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Abstract 

The objective of this article is to provide a comparative analysis of two novel genetic programming 

(GP) techniques, differentiable Cartesian genetic programming for artificial neural networks 
(DCGPANN) and geometric semantic genetic programming (GSGP), with state-of-the-art 

automated machine learning (AutoML) tools, namely Auto-Keras, Auto-PyTorch and Auto-Sklearn. 

While all these techniques are compared to several baseline algorithms upon their introduction, 
research still lacks direct comparisons between them, especially of the GP approaches with state-of-

the-art AutoML. This study intends to fill this gap in order to analyze the true potential of GP for 

AutoML. The performances of the different tools are assessed by applying them to 20 benchmark 
datasets of the imbalanced binary classification field, thus an area that is a frequent and challenging 

problem. The tools are compared across the four categories average performance, maximum 

performance, standard deviation within performance, and generalization ability, whereby the metrics 
F1-score, G-mean, and AUC are used for evaluation. The analysis finds that the GP techniques, 

while unable to completely outperform state-of-the-art AutoML, are indeed already a very 

competitive alternative. Therefore, these advanced GP tools prove that they are able to provide a 
new and promising approach for practitioners developing machine learning (ML) models. 
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1- Introduction 

A hot topic within machine learning (ML) that has recently been spreading rapidly in both the research as well as 

industry domains is automated machine learning (AutoML). The partially or fully automated application of ML not only 

supports the work of domain experts but, by allowing the automation of entire pipelines, also addresses the problem of 

the lack of such experts, as it makes ML accessible to non-experts as well [1]. The range of tasks to which AutoML can 

be applied is very broad, ranging from processing simple baseline ML models up to complex artificial neural networks 

(ANNs) in deep learning (DL), with the number of upcoming AutoML methods and concepts continuing to rise [2]. 

Among the latest trends to be observed is the application of genetic programming (GP) as an optimization method in 

AutoML [3, 4]. 

Two novel advanced techniques from the field of genetic programming (GP) are differentiable Cartesian genetic 

programming of artificial neural networks, abbreviated as DCGPANN [5], and geometric semantic genetic 

programming, abbreviated as GSGP [6], which have both already been shown to be able to achieve promising results, 

for example when compared to a variety of traditional ML algorithms [7]. However, research lacks evaluations of these 

emerging GP approaches alongside state-of-the-art AutoML tools. While a rising number of studies have compared 

various AutoML tools with each other [2, 8, 9], there is a gap when it comes to direct comparisons of these with GP. 

Therefore, this paper intends to fill this gap by comparing the two aforementioned advanced GP techniques with three 

                                                           
* CONTACT: m20200618@novaims.unl.pt 

DOI: http://dx.doi.org/10.28991/ESJ-2023-07-04-021 

© 2023 by the authors. Licensee ESJ, Italy. This is an open access article under the terms and conditions of the Creative 
Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/). 

http://www.ijournalse.org/
http://dx.doi.org/10.28991/ESJ-2023-07-04-021
http://dx.doi.org/10.28991/ESJ-2023-07-04-021
https://orcid.org/0000-0002-0834-0275


Emerging Science Journal | Vol. 7, No. 4 

Page | 1350 

of the most popular state-of-the-art AutoML tools, Auto-Keras [10], Auto-PyTorch [11], or Auto-Sklearn [12], by 

applying them to 20 benchmark datasets and thereby investigating their respective capabilities. 

The subfield of supervised learning on which this work focuses is imbalanced binary classification, i.e., learning from 

a dataset with two classes where the number of instances of one class is considerably higher than the number of instances 

of the other. This aspect tends to be a frequent and challenging problem when applying ML; thus, GP and AutoML 

approaches should be capable of overcoming it properly. Conventional ML approaches, in which no action is taken 

regarding the imbalance of the data, typically return a biased model when dealing with an imbalanced binary 

classification problem since the model is trained using far more instances of the majority class, which results in it 

favoring that class in predictions [13]. Therefore, the research community is continuously striving to discover and 

develop improved solutions to this problem [13–15]. 

Consequently, the central research question of this research paper is whether the two novel GP techniques, 

DCGPANN and GSGP, are able to compete with the three state-of-the-art AutoML tools, Auto-Keras, Auto-PyTorch, 

and Auto-Sklearn, when applied to imbalanced binary classification, and which of the five methods achieves the best 

overall performance on this task. To answer this question, we primarily evaluate the average as well as the maximum 

achieved scores in terms of three common metrics for imbalanced binary classification, F1-score, the geometric mean 

(G-mean), as well as the area under the receiver operating characteristics (ROC) curve (AUC), of the methods across 20 

benchmark datasets. In addition, the individual techniques are investigated regarding the consistency of their 

performance as well as their generalization ability. Since the core mission of AutoML is to facilitate the use of ML [16], 

the tests are performed under simple setups without requiring additional knowledge of specific topics, such as 

hyperparameter optimization or sampling of imbalanced data, so that the results depend mainly on the capabilities of the 

five techniques themselves rather than on external factors. 

The remainder of this paper is structured as follows: Section 2 refers to existing literature on the topic and provides 

the theoretical foundations. Subsequently, the research methodology in Section 3 outlines the study design and presents 

the benchmark datasets, evaluation metrics, and tool setups. Section 4 analyzes the results, followed by a debate of all 

findings and their meanings in the discussion. Finally, the article is wrapped up by the conclusion provided in Section 5. 

2- Related Literature and Concepts 

2-1- Automated Machine Learning 

The term AutoML stands for the automated application of ML. AutoML has recently gained much popularity [17–

19] because it allows the automation of certain parts of ML, thus eliminating the need for a human expert for those 

specific operations. However, human involvement is still required to a certain extent in order to successfully solve real-

world tasks using AutoML [16]. As a result, AutoML can be considered a useful tool for data scientists rather than some 

sort of competitor, while it can also provide access to ML for non-experts. 

