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Abstract 

Melting phenomena occurs in various industrial applications, such as metal castings of turbine blades, 

environmental engineering, PCM-based thermal storage devices, etc. During the design of these 

devices, they are designed for efficient heat transfer rate. To improve the heat transfer rate, 

understanding of the important flow processes during the melting (and solidification) is necessary. 

An objective of the present work is to study the effect of natural convection and magnetic field on 

interface morphology and thereby on melting rate. In this work, therefore, an effect of uniform 

transverse magnetic field on the melting inside a cavity, filled initially with solid gallium, at various 

Rayleigh numbers (Ra=3×105, 6×105, and 9×105) is presented. A 2D unsteady numerical simulation, 

with the enthalpy-porosity formulation, is performed using ANSYS-Fluent. The magnetic field is 

characterized by the Hartmann number (Ha) and the results are shown for the Ha = 0, 30 and 50. The 

horizontal walls of the cavity are considered insulated and vertical walls are respectively considered 

hot and cold. It is observed that the role of natural convection during the melting is significant on the 

temperature distribution and solid-liquid interface. The increased magnetic field (Ha = 30 and 50) 

found to have a suppressing effect on the dominance of natural convection at all Rayleigh numbers 

(Ra=3×105, 6×105, and 9×105). 
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1- Introduction 

Melting occurs in metal castings of turbine blades, environmental engineering, PCM-based thermal storage devices, 

nuclear reactor systems, materials processing, solar energy systems, etc. [1]. To improve the melting rate and heat 

transfer efficiency, understanding of the important flow processes is necessary. The natural convection, for example, can 

affect the liquid-solid interface morphology. If the liquid is electrically conducting then the interface morphology also 

depend on the interaction of the buoyancy force and Lorentz force. Thus, the imposed magnetic field can control the 

melting rate in the electrically conducting fluid. Hence, there is considerable interest in studying the physics that affect 

the rate of melting (or solidification) preferably inside a rectangular enclosure.  

The effect of natural convection on the solid-interface morphology during the melting of gallium has been 

experimentally studied by Gau and Viskanta (1986) and Dadzis et al. (2016) [2, 3]. They considered a classical 

differentially heated rectangular cavity and observed a strong effect of natural convection on the interface and the heat 

transfer rate. Numerical work has been conducted, for instance, by Dadzis et al. (2016), Brent et al. (1988), Bertrand et 

al. (1999) and Farsani et al. (2017) [3-6]. Also confirmed a strong effect of natural convection on the interface and the 

heat transfer rate. Various geometry configurations and various boundaries and initial conditions have been studied, for 

instance, by Rady and Mohanty (1996), Bucchignani (2009), Joulin et al. (2009) and Ben-David et al. (2016) [7-10], to 

study the effect of natural convection.  
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The effect of magnetic field on the solid-interface morphology during the melting of gallium inside a rectangular 

enclosure is studied, for instance, by Farsani et al. (2017), Kang et al. (2013), Bondareva et al. (2016), Juel et al. (1999), 

Xu et al. (2006), Sathiyamoorthy and Chamkha (2012), Ghalambaz et al. (2017), Avnaim et al. (2018) and Avnaim et 

al. (2018) [6, 11-18]. The study of convection has not been limited to the external static magnetic field only, but also 

electric and electromagnetic field [19] and traveling magnetic field [3, 10, 17, 18, 20] have been studied. From the above 

literature, it is interesting to note that the effect of a longitudinal or transverse magnetic field substantially affect the heat 

and fluid-flow structures. 

In the modeling of magneto-hydrodynamic flows, it is important to consider the effect of three-dimensionality and in 

the homogeneity of the strong magnetic field. Despite the limitation offered in the physical significance, two-dimensional 

modeling of the flows is often considered as it offers simplification and possibility of analyses over a wide range of non-

dimensional parameters in lesser time. In this work, a 2D unsteady numerical simulation, using ANSYS-Fluent with the 

enthalpy-porosity formulation, are performed to study an effect of a uniform horizontal magnetic field on melting inside 

a cavity filled initially with solid gallium at various Rayleigh numbers (Ra=3×105, 6×105, and 9×105). By varying the 

Rayleigh numbers, the buoyancy force is varied. The horizontal walls of the cavity are considered insulated and vertical 

walls are, respectively, considered hot and cold. The magnetic field and the resulting Lorentz force are characterized by 

the Hartmann number (Ha) and the results are shown for the Ha = 0, 30 and 50.  

