrazine derivatives using multiple stepwise linear regression (MLR). We therefore 

propose quantitative models, and we try to interpret the property of the studied compounds from 2D-QSPR study [20,21]. 

2- Material and Methods 

2-1-Data Set 

In the present study, a series of 78 selected pyrazine derivatives with reported odors threshold values (t) were taken 

from literature [22, 23], these molecules were considered to build the 2D-QSPR model, 57 compounds are selected to 

propose the quantitative model (training set), and 21 compounds have served to test the performance of the proposed 

model (test set). The Table 1 shows the chemical structures of studied compounds, and the experimental odor thresholds 

propriety values (in terms of log(1/t)). 

Table 1. Chemical structures of pyrazine derivatives used in this study and their experimental odors thresholds propriety. 

 

N° R1 R2 R3 R4 Log(1/t) N° R1 R2 R3 R4 Log(1/t) 

1a H H H H 3.523 40 C5H11 SC2H5 H H 9.000 

2 CH3 H H H 4.523 41 C8H17 SC2H5 H H 8.699 

3 C2H5 H H H 5.398 42 C10H21 SC2H5 H H 6.921 

4 C3H7 H H H 6.523 43a H SC6H5 H H 6.398 

5a C4H9 H H H 6.398 44 CH3 SC6H5 H H 6.523 

6 C5H11 H H H 8.301 45 C3H7 SC6H5 H H 7.046 

7 C6H13 H H H 6.699 46 C5H11 SC6H5 H H 8.000 

8 C7H15 H H H 7.000 47 C8H17 SC6H5 H H 7.097 

9a C8H17 H H H 6.398 48 C10H21 SC6H5 H H 6.523 

10a C10H21 H H H 5.955 49 H OCH3 H H 6.398 

11a CH3 H H CH3 6.398 50a CH3 OCH3 H H 8.155 

12a CH3 H H OCH3 7.770 51 C2H5 OCH3 H H 8.000 

13 CH3 H H OC2H5 8.301 52 C3H7 OCH3 H H 9.921 

14a CH3 H H SCH3 7.699 53 C4H9 OCH3 H H 10.301 

15 CH3 H H COCH3 6.523 54 C5H11 OCH3 H H 10.699 

16 C2H5 H H CH3 7.398 55 C6H13 OCH3 H H 10.155 

17 CH3 H CH3 H 7.097 56 C7H15 OCH3 H H 10.585 

18 CH3 H OCH3 H 7.699 57 C8H17 OCH3 H H 10.222 

19 CH3 H OC2H5 H 7.921 58 C10H21 OCH3 H H 7.398 

20a CH3 H SCH3 H 7.222 59 (CH2)2CH(CH3)2 OCH3 H H 11.201 

21a CH3 H COCH3 H 6.398 60a (CH2)3CH= CH2 OCH3 H H 10.523 

22 C2H5 H CH3 H 7.796 61 CH(CH3)C2H5 OCH3 H H 10.398 

23 CH3 CH3 H H 6.097 62 CH2CH(CH3)C3H7 OCH3 H H 11.097 

24 C2H5 CH3 H H 6.301 63 CH2CH(CH3)2 OCH3 H H 10.347 

25 C3H7 CH3 H H 7.222 64 CH2CH(CH3)C2H5 OCH3 H H 10.921 

26 CH(CH3)2 CH3 H H 7.796 65 (CH2)3CH(CH3)2 OCH3 H H 11.222 

27 CH3 COCH3 H H 7.699 66a CH(CH3)2 OCH3 H H 10.620 

28 H SCH3 H H 6.699 67 (CH2)3CH=CHCH3  (E) OCH3 H H 9.886 

29a CH3 SCH3 H H 8.398 68 (CH2)3CH=CHCH3 (Z) OCH3 H H 9.301 

30 C2H5 SCH3 H H 7.398 69 H OC2H5 H H 7.097 

31a C3H7 SCH3 H H 9.000 70a CH3 OC2H5 H H 9.097 

32a C5H11 SCH3 H H 9.921 71 C2H5 OC2H5 H H 7.699 

33a C8H17 SCH3 H H 9.155 72a C5H11 OC2H5 H H 10.097 

34a C10H21 SCH3 H H 7.699 73a C8H17 OC2H5 H H 8.699 

35 CH(CH3)2 SCH3 H H 10.328 74 C10H21 OC2H5 H H 7.222 

36 H SC2H5 H H 6.046 75 H OC6H5 H H 7.523 

37 CH3 SC2H5 H H 7.155 76 CH3 OC6H5 H H 6.699 

38 C2H5 SC2H5 H H 7.222 77 C5H11 OC6H5 H H 7.301 

39 C4H9 SC2H5 H H 8.398 78 C10H21 OC6H5 H H 7.155 

t: Odor threshold; (a) Test set. 
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2-2- Computational Density Functional Theory Study (DFT) 

To correlate the study property of these molecules with the physicochemical parameters, DFT (density functional 

theory) was used in this study. The 3D structures of the molecules were generated using the Gauss View 5.0 software 

[24], and all calculations were performed using Gaussian 09W software [25]. Geometry optimization of the 78 molecules 

was carried out using the Becke’s three parameter hybrid method and the Lee-Yang-Parr B3LYP functional [26] 

employing 6–31G (d) basis set [27]. The geometry of all species under investigation was determined by optimizing all 

geometrical variables without any symmetry constraints [28]. The quantum chemistry parameters were extracted from 

the DFT results [29].  