The various AutoML tools can often be distinguished by two main characteristics: the search space used by a 

particular tool, for example, for finding a model and its corresponding best-performing hyperparameters, and the 

optimization method used to navigate through this search space [2]. The search space is closely related to the task of a 

specific tool; e.g., the search space of an AutoML tool designed for the optimization of ANNs typically consists of all 

possible architectures of eventual ANNs, usually within certain defined boundaries [10]. Therefore, there are huge 

differences in the respective search spaces, depending on the specific purpose of a particular tool. Likewise, there are 

various different optimization methods used by existing AutoML tools. Essentially any type of optimization can be 

employed, with some of the most common being grid and random search, gradient descent, reinforcement learning, 

surrogate model-based optimization, or evolutionary algorithms such as genetic algorithms (GAs) or GP [1]. The 

application areas of AutoML tools in ML are very diverse, with, among others, especially the usage of AutoML in DL 

having recently seen a rapid increase in interest [11]. 

Three of the most popular AutoML tools for regression as well as classification tasks are Auto-Keras [10], Auto-

PyTorch [11], and Auto-Sklearn [12, 20]. Auto-Keras is able to automatically create and optimize ANNs using a 

Bayesian optimization approach [10]. Auto-PyTorch and Auto-Sklearn, on the other hand, draw from a pool of baseline 

ML models and exploit the benefits of meta-learning, Bayesian optimization, and ensemble construction in order to find 

the best possible final model [11, 12, 20]. However, the latest versions of Auto-PyTorch can also be used for ANN 

optimization, but for this work, the version that uses baseline models is chosen. 

2-2- Genetic Programming 

2-2-1- Standard Genetic Programming 

Genetic Programming was first introduced by Koza [21]. He describes GP as “a way to find a computer program of 

unspecified size and shape to solve, or approximately solve, a problem” [21]. Similar to GAs, GP is an evolutionary 

method, and its basic idea is to evolve a set of solutions based on Darwin’s theory of evolution [22]. However, one of 
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the most important differences between GP and GAs is the representation of the solutions. While with the application of 

GAs, usually strings with a fixed length are evolved, in GP, these solutions are dynamic computer programs, typically 

represented as LISP-like trees [23]. To enable the GP algorithm to develop these solutions, a set of functions and a set 

of terminals have to be defined in advance, on the basis of which the individual solution trees can be expressed [21]. The 

set of functions can, for example, include, among others, mathematical functions, arithmetic operations, or conditional 

logical operations, while examples for the terminal symbols would be a variety of numerical constants [21, 23]. However, 

both the predefined set of functions as well as the set of terminals are highly dependent on the underlying problem. The 

solution space in GP consists of every possible composition of the possible functions and terminals [21]. 

Traditional GP has certain limitations. According to Vanneschi et al. [23], two of the main issues that come with GP 

are its heavy time consumption and the processes of mutation and crossover. The first problem of time consumption 

arises because each solution within the population must be evaluated, which depending on the problem at hand, often 

requires a highly extensive computation procedure. In this context, time consumption often correlates with certain 

parameters, such as tree size in particular, whereby an increasing value does not often lead to the corresponding desired 

better fitness [23]. The second problem addresses the fact that by applying the standard genetic operators for GP, only 

virtually blind syntax transformations occur in the respective solutions. This means that no knowledge about the resulting 

behavior of a solution after a transformation is taken into account [23, 24]. Thus, Traditional GP entirely ignores the 

meanings of the computer programs being evolved, the so-called semantics [24]. 

2-2-2- Geometric Semantic Genetic Programming 

Addressing the aforementioned issue of the ignorance of semantics in traditional GP, Moraglio et al. [24] introduced 

an advanced version of GP called geometric semantic genetic programming (GSGP). They refer to the fact that the 

success of a computer program, and thus of a solution in the population of a GP algorithm, is dependent on the semantics 

of the solution, which is why these semantics should not be disregarded. There are numerous ways to formally define 

the semantics of a solution. They can be defined as simply the fitness of the solution, the canonical representation, the 

mathematical function of the program, or as a logical formalism describing the program’s behavior [24]. Moreover, 

semantics in GSGP can, in this context, be defined as the vector of the output values of a possible solution within the 

population computed during the training phase [25]. According to this particular definition, a specific solution within 

the solution space associated with a GP algorithm is “a point in a multidimensional space called semantic space, where 

the dimensionality is equal to the number of observations in the training set” [26]. In accordance with this, Figure 1 

shows an example of a representation of solutions on the left side in the genotypic space and the right side with the 

corresponding points in a simple exemplary two-dimensional semantic space. 

                                           Genotypic Space                                                 Semantic Space 

 

Figure 1. Representation of solutions in the genotypic as well as the semantic space 

The introduction of the semantic space enables the global optimum to be approached in a stepwise manner during the 

execution of a GP algorithm while, contrary to traditional GP, taking the meaning of the individual solutions into account 

[24, 27]. For this purpose, however, new methods for crossover and mutation are necessary, the so-called geometric 

semantic operators, geometric semantic crossover, and geometric semantic mutation [24]. 

