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Abstract 

Mechatronics and Robotics (MaR) have recently gained importance in product development and 

manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies 

(C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin 
American general review of industrial, collaborative, and mobile robotics, with the support of North 

American and European researchers and institutions. The methodology is developed by considering 

literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding 
reports written by companies and government organizations. This describes the state-of-the-art of 

MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, 

having achieved important results related to the academy, industry, government, and 
entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores 

the potential for further work and advantages described by robotic companies such as ABB, KUKA, 
and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, 

development, and innovation. In addition, the integration with industry 4.0 and digital 

manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, 

and computational social science (human-robot interaction) is analyzed to show the promising 

features of these growing tech areas, considering the improvements to increase production, 

manufacturing, and education in the Region. Finally, regarding the information presented, Latin 
America is considered an important location for investments to increase production and product 

development, taking into account the further proposal for the creation of the LATAM Consortium 

for Advanced Robotics and Mechatronics, which could support and work on roboethics and 
education/R+D+I law and regulations in the Region. 
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1- Introduction 

Over the last few years, the mass production and industrial competitiveness of Latin America have increased 

internationally, generating a motivation to improve the quality of the products and services in the industrial sectors. The 

implementation of state-of-the-art technologies that integrate the fourth industrial revolution encompasses technologies 

that interact, such as data science, artificial intelligence, or the IoT (Internet of Things), to meet the highest levels of 

quality demand of information, productivity, efficiency, security, and profitability [1–3]. The data generated allows us 

to monitor the quality of a product. It is worth mentioning that industry 4.0 is not to replace people; it is to improve 

product quality since there are processes that cannot be replaced. Robotics is key to the success of Industry 4.0 [4]. An 

industrial robot is a reprogrammable multifunctional manipulator capable of moving materials, parts, tools, or special 

devices according to variable trajectories and performing various tasks. There are robots with more advanced functions, 

which integrate vision to carry out inspections or precision adjustments. Collaborative robotics is designed to interact 

with people safely. The potential of robotics in the industrial sector is immense due to the various tasks to which it has 

been applied, among which are: robotic welding, foundry handling, mold handling, and plastic molding handling, among 

others. 

Working with robots brings flexibility, safety, and protection to operators against harsh environments and dangerous 

work. Robots can perform functions without loss of production due to failures, fatigue, coordination, or planning 

problems [5, 6]. Thanks to Industry 4.0, this has been favored for the productive development of any country and the 

consolidation of production chains. Still, in various countries, it is necessary to increase their level of industrialization 

through activities that improve their competitiveness and promote sectors with high added value, providing a generation 

of jobs and greater absorption and technological integration [7, 8]. For this reason, it is essential to mention the need to 

increase industrialization by integrating automation and robotics in the industrial sector. Initially, the investment could 

be high; however, the benefits that this integration constitutes will be genuinely representative since greater production 

will be obtained in less time, operational costs will be reduced, and the most demanding quality and safety standards of 

each country will be met, generating a strategy for the digital transformation of any country [9, 10]. 

Therefore, this paper consisted of a review with three objectives, summarized as: (1) Present the first science 

manuscript in history, where the main technical and research data about the state-of-the-art of robotics in Latin America 

is shown. (2) Multi-Collaborative study between international robotics institutions that integrates the academy and 

industry. (3) Show the most important and growing fields of robotics development in Latin America. Then, following 

an introduction, the rest of the paper is structured as: Section 2 states the methodology used for data analysis, then Section 

3 presents the context of robotics and automation in Latin America. Section 4 shows the exponential innovations made 

by robot manufacturers and software platforms. Section 5 describes the present and future of high performance in 

robotics, which exhibits advanced applications around the world that can be proposed to be implemented in the Region. 

Finally, the paper ends with a conclusion and future insights. 
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2- Materials and Methods  

This study has been undertaken as a general literature review based on the original guidelines proposed by 

Kitchenham [11]. Thereby, the following principal question was raised: what are the advances and outcomes in the 

applications of robotics in Latin America? The main contribution of this work is to have a better knowledge of this 

developing technology and, thus, with this highly specialized group of authors with professional backgrounds in 

engineering and science, be able to promote their concomitant use as industrial, collaborative, and mobile mechatronic 

systems. The objectives are aligned with the support of PICOC criteria (population, intervention, comparison, outcomes, 

and context). 

Table 1 shows the (PICOC) structure of this research [12]. The analysis was conducted from December 2021 to 

January 2023, and EndNote was used for reference management. To start the search, an appropriate combination of Data 

Bases has been chosen to increase the likelihood of finding highly relevant articles. The foremost predominant literature 

is looked for in the widest possible selection of publications. The references are found in: Scopus, Web of Science, and 

Aerospace Research Central. In addition, some government/company reports are used for the identification of robotics 

applications. 

Table 1. Summary of PICOC 

Population The literature on robotic system applications in Latin America 

Intervention Industrial, collaborative, and mobile robots 

Comparison Robotics in some countries of Latin America, such as Argentina, Chile, Colombia, Mexico, Panamá and Central America, and Peru. 

Outcomes 
Robotic applications considering Industry 4.0 and Digital Manufacturing, Architecture, and Construction, Aerospace, Smart 
Agriculture, and Artificial Intelligence and Computational Social Science applications 

Context Studies in industry and academia, small and large data sets 

3- Robotics and Automation in Latin America 

3-1- Argentina 

This section depicts a general overview of the status of industrial robotics in Argentina. In the country, the current 

indicator is 18 robots per 10,000 workers, and the commercial demand is about 400 average annual sales, which are 

mostly concentrated in the automotive industry, the first to incorporate this technology. Other applications are: a) Forging 

transfer of parts, b) Electronic assembly, c) Finishing of parts and surfaces, d) Application of adhesives, e) Inspection 

and quality control, f) Arc welding, g) Loading, and unloading of machines, h) Painting and enameling, i) Assembly of 

parts, j) Plastic molding, k) Polishing, l) Machining, m) Spot welding. According to the IMD World Competitiveness 

Yearbook 2022 (WCY) [13], Argentina is ranked in the 62nd position. The International Robotics Federation (IRF) 

presents a report based on available data broken down by application and by industry shown in Table 2 [14], big 

companies in Argentina use a lot of robotics in their industrial plants. Those, have well-trained engineers capable of 

identifying what each new operation requires to turn it into a more flexible and automatic by installing robots and 

peripheral equipment [15]. 