2-3- Molecular Descriptors Generation 

Molecular descriptors were generated using Gaussian 09W, ACD/ChemSketch and ChemOffice programs [30, 31], 

to predict the correlation between these parameters and their odors thresholds property by developing a linear model 

(multiple linear regression (MLR)) [32]. 35 descriptors are selected to calculate different types of molecular properties 

that can govern this property, assuming that a change of the molecular structure leads modifying in the odors thresholds 

property of pyrazine derivatives (Table 2). 

Table 2. Descriptors selected and software packages used in the calculation of descriptors. 

Softwares Descriptors 

Gaussian 03 

Highest Occupied Molecular Orbital energy  𝐸𝐻𝑂𝑀𝑂(𝑒𝑉) ; Lowest Unoccupied Molecular Orbital 

Energy  𝐸𝐿𝑈𝑀𝑂(𝑒𝑉) ;Hardness η(eV)=((ELUMO-EHOMO))/2; Electronegativity χ(eV) =-(ELUMO+EHOMO)/2; 

Electrophilicity Index ω(eV) =χ2/2η; Total energy E(eV); Dipole moment μ(Debye); Energy gap between 𝐸𝐻𝑂𝑀𝑂 

and 𝐸𝐿𝑈𝑀𝑂values 𝐸𝐺𝑎𝑝(𝑒𝑉) 

ChemOffice 

Heat Of Formation H° (kJ mol-1); Gibbs Free Energy G (kJ mol-1); Ideal Gas Thermal Capacity IGTC (J mol-1 

K-1)); Melting Point T (Kelvin); Critical Temperature CT (Kelvin); Boiling Point TB (Kelvin); Critical Pressure 

CP (Bar); Henry's Law Constant KH; Total Valence Connectivity TVC; Partition Coefficient PC; Molecular 

Topological Index MTI; Number of Rotatable Bonds NRB; Shape Coefficient I; Sum Of Valence Degrees  SVD; 

Total Connectivity TC; Log P; Winner Index (W); Number of H-Bond Acceptors (NHA); Number of H-Bond 

Donors (NHD); Balaban Index (J); Polar Surface Area PSA (A°)2 

ChemSketch 
Percent ratios of Nitrogen, Hydrogen, oxygen and Carbon atoms (H%; O%; C%); Surface Tension γ (dyne/cm); 

Index of Refraction (n); Density (d) 

2-4- Statistical Analysis 

To construct the quantitative structure-property relationship model, the 35 calculated descriptors for the 78 studied 

compounds using the Gaussian 09W, ChemOffice and ChemSketch softwares were subjected to a stepwise multiple 

linear regression (MLR) available in the SPSS software [33].  

The stepwise MLR statistical technique is used to study the relationship between a dependent variable (property) and 

several independent variables (descriptors). The stepwise MLR was generated to predict odor thresholds propriety values 

Log(1/t).  The regression equation was validated by the correlation coefficient (r), the Mean Squared Error (MSE), the 

Fishers F-statistic (F), and the significance level (p-value) [24]. The p-value indicates that the regression relations are 

not a chance fit, but are a significant occurrence, it is determined from: p-value = Regression Mean Square/Residual 

Mean Square. 

The final step in this QSPR study is statistical validation to evaluate the significance of the model and thus its ability 

to predict the property of other molecules. In this article, the model has been validated internally by Cross-validation 

and y-randomization methods. 

In this work the Leave-One-Out is used, as Cross Validations method to validate the model internally, this procedure 

successively eliminates a compound of the training set containing 57 compounds. A QSPR model is built on a set of 

"56" compounds and the eliminated compound is predicted by the model. This procedure is repeated "57" times in order 

to predict the property of all compounds [35]. 

We also used a 100 y-randomization test for the stepwise MLR model. In this test, random QSPR models are 

generated by randomly mixing the dependent variable while keeping the independent variables as they are. New QSPR 

models expected to have significantly lower r2 and r2
CV values for multiple tests, confirming robust QSPR model [36]. 
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3- Results and Discussions 

3-1- Data Set for Analysis 

A QSPR study was constructed for a series of 78 pyrazine derivatives, to build a quantitative relationship between 

the molecular structure of the studied compounds and their odors thresholds propriety values Log(1/t). The values of the 

35 descriptors are shown in Table S1 and S2 (Supplementary material). 