The aim of the introduction of the geometric semantic crossover is to perform a crossover of the genotypes of two 

solutions in such a way that it is possible to know the effect of the crossover on the offspring in the semantic space, and 

thus, on the phenotype, in order to approach the global optimum [24, 28]. More precisely, the introduced geometric 

semantic crossover is performed in a way that any possible resulting offspring must be located between its parents in the 

semantic space; thus, the semantics of the offspring are a linear combination of the semantic vectors of its parents [24, 

27]. The consequence of this is that the fitness of the offspring must be at least as good as the worst fitness of its parents, 

?
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which means that there is no possibility for the crossover to produce worse solutions in terms of fitness, which in turn 

implies that the movement in the semantic space can never be away from the global optimum [24]. A formal definition 

of geometric semantic crossover is given by Moraglio et al. [24], who prove that a crossover based on the given definition 

always returns an offspring as a linear combination of its parents in the semantic space. In the actual process of creating 

the new offspring, the effect of the described crossover operator on a particular entry of the semantic vector will first be 

observed and then used to describe the associated genotypic change required to produce that particular semantic 

modification. This description will then be used as guidance for the production of the offspring, whereby it must be 

noted that this means that the syntax of the offspring must also contain both of its parents, which means that the size of 

the solutions in this form of GSGP increases exponentially with each generation [24]. 

In addition to geometric semantic crossover, a geometric semantic mutation method is also necessary for GSGP. Also, 

in this respect, the effect of the genetic operator in the semantic space is of essential importance. In this context, the aim 

of geometric semantic mutation is to create a unimodal fitness landscape [24, 27]. This is achieved by means of a box 

mutation, whereby the solution emerging after the mutation is only able to range within certain boundaries around the 

initial solution in the semantic space [27]. A formal explanation of geometric semantic mutation is given by Moraglio et 

al. [24], who prove that a mutation method based on their definition results in the desired box mutation within the 

semantic space. Vanneschi et al. [27] state that every element of the resulting semantic vector in this form of mutation 

represents a rather weak perturbation of the associated element of the semantic vector of the parent. While the magnitude 

of the mutation’s effect can be changed by modifying the mutation step, the perturbation can be described as weak as 

the random expression it results from is centered around zero [27]. 

The initial design of GSGP could only be applied to regression tasks. Therefore, Bakurov et al. [6] have recently 

developed it further so that it can also be used for classification problems. The general concept is essentially the same, 

with the key modification being fairly straightforward: the classification task is treated as a regression problem, with the 

only possible target values being 0 and 1, which represent the two classes of the underlying problem [6]. To accomplish 

this, a logistic activation function is used to transform the actual output of the GSGP solution into one of the two binary 

numbers and the root mean square error is utilized as the fitness function in this case [6, 7]. 

2-2-3- Cartesian Genetic Programming 

In GSGP, computer programs are evolved as tree-like structures, while Cartesian genetic programming (CGP) 

programs are encoded as graph-based structures [29]. Here, the name Cartesian GP comes from the fact that these 

structures are indexed typically by their respective Cartesian coordinates [30]. In this context, a chromosome in CGP is 

represented as an “encoding of a graph as a string of integers that represent the functions and connections between graph 

nodes and program inputs and outputs” [31]. Turner & Miller [29] thereby distinguish between three different types of 

chromosome genes: First, there are function genes, which define the functionality of a particular node within the graph. 

Then, there are genes that specify where the input for a particular node originates from, the so-called connection genes. 

Finally, the output genes indicate what is used as program output, which can be internal nodes as well as any input. The 

formal definition of the chromosome composed of these different types of genes is given by Turner & Miller [29] as 

follows: “A generic (one row) CGP chromosome is… [defined as] F0 C0,0 . . . C0,α F1 C1,0 . . . C1,α . . . Fn Cn,0 . . . Cn,α O0 . 

. . Om …where α is the arity of each node, n is the number of nodes and m is the number of program outputs”, and F, C, 

and O stand for function, connection, and output genes respectively [29]. For illustration, Figure 2 provides an example 

of a single CGP program as both the graph and the corresponding numerical chromosome. It can be obtained that all 

three nodes of the CGP individual are connected to either inputs or previous nodes, or both. Furthermore, it can be seen 

that one input is not used at all while another one is used multiple times, which can be the case in this form of GP. 

Additionally, in this example, only two of the three nodes are actually contributing to the output, which is also possible 

to occur in CGP. 

 

Figure 2. Example of a CGP program represented as a graph as well as a chromosome (adapted from [29]) 

Input

Input

Input

F1 F2 F0 Output

0

1

2

3 4 5

corresponding chromosome: 101 233 004 4
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Märtens & Izzo [5] proposed the concept of encoding and training ANNs using a differentiable form of CGP, which 

they refer to as DCGPANN. The term differentiable here implies that the information about the derivatives of the 

program output with regard to the respective input as well as the weights is used for learning weights and biases while 

training the network. This is equivalent to the backpropagation procedure in ANNs. During the training phase of 

DCGPANN, ANNs are modified by means of a mutation of the activation functions and the neural connections [5]. The 

DCGPANN module developed by Izzo et al. [32] can be applied to both classification as well as regression tasks. 

3- Research Methodology 

The performance of the two GP approaches and the three state-of-the-art AutoML modules is evaluated through a 

comparative analysis of the five techniques on 20 different ML benchmark datasets for binary classification. In order to 

put the results into perspective, the mentioned tasks are also solved using simple logistic regression, a typical baseline 

model for classification. First, the performance data of the individual tools has to be collected. For this purpose and in 

order to obtain statistically representative results, each technique is applied 30 independent times to each dataset. This 

number has also been used in similar studies [6, 7] to ensure statistical relevance. Every single execution is strictly 

limited to 300 seconds, as no improvement occurs for any of the tools after this period of time, which creates equal 

conditions. The performance is measured by three common metrics for imbalanced binary classification, namely the F1-

score, the G-mean, and the AUC. Once the data collection is complete, the data is analyzed according to four different 

categories: average score, maximum score, standard deviation, and generalization ability. For the first category, the 

average of the metric values achieved after the 30 executions is crucial; for the second category, the respective maximum 

value achieved; and for the third category, the standard deviation of the 30 values. In the fourth category, the average 

generalization ability is analyzed after the 30 executions. For this purpose, the test score is divided by the train score for 

each execution and metric in order to see what percentage of the train score the respective model is able to achieve on 

the test data. Subsequently, for each category, the tools are ranked per dataset according to their scores, with rank 1 being 

the best and rank 6 consequently being the worst rank. The results are then statistically investigated using two different 

tests. First, the Friedman [33] test checks whether there are general differences in the performance of the six approaches, 

followed by pairwise Wilcoxon rank-sum tests [34] to determine whether there are differences between each of the 

respective pairs of tools. The findings regarding the average and maximum score categories are then used to identify 

which tools are better or worse suited for imbalanced binary classification, while the standard deviation and 

generalization ability categories aim to reveal further, more specific properties of the techniques. 