Table 2. Distribution of the use of robots by industry applications [16] 

Industry Quantity 

Food and Drinks 147 

Textiles 2 

Wood and Furniture 2 

Paper 13 

Plastics and Chemicals 75 

Glass, Ceramics, and Related 8 

Metal 437 

Electricity/Electronics 8 

Automotive 1313 

Other Vehicles 2 

Other Branches 51 

Total 2058 

Nowadays, small and middle-size companies (PYMES), where the engineers are responsible for making the “ROI 

And Financial” analysis (based on technical training programs [17]), require the following activities: a) Inspecting the 
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production line, b) Requesting for information about their manufacturing process, c) Designing technical proposals to 

achieve the goals, d) Preparing the engineering documentation required to provide the robot and its peripheral 

components, e) Assembling the complete robotic cell, f) Programming and start-up machine operation, g) Providing a 

very practical training course for the owner [18]. 

Currently, about 30,000 robots are already performing agricultural tasks around the world, and more than 1,000 of 

them are working in Argentina. Experts in precision agriculture at “Instituto Nacional de Tecnología Agropecuaria – 

INTA”, at Concepción del Uruguay, maintain that agricultural activity remains the least digitized segment of the world 

economy. Argentina is currently in 13th place in the development of technologies for agriculture, among the 194 

countries of the United Nations [19]. Experts agree that the best way to measure which are the countries with the most 

robots in their plants is by counting the units for every 10,000 active employees, where Argentina occupies 36th place 

with 16 units [20]. 

Universities have contributed a lot to this aspect by providing training at different levels, for example, “Universidad 

Tecnológica Nacional at Facultad Regional Córdoba” creates a robotics program [21], and also a robotics school at 

Misiones [22]. The National State and Provinces, drive Robotics from the disclosure of Industry 4.0 through grants and 

programs such as Cordoba 4.0 [23]. The Robotics and Educational Technology program is an initiative of the Federal 

Council for Science and Technology, to promote the use of robotics in the classroom and the tools offered by new 

technologies for innovative and collaborative learning [24-26]. 

3-2- Chile 

This section depicts a general overview of the status of industrial robotics in Chile. To the best knowledge of the 

authors, there is no formal study or statistical analysis of industrial robotics in this country. Despite having several years 

of autonomous mining trucks, industrial robotics is still not extensive enough in the country, given that it lacks a strategy 

for guiding and fostering this kind of technological adoption [27-30]. Nevertheless, there are surging new initiatives such 

as the national policies for artificial intelligence which intend to define strategic guidelines for this kind of technological 

development and include industrial robotics as one of their 8 objectives [31]. 

According to the IMD World Competitiveness Yearbook 2022 (WCY) [13], Chile is ranked in the 45th position with 

the industry mainly related to mining, telecommunications, fishing, and retail sectors. Although according to the 

International Federation of Robotics (IFR) [32], there are about 200 industrial robots installed in Chile, there are certain 

national laws that encourage industrial robots’ usage for supporting human tasks such as Law 20949 [33], which lowers 

the maximum payload for workers from 50 to 25 kgs, and just if manual manipulation is unavoidable, so it is expected 

to motivate a continuous growth of robot’s installations. Although there is little detailed information about how industrial 

robots are distributed along with the country, there are 14 observations for Chile having a mean of 220 imports according 

to Comtrade (United Nations International Trade Statistics Database) and a mean of 4.9 industrial robots according to 

IFR installations, with a 56% of Pearson correlation between both databases for import quantities and 87.6% of Pearson 

correlation for import values according to [34], as shown in Table 3. 

Table 3. Imported quantities based on 14 observations [34] 

Organization Mean Standard Deviation Minimum Maximum 

IFR 4.9 4.5 0 16 

COMTRADE 220 315.9 8 899 

According to data available directly on Comtrade for imports to Chile related to “Machinery and mechanical 

appliances; industrial robots, N.E.C. or included” with HS (Harmonized System) commodity code 847950, obtaining 

data from 1997 up to 2021 as shown in Figure 1, there is sustained growth of technological equipment for automation 

applications. 

The principal activities of industrial robotics are in the northern part of Chile, specifically in mining led by Mining 

Industry Robotics Solution (MIRS) [35], whose main solutions are: a) Robotic starting sheet stripping machine, b) 

Robotic sampler for truck or rail concentrates, c) Robotic cathode stripping machine, d) Robotic furnace tapping 

sampling and plugging, e) Robotic sampler from maxibag, f) Robotic baseplate polishing machine, g) Robotic sag mill 

bolt removal and torquing [36]. 

In the middle part of the country, the main production is from the food and beverage industries, with some local 

integrators: Roboris [37], Robotec [38], Pat [39], Austral-Robotics [40], whose principal robotic cells provided by them 

are: a) Robotic Palletizing Cells of bag, boxes, bottles, b) Robotic Pallet Manage on distribution centers, c) Robotic 

welding cells. In southern regions working with Salmon Industry as a main productive sector, there are some local 

integrators: Pat [39], Austral-Robotics [40], whose principal robotic cells provided by them are: a) Robotic palletizing 

cells (20-25kg), b) Robotic Maxibags / Big bag lines (1250 kg) [41-43]. 
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Figure 1. Trade Value for machinery and mechanical appliances and industrial robots’ imports to Chile per year 

3-3- Colombia 

According to the IMD World Competitiveness Yearbook 2022 (WCY) [13], Colombia is ranked in the 57th position, 

which is mainly based on petroleum, manufacturing, coffee growing, pisciculture, and services; there are installed some 

automation systems most of them without robots. The “Reportero Industrial” magazine [44, 45], shows that almost 500 

industrial robots are installed in the Colombian industry, taking into account that there are no automotive and electronics 

industries for global production [32]. Among the industrial robots installed and reported in LATAM, Colombia has only 

116 [16] (shown in Figure 2) classified by applications, which are focused mainly on plastic and chemical product 

production; and the automotive industry at the General Motors plant. 

 

Figure 2. Number of Robots by Industry [3] 

At the industrial level, despite there are almost 80 robotics companies registered that sell robots and components. A 

current survey made by 3 companies, which install industrial robots in Colombia, explains the data in Figure 3, where: 

i) FESTO shows 16 robots, ii) Robotika 40 robots, and iii) CAV Robotics 50 robots; further. FESTO has installed robots 

in academic environments such as the following: a) SENA-10 Mitsubishi robots, b) University Javeriana-1 Mitsubishi 

robot, c) 1 KUKA robot, d) 1 UR robots; e) University Agustiniana-1 Mitsubishi robot; f) ETITC-1 Mitsubishi robot; g) 

University El Bosque-1 Mitsubishi robot. Also, Robotika worked in maintenance, programming, and support tasks for 

96 industrial robots around Colombia states. 