3-2- Stepwise Multiple Linear Regression MLR 

In order to quantitatively evaluate the physicochemical effects of the substituent on the Log (1/t) of all the 78 studied 

compounds, we submitted the data matrix constituted from the 35 descriptors corresponding to the 57 molecules 

(training set), to a stepwise multiple linear regression (MLR). This procedure based on the forward-selection and 

backward elimination method (including the critical probability: p-value < 0.05 for all descriptors and for the model 

complete), was employed to determine the best equation.  

The Variance Inflation Factor (VIF) was defined as 1/(1-r2) [36], models with VIF greater than 5 were unstable and 

eliminated, models with VIF values between 1 and 4 can be accepted [36] (Table 3). 

Table 3. Multicollinearity statistics. 

  H° TC J 

Tolerance 0.721 0.898 0.530 0.681 

VIF 1.386 1.114 1.887 1.469 

The relationship obtained using this method corresponds to the linear combination of these descriptors (Table 3): 

Electronegativity (), Heat of Formation (H°), Total Connectivity (TC) and Balaban Index (J). The increase of all these 

descriptors decreases the property values (see the regression equation). 

The stepwise MLR regression equation is represented as following: 

𝑳𝒐𝒈(1/t) = 20.418 − 2.894 ×  − 7.628 × 10−3 × H° − 27.664 × TC − 7.012 × 10−6 × J 

N = 56; r = 0.826; r2= 0.682; MSE = 0.926; F = 27.884; P < 0.0001. 

In this equation, N is the number of compounds and r2 is the coefficient of determination. 

The model is reliable because the correlation coefficient r is high and the mean squared error value (MSE) is low. A 

value of P much smaller than 0.05 indicates that the regression equation is statistically significant [37]. 

The calculated Log(1/t) values by the regression equation are given in Table 4 in comparison to the experimental 

values. The correlation between the calculated and experimental Log(1/t) is shown in Fig. 2. 

  

Figure 1. Correlations of observed and predicted Log(1/t)  with MLR stepwise (training set in blue; test set in red). 

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

11.5

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

L
o
g

(1
/t

)

Pred(Log(1/t))



Emerging Science Journal | Vol. 3, No. 3 

Page | 183 

2D-QSPR correlates the property values with the physicochemical descriptors of data set. It has been used frequently 

to predict the properties of new molecules. So, the developed models can be used in the design of new pyrazine 

derivatives with the desired properties values (high or low values of Log(1/t)).  

In this way, we can designed news compounds by adding suitable substituents and calculated their property using 

the stepwise MLR regression equation. The stepwise MLR equation indicated the negative correlation of the 

Electronegativity (), Heat of Formation (H°), Total Connectivity (TC) and Balaban Index (J). 

The obtained results show that, to increase propriety of pyrazine derivatives, we will decrease descriptor values (, 

H°, TC and J) of these molecules. Moreover, to decrease property, we will increase the descriptor values, by adding 

suitable substituents and calculated their property using the regression equation. 

3-3- Internal Validation 

a. Cross-Validation 

The QSPR model constructed by the regression equation of the stepwise MLR method, is validated by its value of 

the cross-validation coefficient r2
CV determinated using the Leave-One-Out (LOO) procedure. Model with r2

CV greater 

than 0.5 can be accepted to validate a QSPR model. 

For this study, the performance of the constructed model was good and was characterized by r2
CV value of 0.606 with 

the descriptors proposed by the stepwise MLR (, TC, H° and J). 

b. y-Randomization Test 

To verify that the developed QSPR model is robust and not randomly derived, the y-randomization test was 

performed on the data of the training set [38]. We used 100-y-randomization tests and observed that the values of r2 and 

r2
CV were <0.5 for all the models (Fig. 3). This test confirms that the MLR model is robust and is not derived simply by 

chance [39]. 

 

Figure 2. y-Randomization plot of stepwise MLR model. 

3. 4. External Validation 

To validate the predictive power of the stepwise MLR model, we need to use a set of molecules that have not been 

used in the training set to build the QSPR model. The model established in the calculation procedure using the pyrazine 

derivatives is used to predict the odor thresholds propriety values (Log(1/t)) of the test set.  

The results obtained by the stepwise MLR model, are very sufficient to conclude the performance of the model; it is 

confirmed by the test carried out with the 21 compounds (rtest=0.820; r2
test=0.672). 

4- Conclusion  

In this study, 2D-QSPR analyze was used to predict the odors thresholds propriety of a set of pyrazine derivatives. 

The 2D-QSPR model gave good statistical results in terms of rCV and r values.  The stepwise MLR model exhibited high 
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internal and external consistency as demonstrated by the several validation methods (internal and external validations). 

Moreover, the MLR model provided a detailed description of the molecular aspects underlying the odors thresholds 

propriety of the studied compounds. The stepwise MLR equation was able to identify physicochemical properties 

strongly correlated with the odors thresholds propriety of this series. So, these results can be explored in the design of 

new compounds with the desired odors thresholds propriety. 
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