3-1- Application to Benchmark Datasets 

As usual, in these kinds of comparisons of various techniques, a variety of different datasets are needed in order to 
obtain meaningful results. Therefore, 20 different benchmark datasets are used for this work, which is a number similar 
to other related papers [7, 14]. All chosen datasets and their characteristics are presented in Table 1. They differ mainly 
in the categories’ number of instances, number of features, and imbalance ratio, which is calculated by dividing the size 
of the majority class by the size of the minority class. 

Table 1. Benchmark datasets and their characteristics 

Name 
Number of  

Features 

Number of  

Instances 

Majority  

Instances 

Minority 

 Instances 

Imbalance  

Ratio 

Arcene 1998 200 112 88 1.273 

Audit 25 775 470 305 1.541 

Banknote Authentication 4 1372 762 610 1.249 

Breast Cancer 30 569 357 212 1.684 

Cleveland 13 297 243 54 4.500 

Dermatology 33 366 346 20 17.300 

Ecoli 7 336 284 52 5.462 

Eucalyptus 8 642 544 98 5.551 

Haberman 3 306 225 81 2.778 

Ionosphere 32 351 225 126 1.786 

Led 7 500 455 45 10.111 

Libras 90 360 336 24 14.000 

Liver 6 345 200 145 1.380 

Page Blocks 10 5473 4913 560 8.773 

Parkinsons 22 195 147 48 3.063 

Pima 8 768 500 268 1.866 

Spambase 57 4601 2788 1813 1.538 

Vehicle 18 846 647 199 3.251 

Vowel 12 9961 8865 1096 8.089 

Yeast 8 1484 1240 244 5.082 
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The datasets are downloaded using ML-Research [35], an open-source library for machine learning research, and 

represent several of the best-known binary classification benchmark datasets in the ML field. All datasets remain 

unmodified in terms of their number of features as well as their number of instances. Furthermore, no missing values 

exist across all 20 datasets. Thus, there is no need to apply any missing-value replacement techniques. However, one 

step that needs to be performed is the normalization of the variables, since they often vary widely in their respective 

magnitudes. The normalization method chosen for this purpose is Z-score normalization (Equation 1), which is defined, 

for example, by Bakurov et al. [6] as follows: 

zij = 
𝑥𝑖𝑗 − 𝑖

𝑖 
 (1) 

Here, xij represents the i-th feature of the j-th instance, i and i describe the mean and the standard deviation, 

respectively, calculated for every feature fi . Finally, the resulting zij is the desired normalized value and therefore replaces 

the corresponding real value xij in the dataset. After the normalization is completed, the datasets are ready to be processed 

by all classifiers in exactly this same format. 

In order to be able to assess the performance of the various techniques on unseen data, they are evaluated using the 

relevant metrics on the test partitions of the respective datasets, i.e., the train partitions are irrelevant in this context and 

are only used for training the models. The train and test partitions are generated for each dataset with a fully random 

division into 75% train and 25% test sets. This split is constantly redone for each of the 30 independent executions so 

that the results do not depend on the specificities of a single partition. 

3-2- Evaluation Metrics 

The so-called confusion matrix is the basis of several evaluation metrics for binary classification [15]. It divides the 

predictions given by a model into four different categories. True positives (TP) are the correctly identified instances of 

one class, e.g., class 1, false positives (FP) are instances that are incorrectly assigned to that class, and true negatives 

(TN) are the correctly identified instances of the other class, e.g., class 0, while false negatives (FN) are instances that 

are incorrectly assigned to this other class. 

Since the majority of the benchmark datasets used are highly imbalanced, using a more appropriate metric than 

accuracy, which simply calculates the percentage of correctly identified instances in total, is essential for this analysis. 

For this reason, in the course of this work, as in various other studies on imbalanced learning [7, 13, 14], the so-called 

F1-score (Equation 4), which is defined below, is used as a metric for assessing the success of the tools. The F1-score is 

the harmonic mean of precision (Equation 2) and recall (Equation 3), with precision being the share of all correctly 

predicted positives among the entire number of predicted positives and recall representing the percentage of correctly 

identified positives out of the total actual positives 

Precision = 
TP

TP + FP
 (2) 

Recall = 
TP

TP + FN
 (3) 

F1-score = 2 ⋅ 
Precision ⋅ Recall

Precision + Recall
 (4) 

In order to consolidate the results of the comparison instead of making them dependent on just one single metric, in 

addition to the F1-score, the individual techniques are also compared using two further measures. These are the G-mean, 

which is defined hereafter, as well as the AUC [15]. The G-mean (Equation 7) is defined as the square root of the product 

of sensitivity (Equation 5) and specificity (Equation 6). The sensitivity is equivalent to the recall described above, while 

the specificity describes the fraction of correctly predicted negatives out of the entire actual negatives. Therefore, the G-

mean is a measure for evaluating “the degree of inductive bias in terms of a ratio of positive accuracy and negative 

accuracy” [15]. 