Emerging Science Journal | Vol. 7, No. 4 

    Page | 1435 

 

Figure 3. Colombian Companies – Number of Industrial Robots Installed 

At University Labs and Technological Institutes, there are some industrial robots installed. The student’s work is 

addressed to robotic foundations workshops, research, and innovation with private companies and the defense sector: 

integrating artificial intelligence to mounting tasks with industrial robots [46]. At UNAD, there are more than 20 

Intellitek industrial robots installed. Besides, the National University of Colombia has around 10 ABB robots. ICRA is 

a mobile robotics start-up, and it has developed an autonomous mobile robot for floor cleaning of large spaces such as 

supermarkets or airports, called BOGBOT, and some robots for private companies such as front desk autonomous robots, 

luggage carrying robots, and robot for flower producers Agroindustry Company [47, 48]. On the STEAM and education 

projects, ICRA has been able to mentor FRC (FIRST Robotics Competition) team CIP 6001 (Colombian Innovation 

Program) in 2017 where the team was Rank 1 with a record of 12-4-2 and won the Team Spirit Award sponsored by 

FCA Foundation [49] and again in 2019 winning the Judge’s award [50]. 

Finally, the robotics sector is very active at the academic scale, and there are a motivation for service robots too, such 

as: a) A space rover for the University Rover Challenge [51], b) the ROBOCOL initiative by Andes University [52], c) 

the KIWIBOT company with delivery robots [53], d) Robotics 4.0, a new company which is focused on service Robotics 

solution development [54], which have delivered more than 50 academic robots (patented locally) to many universities 

and academic entities in Colombia; and it had directed 2 service robots developments, one for Medical sector; and other 

for Renewable Energy sector, all of them developed in LATAM. The industrial sector is at its starting phase, the growing 

trend is due to the economic reactivation policies, and Enterprise innovation [55-57]. 

3-4- Mexico 

This section shows a general review of the status of industrial robotics in Mexico. It has been found that there does 

not exist a formal study and analysis regarding the actual status of industrial robots, statistics, and applications in different 

regions in Mexico. This country occupies the 55th position in the IMD World Competitiveness Yearbook 2022 (WCY) 

[13]. Also, it is among the top 5 largest economies in Latin America [58]. The main industry sectors are vehicles, 

computer equipment, electrical apparatuses, plastic, and rubber among others. Manufacturing is one of the most relevant 

economic activities in Mexico, being the automotive sector the most attractive for investments in some regions in the 

country [59]. This implies a certain level of maturity in technical capabilities such as automation. The Economist 

Intelligence Unit reports an automation readiness index of a set of 25 countries where Mexico is positioned in the 22nd 

[60]. In that sense, Mexico also faces the challenge that manufacturing countries have. Moving from traditional 

automation to smart manufacturing automation, which is needed to achieve personalized goods [61]. This challenge 

requires among other things, the installation of industrial robotics. Additionally, the main industrial areas where robots 

are applied in manufacturing are the automotive industry and electronics assembly [62]. 

Regarding the industrial robotics infrastructure in Mexico, there is little detailed information to identify the status of 

industrial robotics in the different regions. According to the International Federation of Robotics (IFR) report, Mexico 

occupies 11th place in the world ranking for robot installation in 2020, with a total of 3,400 units [32]. Other sources of 

information such as industrial magazines and news agencies had published some data regarding the industrial robot 

sector. Castro reported that Mexico occupies the 2nd place in robotics installations growth in America with a total of 

40,300 units [63]. On the other hand, the industrial magazine Mexico Industry publishes an article where they report 

robotics data from a census study in San Luis Potosí [64]. Concerning industrial robotics imports data [65], Figure 4 

shows the states of Mexico with more investment in robotics during the 2016-2020 period and Figure 5 presents the 

origin of these imports. The available data regarding industrial robotics in Mexico is difficult to investigate. A more 

detailed study as presented by Svaco et al. [66] is recommended to present a complete scenario of industrial robotics in 

Mexico [67, 68]. 
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Figure 4. Robotics Investment in the Mexican States 2016-2020 

 

Figure 5. Mexico - Robotics Imports by Country 2017-2019 

Education efforts toward teaching robotics in Mexico have been growing since the year 2000. According to Savage 

et al. [69], the Mexican Robotics Federation (FMR) conformed by several Mexican universities had organized robot 

competitions focused on high school and undergraduate students. An increasing interest in robotics among young 

students is evident considering the growing number of students participating in robotics contests in regional, national, 

and international phases [70]. 

3-5- Panama and Central America 

Due to the advantage of its geographical position, the Republic of Panama has strengthened the tertiary sector of the 

economy compared to others, which means that few companies are developing the industrial sector. According to a 

software expert from the international company GBM [71]: "in Panama, the adoption of the robotization process is 

reaching 5 to 10 percent." The main robotic project applications are: a) Control of gantry cranes, for welding and 

underwater cleaning of ships [72-74], b) Food industry and agribusiness [75]. On the other hand, the development of a 

logistics hub, the advancement of industry 4.0, artificial intelligence, and professionals specialized in robotics and 

automation [76], give the country the real possibility of leading automation in Central America (Table 4). This country 

occupies the 56th position in the Heritage Foundation-Economic Freedom Status, Ranking 2022 [77]. 

Table 4. Panama and Central America – Industrial Robotics 

 Characteristics 

1 From elementary school, the use of robotics and participation in related regional or global events are promoted among students 

2 Use of non-governmental organizations to develop the sector, as in Costa Rica the case of the Investment Promotion Agency (CINDE) 

3 Packaging processes are the ones that most use industrial robots in the area 

4 Multinational manufacturers and distributors of industrial robots are represented in the region 

In addition, Costa Rica occupies the 55th position in the Heritage Foundation-Economic Freedom Status, Ranking 

2022 [78]. The presence of free zones allows large multinational companies to become interested in investment and 

expansion. The business area is very varied, there is a presence of industries focused on the design and manufacture of 

medical devices, software and hardware development, agribusiness, food, or engineering solutions, which generate great 

contributions to the country through technological growth, knowledge, innovation, and reactivation of economic 

development. The maximum benchmark is the Coyol Free Zone, which has been recognized by The European magazine 

as the Best Free Zone in Latin America and the Caribbean for the second consecutive year in 2021 [79]. It is possible 

due to strategic alliances with educational centers in the national territory, where engineering programs such as 
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Mechatronics Engineering [80], master's degrees, and technical courses taught by the Instituto Tecnológico de Costa 