2- Numerical Methodology 

Figure 1 shows the classical rectangular cavity geometry with boundary conditions. The left and right walls are 

maintained at a uniform isothermal temperature of Th =311.15K and Tc =301.15K, respectively. A horizontal uniform 

magnetic field, as shown in the figure, is imposed in the horizontal direction, i.e. perpendicular to hot and cold walls. 

The aspect ratio of the cavity is 1.0 and the cavity is filled with the pure solid gallium. The initial temperature of the 

cavity is 302.85 K i.e. less than the melting point of gallium. The flow properties, except density, are assumed to be 

constants, as the maximum temperature difference (i.e., 10) is very small. To perform 2-D unsteady, laminar flow 

numerical simulations, following governing equations with enthalpy-porosity formulation are solved. The governing 

equations are: 

 

Figure 1. Problem geometry with boundary conditions. 

1. Continuity equation: 
∂Vx
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+
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Where  I(T) = Kmush (1 − γ)2 (γ3+∈)⁄ ,  Kmush = 105, ∈ is a small number (0.001), ρ = ρ
ref

[1 − β(T − Tref)], liquid 

fractionγ = 0, if  T < Tsolidus,γ = 1, if T > Tliquidus and γ = (T − Tsolidus) (Tliquidus − Tsolidus)⁄ . 



Emerging Science Journal | Vol. 3, No. 4 

Page | 265 

3. Energy equations: 
∂H

∂t
+ Vx

∂H

∂x
+ Vy

∂H

∂y
=

k

ρCp
(

∂2H

∂x2 +
∂2H

∂y2 )                                 (4) 

Where  H = h + ∆H, and h = href + ∫ CPT
T

Tref
. 

Table 1. Thermo-physical properties of pure gallium [2, 16]. 

Property Value Property Value 

Prandtl number (Pr) 0.0216 Fluid dynamic viscosity (μ) 0.00181 kg  ms⁄  

Stefan number (Ste) 0.039 Fluid kinematic viscosity (ν) 11.375×10−7 m2 s⁄  

Rayleigh number (Ra) 3×105, 6×105, and 9×105 Thermal diffusivity (α) 1.375× 10−5 m2 s⁄  

Density (ρ) 6322–0.678T  kg m3⁄  Electrical conductivity (σ) 7.1× 106 S m⁄  

Thermal conductivity (k) 32 W  mK⁄  Magnetic permeability of free space (μ0) 1.257× 10−6 

Latent heat of fusion (hf) 80160  J kg ⁄  Solidus temperature 302.85 K 

Specific heat (Cp) 381.5 J kg K⁄  Liquidus temperature 302.85K 

Thermal expansion coefficient (β) 1.2× 10−4 (1/K) Acceleration due to gravity (g) 9.81 m s2⁄  

 

 

Figure 2. Flow-chart showing solution methodology. 

In the current problem gravity force along with Lorentz force (due to the external magnetic field) is considered. 

Uniform magnetic field with varying strength (as characterized by the Hartmann number) has been applied normal to 

the right wall as shown in the figure. The electrically conducting gallium interacts with an external horizontal uniform 

magnetic field of constant magnitude, B0. The magnetic field produced by the movement of liquid gallium has been 

assumed to be negligible as compared to externally applied magnetic field (low magnetic Reynolds number 

approximation) and cavity walls are electrically insulating. With this approximation, electromagnetic force reduces to 

(σB0
2)Vy only, as shown in Eq. (3). The dimensionless parameters considered to characterize flow-problem are: the 

Rayleigh number, Ra = (ρ2Cp gβ(Th − Tc)Ly
3 ) (μk)⁄ ; the Stefan number, Ste = (Cp(Th − Tc)) (hf)⁄ ; the Prandtl 

number, Pr = (μCp) (k)⁄ ; the Hartmann number: Ha = B0Ly√σ ρνν⁄ , the Fourier number, Fo = αt Ly
2⁄  where t is time,  

a dimensionless time, τ = Ste × Fo, the averaged Nusselt number, (Nu)avg = (q′ ∙ ∆Y) (∆T ∙ k)⁄  where q′ is the heat 

flux, ∆Y  is the change in length at the point of estimation and ∆T  is the temperature change with the reference 

temperature and k is the thermal conductivity of fluid. In the non-dimensional parameters,  g is the acceleration due to 
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gravity, Cp is the specific heat, β is the coefficient of thermal expansion, Ly is the length of the side of the square cavity, 

ν is the kinematic viscosity, α is the thermal diffusivity, σ is the electrical conductivity, and ρ is the density. 