Sensitivity = Recall = 
TP

TP + FN
 (5) 

Specificity = 
TN

TN + FP
 (6) 

G-mean = √Sensitivity ⋅  Specificity  (7) 

For calculating the AUC metric, it is necessary to first obtain the ROC curve. The ROC graph comprises both TP rate 

(Equation 8) and FP rate (Equation 9) axes, with the TP rate being identical to sensitivity or recall and the FP rate 

representing the ratio between incorrectly predicted positives and the actual negative instances. Typically, the TP rate 
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represents the y-axis of the ROC graph, while the FP rate corresponds to the x-axis. Commonly, the ROC curve of a 

classifier is composed of several points, usually characterized by different threshold values, i.e., the cutoff point of the 

predicted probability from which an instance is assigned to one class instead of the other. However, it is also possible 

that a classifier produces only a single ROC point, so only a single pair of TP rate and FP rate, which is the case with 

models that only output hard class labels instead of the corresponding probabilities [15]. The latter is the case for this 

study since it is not possible to directly obtain the probabilities with certain tools. Therefore, for reasons of comparability, 

the AUC score is calculated solely based on the predicted class labels throughout all techniques. While this makes a 

single classifier’s ROC curve itself hardly informative, comparing the respective AUC value is nevertheless a useful 

measure to evaluate the tools’ performances against each other. 

TP rate = Sensitivity = Recall = 
TP

TP + FN
 (8) 

FP rate = 
FP

TN + FP
 (9) 

For the FP rate, 0 is the best value since it implies that no FP exists among the predicted class labels, and 1 is the 

worst. Regarding all the other metrics, a value of 1 is the optimal score, while a classifier evaluated with a 0 is considered 

to be not useful at all. The resulting metric values are consistently rounded to three decimal places in the course of this 

work. 

3-3- Setups of the Techniques under Analysis 

Since the objective of the AutoML tools is to simplify and automate the application of ML models, the most 

appropriate action for this study is to use them without altering their setups. Furthermore, for the comparison with the 

established AutoML tools to be meaningful, the GP approaches also do not undergo a separate hyperparameter 

optimization. Instead, they are applied in the same setup to all datasets. Likewise, the logistic regression is applied in its 

default setup, as given by the ML library scikit-learn [36]. 

However, a major benefit of GSGP and the three established AutoML tools is that they allow the user to choose the 

metric according to which the models should be optimized. In order to take advantage of this feature, the default 

optimization metric of all four of them is replaced with the F1-score since the examined datasets are all imbalanced 

binary classification problems, and the techniques are subsequently evaluated mainly based on the achieved F1-score. 

In contrast, a drawback of DCGPANN is that it cannot be optimized according to the F1-score. Hence, the optimization 

in DCGPANN is conducted according to its default measure for classification, the cross-entropy loss. Apart from these 

changes in the optimization metrics, all five techniques are used in their default setups as given by their developers. 

4- Results and Discussion 

4-1- Average Performances 

First, the different classification methods are examined based on their average performance on the 20 benchmark 

datasets. Thus, the average values of the metrics achieved by each approach after 30 repetitions per dataset are 

considered. Each technique is given a rank per dataset, which expresses its relative performance to the other five 

techniques, with the best average metric value corresponding to rank one and the worst consequently to rank six. The 

average ranks across all datasets achieved by each classification method per metric are shown in Figure 3. 

In order to determine whether there is a significant difference between the average ranks of the methods in this case, 

the Friedman test is applied. For each of the three metrics, a separate Friedman test is performed, independent of the 

rankings associated with the respective other metrics. Thereby, the null hypothesis is the same for each test, namely that 

there is no significant difference in the mean ranks of the classification methods with regard to the specific metric. The 

null hypothesis is rejected from a significance level of 0.05 and lower, and the alternative hypothesis, which states that 

there are statistically significant differences, is accepted. The p-values resulting from the three Friedman tests are 

presented in Table 2. Since all three p-values are smaller than the significance level, the null hypothesis is rejected in all 

three cases. Thus, it can be concluded that there are significant differences in the average performances of the six methods 

with respect to all three metrics, F1-score, G-mean, and AUC. 

Table 2. Results of the Friedman tests for the average performances on the benchmark datasets 

Metric P-value Significance 

F1-score 0.005 True 

G-mean 0.002 True 

AUC 0.003 True 
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Figure 3. Average ranks achieved by the different approaches across all benchmark datasets in terms of the respective 

average achieved metric values per dataset after 30 repetitions 

In the following paragraphs, the general differences between the individual techniques, as confirmed by the Friedman 

test, are investigated in more detail. For this purpose, the average metric values achieved by the individual methods are 

compared in a pairwise manner in order to draw conclusions about the performance differences between two methods. 

For each metric, 15 separate and independent Wilcoxon tests are performed, covering all 15 possible pairs of techniques. 

The null hypothesis throughout all the tests is that there is no statistically significant difference in the mean ranks of the 

two respective classification methods under consideration. At a significance level of 0.05 and lower, the null hypothesis 

is rejected, and the alternative hypothesis, which indicates that there is a statistically significant difference between two 

methods, is accepted. The p-values resulting from the pairwise Wilcoxon tests per metric are presented in Table 3, 

significant p-values are highlighted in bold. 