Rica (TEC) [81] stand out, and the manufacturing training by the National Learning Institute (INA) [82]. In terms of 

robotics at the industrial level, these companies allow continuous development of technology and work in various types 

of processes. It is estimated that in Costa Rica there are 64% of companies in the service sector are currently in the 

process of adopting robotics [83], pending a beneficial technological leap in its production. In addition, MicroTech 

stands out and its manufacturing center with approximately 350 employers with the potential to produce up to 1 billion 

parts per year [84], has been present for 22 years and is internationally recognized for its high innovation capabilities 

and confidence in the automotive, medical device, aerospace and other industries with high demand [85]. In the case of 

Central America, according to Reportero Industrial Magazine [86]: the data is even much lower, and the integration of 

robots in manufacturing processes is minimal, this is mainly due to the lack of investment by businesses, as a result of 

fear of income or no return of investment. This means that companies in Latin America do not increase and diversify 

production, slowing down their growth and limiting their competitiveness. 

Most of the installed industrial robots correspond to refurbished robots used in the food industry. Some asbestos 

Cement Industries located in El Salvador, Honduras, and Costa Rica use large-scale industrial robots to handle heavy 

materials [87, 88]. In a similar case, in Guatemala, some companies manufacture ceramic floors and integrate robots into 

their processes. In addition, Costa Rica integrates robots into the electronics industry, being the main country in Central 

America that uses robots in its manufacturing processes. In the case of the Academy, at least one university in each 

Central American country has industrial robots for teaching-learning in careers such as Mechatronics Engineering, while 

the use of robotics has been introduced from an early age in education, for example, Belize [89, 90]. On the other hand, 

there are very specific cases in the beverage industry where industrial robots are used to automate their processes. In 

general, most industrial robots in Central America operate in the food, beverage, metalworking, construction, and 

electronic device industries. Even though the use of industrial robots is very low in Central America, it is Costa Rica, 

followed by El Salvador, which leads with the largest number of installed industrial robots (Table 5). This country 

occupies the 90th position in the Heritage Foundation-Economic Freedom Status, Ranking 2022 [91]. 

Table 5. El Salvador – Industrial Robot Applications 

Field/Industry Installed (Percentage) 

Metal-Mechanics 13% 

Food 26% 

Construction 37% 

Education 11% 

Paper and Packaging 8% 

Textile 5% 

3-6- Peru 

This section depicts a general overview of the state of industrial robotics in Peru. It has been found that there is no 

national registry of companies that include industrial robots in their processes. This country occupies the 54th position 

in the IMD World Competitiveness Yearbook 2022 (WCY) [13]. According to the National Society of Industries, the 

main industry sectors in Peru are Mining and Refining of Minerals, Oil Extraction and Refining, Gas Extraction and 

Liquefaction, Fishing and Fish Processing, Cement, Textiles, Beer, and Soft Drinks [92]. Peru is a member of the Pacific 

Alliance together with Chile, Colombia, and Mexico, an alliance that seeks to achieve the free movement of goods, 

services, capital, and people and promote greater growth, development, and competitiveness of the economies of the 

member countries [93]. Mecanos Automation S.A.C., founded in 2012, is a pioneer company in industrial robotics 

integration. It has developed some applications in the country, involving 2 fields: a) Stand-Alone Robot: Robot 

Hardware, Robot controller, Programming unit (console). b) Robotic Cell: robot, tooling, sensors, safety measures, and 

software. According to selected data from this company, there is a statistics about the 4 main applications of Industrial 

Robotics in Peru (in the year 2021, there could be other robots that are currently under installation development in the 

country). It is shown in Figure 6. 

 

Figure 6. Main Industrial Robotic Applications – 2021 
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1) Palletizing and Depalletizing (robots: 60 - 470 Kg Payload), (Provinces: Lima, Arequipa, Trujillo, Piura). Applied 

to Industries, such as for: a) Beverage (beer, bottled water, and soft drinks). b) Packaged food (milk: tetrapak/cans, 

noodles, oils: bottles/cans, cookies: boxes. c) cleaning (detergent bags). d) Bricks and ceramics. e) Lubricant packaging. 

2) Arc and Spot Welding / Metallizing (robots: 5 - 16 Kg Payload). Applied in Industries, such as for: a) GMAW - MIG 

/ MAG welding (structural steel, LAF / LAC, mining components). b) Spot welding of light furniture. c) Metallizing 

(coating of concrete pieces). 3) Tending / Handling / Milling. Applied in Industries, such as: a) Folding, CNC machines 

(metal sheet bending). b) Cathode plates (cathodes). c) Pick / Place steel balls on a hydraulic press (mining). 4) Robotics 

Lab for Education. Applied on: a) Universities: ai) Public: UNI - FANUC robots; UNAC – Amatrol robot. aii) Private: 

URP – Mitsubishi robot at CIM Lab; UTP / UPC / UCSM Arequipa have KUKA robots; PUCP – Kuka robot at CETAM. 

(Purpose: Welding, Manipulation, FABLAB). b) Technical Institutes: SENATI / TECSUP – Kuka robots [94-99], 5) 

Biomedical applications [100-106]. Consequently, the Institutions state that is important to include subjects of industrial 

robotics in Mechatronics Engineering Programs and related branches [106, 107], because robots raise productivity in all 

industries, thereby increasing the labor demand [108-111]. 

4- Exponential Innovations by Robot Manufacturers and Software Platforms 

4-1- ABB 

Globally the usage of industrial robots has increased exponentially during the past 10 years in response to the need 

for enhanced productivity and competitiveness, in consequence, many of the “old” traditional factories have been 

updating their manufacturing processes to more flexible and adaptable automation solutions which in many cases include 

industrial and collaborative robots commonly known as “cobots”. More robots are being used now for many different 

tasks that historically used to be done by a human operator, so, it is expected that in the future, workers will need to 

develop different skills to be able to share tasks and even work alongside cobots, this will require a new wave of engineers 

better prepared in schools and universities to be able to implement fully robotic systems with new developing 

technologies such as artificial intelligence, virtual and augmented reality and remote assistance over the cloud [112].  

In Latin America, the potential usage of industrial and collaborative robots for a variety of applications is quite 

extensive in many market segments ranging from F&B, cosmetics, logistics, pharma, plastics, metals, electronics, 

household appliances and going also to automotive manufacturers and their parts suppliers. ABB as a robot manufacturer 

is offering one of the most extensive product lines including robots and cobots which will be a key component in this 

everyday growing automated world. One of the key players in this evolution is the ABB GoFa™ cobot which is an easy-

to-use, fast, and intelligently safe robot that was designed with first-time users in mind (Figure 7) [113]. 