To solve the governing equations, the SIMPLE method and the second-order accurate scheme in discretizing the 

momentum and energy conservation equations is used. The pressure is solved using PRESTO!. The stopping criterion 

for the solution of energy, momentum and continuity, is 10−6, 10−4 and 10−4, respectively. Simulations are performed 

on Rayleigh numbers (Ra=3×105, 6×105, and 9×105). At fixed Ra, the Hartmann number (Ha) is varied from 0, 30 and 

50. The thermo-physical properties of pure gallium considered in the present simulation are mentioned in Table 1. The 

above discussed methodology is shown in the form of the flowchart in Figure 2. 

3- Results and Discussions 

To perform the numerical simulation, it is important to perform grid-size independence, time-step size independence 

and validation and verification of the model. Therefore, grid-size independence, time-step size independence and 

validation and verification are shown first with results at Rayleigh numbers (Ra=3×105, 6×105, and 9×105) and the 

Hartmann number (Ha = 0, 30 and 50) next, followed by the average Nusselt number on the hot wall. 

3-1- Grid-size Independence, Time-step Independence and Validation 

Figure 3 shows the time-step independence at dt=1.0, 0.1, 0.01 and grid-size independence at mesh-1 (75×75 cells), 

mesh-2 (100×100 cells), mesh-3 (125×125 cells) for the interface and average Nusselt number at Ra = 9×105 and Ha 

=50. It is observed from the figure that the time-step = 0.1 and mesh-2 (100×100) found optimum for further calculations. 

 
 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.1 0.1 0.2 0.2 0.2

Y

X

dt=1

dt=0.1

dt=0.01

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

0 0.2 0.4 0.6 0.8 1 1.2

(N
u

)a
v

g
.

Time step, s

(a) 

(b) 



Emerging Science Journal | Vol. 3, No. 4 

Page | 267 

 
 

 

Figure 3. Time-step (dt) independence: (a) Interface; (b) Average Nusselt number; Grid-size independence: (c) Interface; 

(d) Average Nusselt number. 

Figure 4 shows the comparison of the present calculations with the numerical data of [21] at Ha=0 and various τ’s 

and Ha=0, 30, 50 and fixed τ. The Figure shows a reasonable qualitative match with the numerical data with a difference 

of less than 10%.  
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Figure 4. Validation with the data of [21]: (a) Ha =0 and various 𝛕’s (N indicates numerical data and P indicates present 
data); (b) Ha=0, 30, 50 at 𝛕=0.15 (Exp. indicates experimental data and Num. indicates numerical data). 

3-2- Effect of the Rayleigh Number and the Hartmann Number 

To understand the interactions between natural convection and conduction heat transfer in the melt region, under the 

influence of imposed uniform magnetic field, the effect of Ra and Ha in terms of solid-liquid interface, contours of 

streamlines, temperature and velocity magnitude and average Nusselt number on the hot wall is studied. The results are 

presented in this and next section.  
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Figure 5. Solid-liquid interface at the various Rayleigh and Hartmann number at dimensionless time, 𝝉 = 0.08 and 0.15. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Y

X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Y

X

Ra=300000

Ra=600000

Ra=900000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Y

X

(b) 



Emerging Science Journal | Vol. 3, No. 4 

Page | 269 

 𝛕 = 0.08 𝛕  = 0.15 
 

H
a

 
=

 
0

 

 
 

H
a

 
=

 
5

0
 

  

Figure 6. Solid-liquid interface at the various Rayleigh and Hartmann number at dimensionless time, 𝝉 = 0.08 and 0.15. 