Table 3. P-values resulting from pairwise Wilcoxon tests for the average performances on the benchmark datasets 

Technique Metric Auto-Keras Auto-PyTorch Auto-Sklearn DCGPANN GSGP 

Auto-PyTorch 

F1-score 0.042 - - - - 

G-mean 0.050 - - - - 

AUC 0.107 - - - - 

Auto-Sklearn 

F1-score 0.003 0.126 - - - 

G-mean 0.002 0.022 - - - 

AUC 0.003 0.027 - - - 

DCGPANN 

F1-score 0.048 0.911 0.126 - - 

G-mean 0.013 0.235 0.173 - - 

AUC 0.156 0.881 0.117 - - 

GSGP 

F1-score 0.126 0.654 0.204 0.970 - 

G-mean 0.037 0.455 0.263 0.526 - 

AUC 0.191 0.867 0.083 0.823 - 

Logistic regression 

F1-score 0.681 0.030 0.005 0.021 0.191 

G-mean 0.658 0.037 0.007 0.011 0.076 

AUC 0.641 0.057 0.008 0.024 0.135 

The Wilcoxon tests show that there are eight pairs of techniques for which the null hypothesis has to be rejected with 

respect to at least one metric, meaning that those pairs have statistically significant performance differences on one or 

more metrics. These eight pairs are shown in Table 4. The metrics columns show the exact pairwise results if there is a 

significant difference for a specific metric. The first figure represents the number of datasets in which the first-mentioned 

technique achieved a higher average value than the second one, the figure in the middle stands for the number of ties, 

and the last figure indicates the number of datasets in which the latter method achieved a higher value. Thereby, the 

highest figures, and consequently statistically significantly superior techniques with respect to at least one metric, are 

highlighted in bold. 
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Table 4. Pairs of techniques with significant differences concerning their average performance 

Pair of Techniques F1-score G-mean AUC 

Auto-Keras & Auto-PyTorch 7-0-13 7-2-11 not significant 

Auto-Keras & Auto-Sklearn 4-1-15 4-2-14 4-2-14 

Auto-Keras & DCGPANN 7-0-13 6-0-14 not significant 

Auto-Keras & GSGP not significant 8-0-12 not significant 

Auto-PyTorch & Auto-Sklearn not significant 4-1-15 4-1-15 

Auto-PyTorch & logistic regression 16-0-4 16-0-4 not significant 

Auto-Sklearn & logistic regression 17-0-3 16-1-3 17-0-3 

DCGPANN & logistic regression 16-0-4 17-0-3 17-0-3 

Several observations can be made from these results. Auto-Sklearn is the only method that outperforms three others 

with respect to at least one metric, followed by Auto-PyTorch and DCGPANN, which outperform two others each, and 

GSGP, which is superior to one other method. In contrast, the most frequently significantly outperformed method on at 

least one metric is Auto-Keras, with a total of four times, followed by logistic regression with three times and Auto-

PyTorch with one time. The only two methods that statistically significantly dominate another across all three metrics 

are Auto-Sklearn and DCGPANN, with the former even managing to do so twice. Only Auto-Keras and logistic 

regression are not able to significantly outperform other methods, while only Auto-Sklearn, DCGPANN, and GSGP are 

not significantly outperformed by any other technique. 

4-2- Maximum Performances 

In comparison to the previous section, the different classification methods are examined based on their best 

performance on the 20 benchmark datasets instead of the average performance in this section. Thus, the maximum values 

of the metrics achieved by each technique after 30 repetitions per dataset are considered. However, this is the only 

difference between this part and section 4-1, meaning that the procedures are identical, and are therefore not explained 

in detail again here. Please refer to the previous section for more information about the formal process. The average 

ranks across all datasets achieved by each method per metric, regarding their respective best score per dataset, are shown 

in Figure 4. 

 

Figure 4. Average ranks achieved by the different approaches across all benchmark datasets in terms of the respective 

maximum achieved metric values per dataset after 30 repetitions 

Friedman tests are also applied here to test for statistically significant differences. Table 5 presents the results of these 

tests, which show that for all three metrics, the null hypothesis is rejected, meaning that there are statistically significant 

differences between the average ranks of the methods in terms of the maximum score achieved throughout all metrics. 

Table 5. Results of the Friedman tests for the maximum performances on the benchmark datasets 

Metric P-value Significance 

F1-score 0.013 True 

G-mean 0.006 True 

AUC 0.008 True 
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As in Section 4-1, Wilcoxon tests are conducted next. These compare the techniques in pairs and test the null 

hypothesis that there are no significant differences in the average ranks between two methods, meaning that their 

maximum reached metric scores across all datasets do not differ significantly. The p-values resulting from these 

Wilcoxon tests per metric are presented in Table 6, whereby p-values that indicate significance are highlighted in bold. 

Table 6. P-values resulting from pairwise Wilcoxon tests for the best performances on the benchmark datasets 

Technique Metric Auto-Keras Auto-PyTorch Auto-Sklearn DCGPANN GSGP 

Auto-PyTorch 

F1-score 0.494 - - - - 

G-mean 0.872 - - - - 

AUC 0.952 - - - - 

Auto-Sklearn 

F1-score 0.015 0.085 - - - 

G-mean 0.008 0.013 - - - 

AUC 0.013 0.011 - - - 

DCGPANN 

F1-score 0.523 0.523 0.084 - - 

G-mean 0.570 0.828 0.015 - - 

AUC 0.619 0.586 0.015 - - 

GSGP 

F1-score 0.936 0.276 0.014 0.616 - 

G-mean 0.601 0.811 0.008 0.845 - 

AUC 0.809 0.948 0.007 0.845 - 

Logistic regression 

F1-score 0.314 0.013 0.001 0.023 0.121 

G-mean 0.295 0.010 0.002 0.021 0.131 

AUC 0.305 0.010 0.002 0.033 0.136 

This time, the Wilcoxon tests show that there are seven pairs of techniques for which the null hypothesis is rejected 

with respect to at least one metric, indicating that those pairs have statistically significant performance differences on 

one or more metrics with regard to their maximum score achieved. All these seven pairs are shown in Table 7, in the 

same fashion as in section 4-1. 