 

Figure 7. ABB Robots: a) SWIFTI™ CRB 1100 [114], b) IRB 14050 YuMi® [115], c) GoFa™ CRB 15000 [116] 

4-2- KUKA 

KUKA is working in many sectors in Latin America, but our goal is to revolutionize the production sector in the 

entire region. This is the only company that can provide after-sales service and guarantees its equipment thanks to its 

delegations, in Buenos Aires (Argentina), San Pablo (Brazil), and San Luis de Potosí (Mexico), the other countries are 

supported by official distributors trained at the headquarters of KUKA Germany (Ausburg) and for all this, the staff can 

provide a quality service in Latin America. Kuka is committed to training at universities and professional training centers 
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distributed throughout the region. These centers have the latest KUKA robotic technology, thanks to agreements that 

have been reached to train the engineers of the future [117]. Training is key in the development of technology and KUKA 

offers quality education for companies that want to implement robotics in their countries, with training centers located 

in Argentina, Brazil, and Mexico, and in the other countries, it has also the same technology thanks to official distributors 

in order to obtain the same robot certifications. Due to this commitment to training, today there are more than 20 Official 

System Partners distributed throughout Latin America. 

Automation and robotics have had different developments depending on the industry, the political moment of each 

country, laws on imports, risk prevention, and labor relations. That is why we are going to talk about the introduction of 

robotics in Latin America, but structuring it in different regions, the First region will be the southern cone, the next the 

other countries of South America except for Brazil, and finally Central America. The next few years will be very 

important for the growth of robotics in the region because the objective of the companies will be the export of goods and 

equipment with added value to compete with the rest of the countries of the world (Figure 8). 

 

Figure 8. KUKA Robots: a) KR180 R 3500 K [118], b) KR 180 R3200 PA [119] 

4-2-1- Southern Cone 

Is made up of Argentina, Chile, Paraguay, and Uruguay. In this region the growth of the automotive industry at the 

end of the twentieth century makes that robots begin to be used in the assembly lines of automobiles, this provides 

powerful industrial manufacturing and very well prepared technologically to undertake different projects that arrived at 

the plants of the Auto. The main applications that were robotized at first were those of arc welding and resistance 

welding, which were necessary to give that quality and repeatability to the manufactured cars. Today Argentina has a 

very robotic industrial fabric, although far from European countries, North America, South Korea, Thailand, Japan, and 

Singapore. This ratio also shows that the main robotic countries are very competitive and exporting countries, in addition 

to being countries with unemployment rates below 5%. Chile has had strong automation in two very important industries 

in the country, mining, and the agri-food sector, for several years. MIRS, a local engineering company, has installed 

more than 50 robots in different mining applications. MIRS has managed to export these solutions to the whole world, 

showing that the engineering in Mining of Chile, are pioneers in this industry. The other export sector in Chile is the 

agri-food sector, and the example of agricultural Garces that exports cherries to the US, are benchmarks in automation 

in this sector. Uruguay and Paraguay are beginning to robotize their factories, they are far behind Argentina and Chile, 

but they are accelerating automation in power plants. 

4-2-2- Andean Region  

It is made up of the following countries, Ecuador, Peru, Colombia, Venezuela, and Bolivia. In these countries, 

robotization is very incipient, and very few robots are imported per year, although it should be noted that, Colombia, 

Peru, and Ecuador, are training many engineers in the area of robotics because their universities have prepared for 

industry 4.0, with very important investments in the equipment of the main robot brands. The main industries that are 

being automated in these countries are mining, suppliers of parts for the automotive sector, and the agri-food sector.  

4-2-3- Central America 

There are little data on the imports of robots that are being produced in the industries of these countries, but Costa 

Rica has positioned itself as an industrial reference in the region for the ease of exporting its products and for the 

investments received by American multinationals in the pharmaceutical sector and is having a very large development 

in this area, creating an important industrial fabric and improving the experience of robotization in its factories. 
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4-3- Mecademic 

Having studied what the automation industry offers, what it needs, and what it was missing, we seek to be the first 

point of access into robotics for companies looking to automate for the first time, as well as an ongoing solution for 

already automated organizations. Mecademic Robotics is committed to making the use of small industrial robots more 

accessible by breaking down barriers and obstacles to entry into the world of automation. All our robots are plug & work 

automation components with a tiny footprint, low overall cost, and are easy to integrate and operate. 

Our flagship robot, the Meca500 (Figure 9), is a slave component rather than a complex stand-alone system making 

it very easy to incorporate into any automation application. Users greatly benefit from the simplicity and lower costs, as 

our robots don't require any training courses, software installations, additional option purchases, or regular maintenance. 

Most importantly, Mecademic robots consume less than 30 W on average, no more than a typical laptop computer. As a 

robot manufacturing company, Mecademic is also committed to the environment and future generations. All our robots 

are designed, manufactured, and assembled in Montreal, Canada, using the industry’s highest-quality components. They 

are built entirely from aluminum, with all waste chips recycled, using minimal energy and eco-friendly machine working 

fluid. Our products have the distinction of being the world’s smallest, most compact, and most precise industrial robot 

arms [120]. 

 

Figure 9. Mecademic Robot: a) Meca500 Robot Arm [121], b) Small Size, c-d) End-Effector and accessories [122, 123] 

4-4- Robot Operating System (ROS) and Advanced Robotics 

ROS [124] (Robot Operating System) is the current standard in robot programming. It is not an operating system that 

replaces Linux or Windows but a middleware that increases the system's capabilities to develop Robotic applications. 

ROS was born in 2006 within the STAIR Project [125], from which Willow Garage was born, and later the OpenSource 

Robotics Foundation [126], which is the foundation that coordinates the distribution of software and promotes its 

adoption by the ROS community. ROS is fundamentally Open Source, which fosters the creation of a community made 

up of thousands of developers, organizations, companies, and universities (Figure 10). 

 

Figure 10. Software layers in a Robotics Application 

ROS provides libraries, standards, tools, documentation, and resources to create robotic applications. These robotic 

applications are formed by collaborating nodes, forming a computation graph (Figure 11). Nodes can publish or 

subscribe to data and receive synchronous (services) or asynchronous (actions) requests. Drivers to access sensors or 
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command motors are nodes in this graph. Part of this graph can be developed independently or reused by other developers 

in the ROS community. The essential aspect of this scheme is standardization. There are specific structures and 

methodologies for developing software in ROS, which allows for easy reuse of third-party code or understanding and 

collaboration on other projects. Data formats are standard, allowing software reuse. For example, the format of a message 

containing an image is standard. All drivers for all cameras in ROS produce data in the same format. Many tools or 

programs can subscribe to this message format. 