Figures 5 and 6 show the solid-liquid interface at the Rayleigh numbers (Ra = 3×105, 6×105 and 9×105) and the 

Hartmann numbers (Ha = 0, 30 and 50) at dimensionless time, 𝜏 = 0.08 and 0.15. It should be noted that the steady state 

is reached after 𝜏 = 0.15. The large Rayleigh number indicates the strength of buoyancy and the higher values of the 

Hartmann number indicate the strength of the applied electromagnetic force. As can be seen from the figures that the 

interface progress ahead at higher Ra as compared to that of lower Ra at Ha = 0 and 30. On the other hand, the interface 

lags behind at higher Ha as compared to that of higher Ha at all Ra. This indicates that the effect of natural convection 

increases at higher Ra and suppresses at higher Ha.  
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Figure 7. Contours of stream function (m2/s) at steady-state for various Ra and Ha. 
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Figure 8. Contours of temperature (K) at steady-state for various Ra and Ha. 

Figure 7 shows the streamline contours at steady-state (i.e., τ = 0.15) for Ra = 3×105, 6×105, and 9×105 and Ha = 0, 

30 and 50. In the liquid region clockwise rotating vortices are observed as a result of the natural convection that occurred 

due to the temperature difference between the hot wall and the cooler solid boundary. The liquid near the hot wall rise 

up and descend near the top insulated wall and the interface and affect the morphology of the interface. Since the top 

region of the interface always is in contact with the heated molten liquid, as compared to the lower region, the 

morphology of the interface turns into a convex shape. From Figure 7, it can be observed that the streamlines are much 

denser at higher Rayleigh numbers. This shows the increase in the strength of the circulation due to natural convection. 

However, at higher Ha, the denseness of the streamlines decreases and indicates the suppression of natural convection. 

Figure 8 shows the temperature contours at steady-state (i.e., 𝜏 = 0.15) for Ra=3×105, 6×105, and 9×105 and Ha = 0, 

30 and 50. From Figure 8, it can be observed that the isotherms are curvy at higher Rayleigh numbers. This shows the 

increase in natural convection. However, at higher Ha, the isotherms are less curvy indicating a departure from heat 

convection. 

Contours of velocity magnitude at Ra= 6x105 and Ha=0, 30, 50 at τ= 0.08, and 0.15 are shown in Figure 9. At fixed 

Ra, the velocity magnitudes reduce at the steady-state with the increase in Ha.  This indicates that increase in the 

magnetic field suppresses the strength of the circulation and therefore the natural convection.  
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Figure 9. Contours of velocity magnitude (m/s) at Ra= 6x105 and Ha=0, 30, 50 at 𝛕= 0.08, and 0.15. 

3-3- Averaged Nusselt Number versus Dimensionless Time  

The heat transfer rate at the hot wall is calculated by using the dimensionless averaged Nusselt number ((Nu)avg =
(q′ ∙ ∆Y) (∆T ∙ k)⁄ ). Figure 10 shows the average Nusselt number on the hot wall as a function of non-dimensional time, 

𝜏 for various values of Ra and Ha. During the initial dimensionless time, the Nusselt number is higher at all Ra. The 

higher values are due to very thin layer of the melt and sharp temperature gradients near the hot wall. As the melt layer 

increases, the Nusselt number decreases at the later time due to increase in the thermal resistance.  From the figure, it 

can be noticed that the Nusselt number increases with the increase in Ra due to increase in the local velocities and heat 

transfer rate. On the other hand, the Nusselt number decreases with the increase in Ha due to suppress in the local 

velocities and the heat transfer rate. 

4- Conclusion 

Two-dimensional unsteady numerical simulations are performed to study an effect of a uniform horizontal magnetic 

field on melting inside a cavity filled initially with a solid gallium at various Rayleigh numbers (Ra=3×105, 6×105, and 

9×105) the Hartmann number (Ha = 0, 30 and 50) using ANSYS-Fluent with the enthalpy-porosity formulation. A cavity 

of aspect ratio one is used in the simulation. The horizontal walls of the cavity are considered insulated. The vertical 

walls are subjected to differential heating. The simulation results are produced in terms of solid-liquid interface, contours 

of streamlines, temperature and velocity magnitude and average Nusselt number on the hot wall. It is observed that the 

natural convection increases with the increase in the strength of buoyancy. On the other hand, the natural convection 

activity decreases with the increase in the strength of the magnetic field. The Average Nusselt number on the hot wall 

increases with the increase in Ra and decreases with an increase in Ha. In conclusion the melting rate increases with Ra 

and decreases with Ha. 
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Figure 10. Average Nusselt number versus 𝛕 at various Hartmann numbers and Rayleigh numbers. 
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