Table 7. Pairs of techniques with significant differences concerning their best performance 

Pair of Techniques F1-score G-mean AUC 

Auto-Keras & Auto-Sklearn 5-2-13 4-2-14 5-2-13 

Auto-PyTorch & Auto-Sklearn not significant 6-3-11 6-3-11 

Auto-PyTorch & logistic regression 14-1-5 15-1-4 15-1-4 

Auto-Sklearn & DCGPANN not significant 12-3-5 12-3-5 

Auto-Sklearn & GSGP 14-2-4 15-2-3 16-2-2 

Auto-Sklearn & logistic regression 16-2-2 16-2-2 16-2-2 

DCGPANN & logistic regression 13-4-3 14-2-4 13-4-3 

It is noticeable that the comparison in terms of the maximum achieved scores is more consistent across the different 

metrics than in the case of the average achieved scores. Five of the seven significantly different pairs here are 

significantly different throughout all three metrics, whereas in the previous section, this was the case for only three out 

of eight. While Auto-Sklearn is already the dominant technique in terms of average scores, it is even more so in terms 

of maximum scores. All five other techniques are statistically significantly outperformed by Auto-Sklearn on at least 

two metrics. The logistic regression, in terms of average scores, is outperformed by three other methods, is again 

outperformed by the same three, namely Auto-PyTorch, Auto-Sklearn, and DCGPANN. The method that arguably 

represents the one with the greatest difference between the analysis in Section 4-1 and the one in this section is Auto-

Keras. While Auto-Keras was significantly outperformed by four other techniques in at least one metric for average 

results, it was only outperformed once, by Auto-Sklearn, in terms of maximum results. 

4-3- Standard Deviation 

After analyzing the techniques based on their average scores as well as their maximum scores in the previous sections, 

the analysis in this chapter is performed based on the standard deviation. For this purpose, the standard deviation of the 

scores is calculated after the 30 executions per technique and dataset, respectively, for the three metrics, F1-score, G-

mean, and AUC, based on the test partitions of the datasets. Thus, the analysis aims to provide information on how 
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consistently the individual methods perform. The average ranks across the 20 datasets in terms of standard deviation are 

shown in Figure 5, with rank one indicating the highest standard deviation and rank six the lowest. Therefore, a lower 

rank is desirable in this case, as it implies a more stable performance throughout the 30 repetitions. 

 

Figure 5. Average ranks achieved by the different approaches across all benchmark datasets in terms of standard deviation 

of the metric values per dataset after 30 repetitions 

In this analysis, however, the null hypothesis of the Friedman tests could not be rejected for any of the three metrics, 

contrary to the two preceding analyses. This means that according to the Friedman tests, there is no statistically 

significant difference in the average rankings in terms of the standard deviation of the six techniques under investigation. 

However, in order to test whether there are any differences in the pairwise comparisons, in contrast to the non-existent 

differences across all six methods together, the Wilcoxon tests are nevertheless conducted. Only three pairs that differ 

statistically significantly can be identified, with none being significantly different across all three metrics. However, it 

is noteworthy that in each case, the three pairs are formed by one of the three state-of-the-art AutoML tools as well as 

DCGPANN consistently as a counterpart, with the latter always being the technique with the statistically significantly 

lower standard deviation with respect to at least one metric. Therefore, it can be concluded that DCGPANN provides 

more consistent results than the three established AutoML tools. 

4-4- Generalization Ability 

Ultimately, the analysis already familiar from sections 4-1 to 4-3 is performed a final time, specifically this time 

regarding the generalization ability of the classification methods. This ability is measured by the percentage of the 

training metrics that the methods are able to reach in the test partition. Thus, for example, if a technique achieves an F1-

score of 0.8 at training and an F1-score of 0.7 on the test partition of an execution on one dataset, the associated 

generalization percentage is 0.7/0.8 = 0.875. For the following analysis, the average of these calculated percentage values 

after 30 executions is used in each case. The results of the pairwise Wilcoxon tests reveal that simple logistic regression 

outperforms all other approaches across all metrics in terms of generalization ability. A possible reason for this is that, 

since the test partition scores of the logistic regression are already rather poor in comparison, it is also comparatively 

worse at modeling the relationships during training. Therefore, this property is not necessarily a benefit of the logistic 

regression and is disregarded for the pairwise analysis in this case. So, the analysis of the pairs with statistically 

significant differences among the three state-of-the-art AutoML tools tested and the two GP approaches under 

examination reveals that in all cases, methods based on ANNs are outperformed, more precisely Auto-Keras once and 

DCGPANN three times. The tool that outperforms both in terms of generalization ability is Auto-Sklearn, while Auto-

PyTorch, as well as GSGP, are also able to outperform DCGPANN. 

4-5- Discussion 

During the analysis based on 20 ML benchmark datasets (sections 4-1 to 4-4), five techniques for imbalanced binary 

classification are examined, and a default logistic regression is used as a reference. The five techniques include two 

approaches based on GP, DCGPANN, and GSGP. The other three are the established AutoML tools Auto-Keras, Auto-

PyTorch, and Auto-Sklearn. Both GP methods accomplish the given classification tasks with only one attempt, i.e., only 

one initialization is performed per execution per dataset, followed by the execution of the algorithm until the time limit 

of 300 seconds is reached. In GSGP, a population of mathematical functions is evolved to fit the dataset as accurately as 

possible, whereas in DCGPANN, an ANN is trained over numerous epochs for this purpose. Unlike the two GP 

techniques, the three state-of-the-art AutoML tools handle the task with multiple attempts. Auto-Keras repeatedly 

initializes new ANNs with varying network architectures and trains them. Auto-PyTorch and Auto-Sklearn try models 
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from a pool of baseline ML algorithms, optimize them, and then build ensembles. Only Auto-PyTorch and Auto-Sklearn 

also include data pre-processing steps. All three of these AutoML tools return the respective best model found after the 

time has elapsed. All five techniques are used by default. This means that all the results obtained in this work were 

achieved without having to apply steps such as model selection or hyperparameter optimization. In addition, the datasets 

are not modified by any resampling techniques for adjusting their imbalance since it is intended to test how well the 

respective techniques can deal with the problem of imbalanced data. Therefore, the results are of particular interest to 

non-ML experts, as no profound knowledge is required for the application of the methods as used here, but only the data 

and the prebuilt modules, which take care of the whole process of creating a suitable model, are needed. 