 

Figure 11. Computation Graph of a smart robot behavior for the Kobuki robot [127] 

In recent years, ROS has evolved into a second version, ROS2 [128], which is a complete redesign [129] that 

incorporates aspects required by critical environments and industrial areas such as communications through DDS, 

Security, multiplatform, embedded software, or real-time. In ROS, remarkable communities contribute to a federal model 

for developing packages, highlighting Nav2 [130, 131] as a reference package for robot navigation, PlanSys2 [132, 133] 

for planning in Artificial Intelligence, or MoveIt [134, 135] for manipulation or diffusion in specific environments such 

as ROS Industrial [136] or ROS Agriculture [137]. All manufacturers of robots, sensors, or actuators are interested in 

developing their ROS packages, as they are aware that this makes them more attractive. ROS runs into mobile robots, 

robotic arms, space robots, self-driving cars, submarines, drones, or any robot that can be programmed (Figure 12). 

 

Figure 12. Robots using ROS. a) The Robonaut at ISS [138], b) PR2 [139] and Turtlebot2 [140], c) A mobile base with a 

robotic arm [141], d) An autonomous car, and e) A submarine robot 
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5- Present and Future of High Performance in Robotics 

5-1- Industry 4.0 and Digital Manufacturing 

Industry 4.0 (I4.0) refers to a digital initiative that uses advanced technologies throughout the organizations’ value 

chains to interconnect processes, people, and products [142, 143]. Due to this digital interconnection, Digital 

Manufacturing (DM) is evolving into a “smart” factory centered on a digital system. In the DM environment, enabling 

technologies are connected to the Internet to design, redesign, and analyze the enterprises’ processes and products [144, 

145]. 

Nowadays, autonomous robots are being used in manufacturing since they can interact with other devices and make 

autonomous decisions using algorithms [146]. Specifically, cobots are incorporated into manufacturing processes to 

safely interact with humans in their workplace, supporting their daily tasks [147, 148]. Although human-robot 

collaboration increases productivity and competitiveness through the operations’ improvement [149, 150], challenges 

such as uncertainty, acceptance, trust, and confidentiality are acknowledged [151, 152]. Moreover, to reach the expected 

benefits, cobots need to be interconnected with other “smart” devices and people to ensure real-time decision-making, 

which implies connectivity and data analysis challenges [153-155]. Therefore, using cobots in manufacturing generates 

process transformations, technology adoption, and individual, departmental, and organizational changes [156, 157]. 

Consequently, enterprises will require guidelines to adopt I4.0 toward human-robot interaction in digital systems and 

help them keep their advancements and investments aligned with their strategic transformation plan [158]. Furthermore, 

due to the high investment in adopting robots, it would be relevant to make an exhaustive analysis using engineering 

economy tools and concepts of process efficiency in order to determine where it is appropriate to place them and 

substantiate their benefits. Figure 13 provides a general visualization of the main stages in an I4.0 and DM process. 

 

Figure 13. Main stages in an I4.0 and DM process 

5-2- Robotics for Architecture and Construction 

The construction industry is a historically complex sector. In the late 20th century, the increasing difficulty to establish 

efficient practices became largely evident, indicating the need for a deep reassessment of its foundation. Moreover, the 

slow growth of the architecture, engineering, and construction (AEC) sector compared to other sectors is evident in terms 

of productivity [159] and in the failure of planning mechanisms and the inability of plans to represent the reality of on-

site construction [160-162]. In such a framework, a strong impact is foreseen in the next few years for companies 

introducing advanced automation systems. Automation - alongside the global need for new and updated infrastructure 

and better and more affordable housing - can help shape the future direction of the industry [163, 164]. The key will be 

anticipating and preparing for the shift, partly by developing new skills in the current and future workforce [165, 166]. 

Within this context, the Master in Robotics and Advanced Construction (MRAC), directed by Alexandre Dubor and 

Aldo Sollazzo at the Institute of Advanced Architecture of Catalonia (IAAC), investigates the emerging design and 

market opportunities arising from novel robotic and advanced manufacturing systems, focusing on expanding the 

application of automation and robotics in the AEC sectors. The program is organized through three terms, each of them 

specifically tailored to address contemporary challenges: design to manufacturing, sensing and data analytics, and 

human-machine interactions. Through seminars, workshops, and research studios, the Master seeks to investigate 
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innovative solutions involving students in hands-on research. Over its first four editions, students developed solutions 

integrating vision-based systems to redefine management and logistic operations as part of the AEC sector. The master 

is training a new generation of experts in the field, which will lead the digital transformation of the AEC sector through 

the introduction of automation (Figure 14). 

 

Figure 14. Construction Robots Applications: a) Parametric design and fabrication. b) Prefabricated wood structure. c) 

Custom ceramic facades. d) On-site 3D printing. Used with permission from IAAC and Cumella Copyright 

5-3- Robotics for Aerospace Industry 

Robotics and Automation have been used for many years in the Aerospace Industry since it was deployed in 1937 by 

Thomas Speller of Gemcor Corp. It was the ability to apply clamp load during drilling before installing a rivet that 

enabled wider deployment. This process minimized burrs and eliminated SWARF at the joint interface during drilling 

ensuring structural fatigue and fluid-tight joints. From modest beginnings, this technology included bolted joints, 

composite materials, and major assembly. However, its continued use will require changes to aircraft design and a new 

approach. Historically, major players have planned, invested, installed, and implemented numerous solutions to meet 

increasing market demand for their products. The industry has grown tremendously, and the entire world has adopted 

robotic technologies where global aerospace markets (Figure 14) are expected to reach USD$7.23 billion by 2030 from 

US$2.84 billion in 2021-2022 [167]. Currently, aircraft assembly presents specific challenges posed by automation 

systems, including aircraft design, requalification, large manual content, access, and tight tolerances. Space exploration 

has benefited from these lessons learned and has applied them to numerous missions to Mars (Figure 15), the Moon, and 

other celestial bodies [168-172], where there is an important development of robots that simulates some features of 

biomimicry and biomechanics to improve locomotion in extreme environments [173-177], called bioinspired robots. 

 

Figure 15. Aerospace Robotics Market Size, By Region 2018 – 230 (USD Billion) [178] 
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However, many challenges remain for automated aircraft assembly, including fastener variation and different material 

combinations that require more research, testing, and qualification. The industry recognizes that design has a key role to 

play in enabling automation (Figure 16). Solutions must overcome the need for dedicated equipment allowing them to 

be shared between assembly jigs; moved between floor levels and access to either side of the airframe. Therefore, higher 

quality, reduced tooling, and production costs have been obtained compared with manual methods [179-181]. In contrast 

to the automotive industry, automation in aerospace in both manufacturing and mission operations need to be much 

broader covering processes that may be described as dangerous or un-ergonomic; repetitive or dirty. Moreover, despite 

the general reduction in the cost of computing power, there is still a heavy reliance on traditional CNC controllers within 

aircraft automation, rather than on adopting lower-cost robotic controllers and PLCs. Solutions may incorporate sensing 

and measurement systems to validate position or ensure quality [182-184]. 

 

Figure 16. Aerospace applications: a) Perseverance Rover and WATSON (NASA/JPL [185]), b) Airbus Finkenwerder 

(Hamburg) H245 A320 production line (Airbus [186]) 

In this context, Latin America has a vast potential to become not only a large-scale manufacturing and integration 

hub for aerospace components but also be in charge of their design. The selection of Costa Rica as one of Intel’s main 

manufacturing locations is a well-known case study of the impact high technology investment had in the region [187]. 

Before 1996, Costa Rica’s major exports were agricultural-based (coffee, bananas, etc.) however, after Intel Costa Rica 

started its operations in 1997, net exports and the economy as a whole grew at a significantly higher rate. Additionally, 

STEM education improved and a domino effect in direct investment attraction to the country increased the number of 

companies involved in the manufacturing of high technology: healthcare components, software development, and even 

space-related start-ups. The country’s gross domestic product (GDP) also has grown significantly, and Costa Rican 

nationals now design the Intel chips used worldwide. Similar examples exist across Latin America making it one of the 

most well-positioned locations to invest and manufacture aerospace components. 

5-4- Smart Agriculture 

The demands of a growing population and a developing global economy will require an increase in agricultural yield 

of 70% over the next 30 years [188]. However, this achievement is jeopardized by the limited extension of agricultural 

lands, the prospect of climate change, and the need to reduce inputs to guarantee the sustainability of agricultural systems. 

The need to create efficient and productive agricultural systems has motivated the growth of precision agriculture (PA) 

and the adoption of new technologies that are autonomous, disruptive, and data-intensive (Figure 1). This has led to the 

agricultural sector undergoing a spectacular digital transformation [189]. The role of GNSS is fundamental in the 

absolute positioning and has enabled specific applications in agriculture, with four of which the authors are very closely 

involved: (1) precision crop protection, (2) variable rate application, (3) agricultural UAVs, and (4) autonomous tractors, 

robots or UGV. 

Precise spraying distribution and smart mechanical weed control equipment can range from field/region level to Drop-

On-Demand technology or individual plant with savings of over 75% [190, 191]. The basic components of these weed 

control systems involve electronics, sensors, mechatronics, computer vision, navigation control devices, and computer 

decision support systems. These integrated and functioning systems allow it to be said that herbicide application or 

physical removal of weeds is more accurate and efficient. Achieving sustainable intensive agriculture requires a better 

adjustment of the inputs used (seeds, nutrients, water, etc.). Specific farm tools based on historical satellite imagery, 

using vegetation indices, together with other remote sensing tools closer to the crop, make it possible today to establish 

different management zones on a plot [192]. Management zones are a breakthrough in the field of precision farming, 

however, even more so will be automated management zones using new artificial intelligence techniques. Such 

demarcated zones could then be used to supply various inputs in the field using variable-rate methods. 
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Particularly relevant is the role that UAVs are playing in agriculture over the last few years (Figure 17-a). They are 

becoming a powerful management tool in crop fields and are enabling farmers to reap the benefits of precision agriculture 

[193]. This has been possible due to their advantages as compared to terrestrial or other sensing platforms, such as their 

high flexibility to fly at low altitudes to collect detailed crop information, ease of operation, availability of high-

resolution images, acquisition of data on demand, and, foremost because their cost has been significantly reduced [194]. 

In this sense, the use of UAVs has rapidly expanded for the determination of multiple agronomic traits, such as LAI 

using RGB and multi-spectral imagery [195], physiological indicators based on hyperspectral images [196], and 

chlorophyll fluorescence [197], plant disease detection [198], 3D reconstructing for phenotyping purposes [199], and 

others. Additionally, in Latin America, a microgravity machine for space agriculture is under development with bio-

automation fundamentals [200-202], and a bioreactor was built to establish conditions of carbon dioxide concentration 

levels, atmospheric pressure, temperature, Martian cycles of day and night, hyperaridity, and UV radiation (Figure 17b). 

 

Figure 17. a) Experimental plots of different cultivars of cereal that are evaluated using drone technology, b) Controlled 

environment agriculture system for space applications by UTEC [203] 

When it comes to ground robotics, we can see that robotic systems and related technologies are growing rapidly, 

while costs are decreasing compared to the benefits that they offer [201, 202, 204]. These ground systems require a 

certain degree of intelligence to realize the agriculture tasks, which may even involve coordination with operators [205]. 

For weed control by robotic systems, the integration of perception systems, to detect and classify weeds should be 

considered. Once the weeds have been detected, the treatment has to be carried out by an implement that can use different 

mechanisms for weed control. Weed control by mechanical weeding and precision spraying is possibly one of the most 

demanded tasks on autonomous agricultural platforms. In this respect, weed spraying by automated and/or robotic 

systems has yielded acceptable results and has reduced herbicide use by varying percentages depending on the automated 

spraying systems used, the type of crop, and the structure of the environment (Figure 18). In addition, in Latin America 

was proposed a mechatronics design of a tripteron cartesian-parallel agricultural robot mounted on a 4-wheeled mobile 

platform to perform seed sowing activity, shown in Figure 19 [204], which is a promising approach for agriculture and 

forestry (according to the World Bank) [206]. 

 

Figure 18. A fleet of autonomous sprayers working in a coordinated manner developed by SwarmFarm Inc [207] 
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Figure 19. Mechatronics Design of Agricultural Robot [204] 

Another very interesting approach is the precise treatment of weeds with heterogeneous fleets of small robots, 

centrally coordinated or distributed, which can even collaborate with operators. In recent years, some research groups in 

conjunction with agricultural and technology companies have invested time and effort in developing robot fleets that 

integrate fleet supervision and planning [208-210]. Thus, a fleet approach requires the integration of supervision systems 

[211] to monitor the work that each of the robots performs during the joint execution of the agricultural task or mission. 