Analyzing the tools first with respect to the two categories, standard deviation and generalization ability, i.e., the 

categories that are supposed to reveal specific peculiarities, the following three observations can be made. First, 

DCGPANN has a significantly lower standard deviation within its performance than all three state-of-the-art AutoML 

tools; thus, it is the tool that provides the most consistent results. Then, Auto-Sklearn has a significantly higher 

generalization ability than Auto-Keras and DCGPANN and is, therefore, the tool with the best generalization ability. 

Lastly, DCGPANN has a significantly lower generalization ability than Auto-PyTorch, Auto-Sklearn, and GSGP; thus, 

it is the tool with the worst generalization ability. Additionally, it is noted that both techniques based on ANNs, namely 

Auto-Keras and DCGPANN, are outperformed by others in terms of generalization ability. Therefore, it can be argued 

that both are not capable of solving the overfitting problem of ANNs sufficiently. 

Now, for the core part of this discussion, we assume that one tool only outperforms another if it is superior to it in at 

least one of the two categories of average or maximum performance since these two are the crucial ones in practice, 

while the categories of standard deviation and generalization ability are rather intended to provide further insights into 

the techniques’ performances. Auto-Sklearn, a tool based on various baseline ML algorithms, emerged clearly as the 

best technique from the comparison, as it outperformed three out of five others in terms of average results and all five in 

terms of best results. Therefore, it can be concluded that Auto-Sklearn is the strongest-performing technique, with a great 

chance of achieving good results, and its use for imbalanced binary classification can be recommended. Auto-PyTorch, 

again an AutoML tool using multiple baseline ML models, outperformed two other techniques in terms of average 

performance and one other concerning maximum performance, while in both cases only being outperformed by Auto-

Sklearn. Thus, Auto-PyTorch is a solid tool for imbalanced binary classification. The third state-of-the-art AutoML tool, 

Auto-Keras, was less successful than the other two during this study. It is noticeable that Auto-Keras, particularly, falls 

behind in terms of average performance, while it scores fairly average in terms of maximum performance. Therefore, it 

can be assumed that Auto-Keras strongly depends on the respective initialization. Hence, applying Auto-Keras only once 

bears the risk of getting a poor model, so if applied, it should be tried several times, as it seems to vary considerably 

from attempt to attempt. 

DCGPANN arguably performed at a similar level as Auto-PyTorch, as it also outperformed two others at average 

scores and one other at maximum scores. It is remarkable that DCGPANN is superior to Auto-Keras, i.e., the DCGPANN 

approach seems more effective than the one of Auto-Keras, even though the latter generates multiple ANNs while 

DCGPANN only generates a single one per attempt. Furthermore, it is interesting that DCGPANN achieves significantly 

more consistent results than all three established AutoML tools. The other GP method, GSGP, could only outperform 

one technique, namely Auto-Keras, in terms of average performance. However, it has also itself been outperformed only 

once, and that was by Auto-Sklearn in terms of maximum scores. Therefore, it can be concluded that both DCGPANN 

and GSGP are also solid techniques to be used for imbalanced binary classification, being even able to keep up with 

certain state-of-the-art AutoML tools. Interpreting the results from the point of view of the advanced GP techniques, it 

is astonishing that neither of them is statistically significantly outperformed on average after 30 executions across all 20 

benchmark datasets by any state-of-the-art AutoML tool, not even by the evidently best tool, Auto-Sklearn. While the 

two GP techniques have already proven to be superior to various fundamental ML algorithms in other studies [5, 7], this 

study reveals that they are even competitive in comparison to AutoML tools. This demonstrates the outstanding 

capabilities of DCGPANN and GSGP in the field of imbalanced binary classification and thus makes these two GP tools 

highly recommended for this task in practice. 

5- Conclusion 

To overcome the research gap described in the introduction regarding direct comparative analyses between advanced 

GP techniques and state-of-the-art AutoML, this study compared the two advanced GP methods, DCGPANN and GSGP, 

alongside the three state-of-the-art AutoML tools Auto-Keras, Auto-PyTorch, and Auto-Sklearn in terms of their 

performance in the domain of imbalanced binary classification across 20 benchmark datasets. One of the key results is 

that neither of the two GP techniques could be statistically significantly outperformed on average by any of the state-of-

the-art tools and that they were both outperformed only by Auto-Sklearn in terms of best performance. Therefore, to 

answer the first part of the above-stated research question, it can be concluded that the GP concepts DCGPANN and 

GSGP are indeed competitive compared to the three state-of-the-art AutoML tools when applied to imbalanced binary 

classification, making their use in practice highly recommended. This is a significant and remarkable finding since the 



Emerging Science Journal | Vol. 7, No. 4 

Page | 1361 

two GP techniques are still rather novel and unexploited, while the three AutoML tools represent the current top standard 

in the field. Nevertheless, Auto-Sklearn emerged as the strongest performer out of all of the tools under analysis. Thus, 

the answer to the second part of the research question, which of the five methods is the most successful one overall, is 

conclusively Auto-Sklearn. As a consequence of the results of this study, it is advisable for practitioners dealing with 

imbalanced binary classification tasks to consider the advanced GP techniques DCGPANN and GSGP in addition to the 

AutoML tools or even as an alternative. For the academic community, the results shall emphasize the potential of GP 

and are intended to serve as motivation for continued exploration and development of advanced GP techniques in order 

to further improve their capabilities. 
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