It is also essential to have a planner that allows for defining an optimal route for each robot, as well as the task it must 

perform during the route, ensuring full coverage of the different weed stands [211-213]. And, on the other hand, the 

supervision system may be distributed, so that there will be modules of the system running on the robot itself capable of 

detecting, analyzing in real time the information provided by the robot's sensors and subsystems, faults that in some 

cases can be resolved by the robot itself. Other supervision modules will have a view of the whole, being able to detect 

problems involving two or more robots. These last modules will run on a base station computer where at least one 

operator will follow the execution of the agricultural task by the fleet of robots through a Graphical User Interface (GUI) 

that receives real-time information from all the robots in the fleet. Precision agriculture and robotics are enabling factors 

for enhancing the adoption of best management practices and achieving sustainable intensive agriculture. 

5-5- Artificial Intelligence and Computational Social Science 

Artificial Intelligence (A.I.) gets a bad reputation as it is rarely properly understood in its entirety [214]. Historically, 

it is common to see A.I. portrayed in the media and public discourse as the imitation of those features that we identify 

as human. Although this is partially true, the avant-garde computer scientists that pushed intelligent computers have 

focused on any capable activity for the machine; not only those we possess [215, 216]. A.I. aims at the development of 

higher-level processing of information and decision-making such as abstraction, perception, recognition, or learning by 

experience [215, 216]. The A.I. field thus is recognized by great achievements like IBM’s Deep Blue versus Kasparov, 

alpha vs Go champion, or the impressive prediction power of deep learning [215-217]. With the inclusion of physical 

robots or simply unseen algorithms, industries around the world have adopted A.I. or have faced an increasingly AI-

driven market. Table 6 shows the results of A.I. adoption in several industries according to a McKinsey survey in 2020. 

This survey also reveals that around half of the participants claimed that their organization used A.I. at least in one 

business function [218-221]. 

To accurately represent the unique potential, it is important to include other major fields of artificial intelligence. For 

robotics and alternative views on social systems, these contributions rely on the computational development of 

autonomous agents that interact with their environment, for example, human-robot collaboration [222]. Robotics, from 

an A.I. perspective, has focused on the capability of an independent agent to interact with its environment for a specific 

task. In this field, engineering and computer science have been central to developing electro-mechanical systems, which 

entails a complicated relationship between sensors, actuators, and an effective collection of algorithms as an 

intermediary. Another applied focus of A.I. is its use for public policy or social good, which has received considerable 

attention from governments and public institutions [223, 224]. The large Latin-American drive for digitalization has seen 

support to develop A.I.-based solutions, facing the main challenges of subpar digital infrastructure, STEM education, 

and inequity in the use of A.I. benefits [223, 225, 226]. 
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Table 6. A.I. adoption in the industry by sector and activity [218] 

Activity Sector Percentage (%) 

AI-based enhancements of products Product and/or service development 24 

Product-feature optimization Product and/or service development 21 

Service-operation optimization Service operations 24 

Predictive service and interventions Service operations 19 

Customer-service analytics Marketing and sales 17 

Customer segmentation Marketing and sales 14 

Risk modeling and analytics Risk management 16 

Fraud and debt analytics Risk management 12 

Yield, energy, and/or throughput optimization Manufacturing 15 

Predictive maintenance Manufacturing 12 

Optimization of talent management Human resources 10 

Performance management Human resources 7 

Logistics-network optimization Supply-chain management 9 

Inventory and parts optimization Supply-chain management 9 

Capital allocation Strategy and corporate finance 8 

Merge and Acquisition support Strategy and corporate finance 6 

A general evaluation of the penetration of A.I. at the regional level shows the major impact seen so far is the use of 

machine learning, and its higher performance derivative, deep learning. The utilization of some of these low-cost 

applications of A.I. has been predominant considering the limited resources in the region [227]. The diffusion of data 

science applications has permeated into commercial and industrial activity, while A.I. research and development appear 

to be truncated. According to the Technology Report from MIT, the application of A.I. in Latin America has been 

adopted by a considerable fraction of businesses, but new research and entrepreneurship have been limited by talent 

migration [227]. Furthermore, the differences with societies that have an advanced A.I. ecosystem can bring direct 

challenges to its development. For example, regulatory practices like the EU’s General Data Protection Regulation 

present an additional challenge to Latin American countries without sufficient institutional infrastructure. Overall, there 

is a considerable effort to support A.I. in Latin America [218, 223, 227–229], and the limitations today can benefit from 

continuous work on national policies and regional collaborations. 

6- Conclusion and Future Insights 

This paper states: a) the first science manuscript in history, where the main technical and research data about the state-

of-the-art of robotics in Latin America is shown; b) a multi-collaborative study between international robotics institutions 

that integrate the academy and industry; c) the most important and growing fields of robotics development in Latin 

America. The study context describes Mechatronics and Robotics (MaR) as the main and most important field that brings 

the best opportunities for Industry 5.0 implementation, which includes industrial, collaborative, and mobile robotics. 

Therefore, Latin America is achieving important outcomes related to the academy, industry, government, and 

entrepreneurship. In addition, the exponential innovations of MaR have great expectations that will provide enhanced 

benefits in the future. Thus, the research and development of these technologies show a potential impact with the 

integration of Industry 4.0 and Digital Manufacturing, Architecture and Construction, Aerospace, Smart Agriculture, 

and Artificial Intelligence and Computational Social Science, in order to promote new job open positions for human-

robotic collaborative tasks to maximize productivity and accuracy. 

To our knowledge, there are not any published data in Scopus or Web of Science about the number of robots used in 

many countries in Latin America, so the most important contribution of this manuscript is that the authors looked for the 

information by asking some companies and government organizations, achieving the successful results shown in Section 

3. In addition, three growing robotic companies have been taking the manufacturing market: ABB and Kuka; on the 

other hand, Mecademic is showing great relevance in the field of education (kinematics and dynamics); hence, Robot 

Operating System (ROS) has shown high versatility on simulation of diverse locomotion and manipulation tasks. 

Furthermore, there is one type of robot that is getting interest in the science community; it is called a bio-inspired robot, 

which is a system with biological characteristics, usually similar to animals. Due to its flexibility and exoskeleton 

morphological configuration, it is used for exploration and aerospace applications. Finally, regarding the information 

presented, Latin America is considered an important location for investments to increase production and product 

development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics 

and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. 

This paper is expected to be the most important guide for the future of robotics in Latin America. 
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