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Abstract 

One of the main challenges when training or fine-tuning a machine learning model concerns the 
number of observations necessary to achieve satisfactory performance. While, in general, more 

training observations result in a better-performing model, collecting more data can be time-

consuming, expensive, or even impossible. For this reason, investigating the relationship between 
the dataset's size and the performance of a machine learning model is fundamental to deciding, with 

a certain likelihood, the minimum number of observations that are necessary to ensure a satisfactory-

performing model is obtained as a result of the training process. The learning curve represents the 

relationship between the dataset’s size and the performance of the model and is especially useful 

when choosing a model for a specific task or planning the annotation work of a dataset. Thus, the 

purpose of this paper is to find the functions that best fit the learning curves of a Transformers-based 
model (LayoutLM) when fine-tuned to extract information from invoices. Two new datasets of 

invoices are made available for such a task. Combined with a third dataset already available online, 

22 sub-datasets are defined, and their learning curves are plotted based on cross-validation results. 
The functions are fit using a non-linear least squares technique. The results show that both a bi-

asymptotic and a Morgan-Mercer-Flodin function fit the learning curves extremely well. Also, an 

empirical relation is presented to predict the learning curve from a single parameter that may be 

easily obtained in the early stage of the annotation process. 
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1- Introduction 

Machine learning (ML) models have been applied to address problems over different domains [1] and represent a 

fundamental tool for solving problems in which traditional statistical methods cannot be used. However, despite its 

popularity, ML is mainly guided by empirical experience rather than theory. For this reason, several fundamental choices 

that are critical to obtaining a good-performing ML model represent a challenge in the ML pipeline. For instance, given 

an ML technique, one of the most challenging tasks is choosing the hyperparameters’ values [2]. Despite the vast ML 

literature, there are no formal rules for determining, given an optimization problem and an ML technique, the best 

parameters that will result in the best performance of the ML model. For instance, focusing on artificial neural networks 

(ANNs), there are no formal rules to design the topology in such a way as to maximize the performance of the ANN on 

a given task. 

Another relevant issue that ML practitioners must face concerns the number of observations that are necessary for 

achieving a good-performing model as a result of the training process. This task is particularly important, even in an 

epoch characterized by the availability of vast amounts of data. In fact, training an ML model using all the available data 

may require an unbearable amount of time and computational resources, and the performance improvement resulting 

from training a model with more data is, at a given point, negligible. 
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Thus, when dealing with vast amounts of data, a relevant issue is determining the minimum number of observations 

necessary to train a model in a way that can guarantee a satisfactory performance. On the other hand, determining the 

minimum number of training observations is an even more relevant challenge when focusing on problems characterized 

by the availability of a limited number of observations. For instance, in some domains, collecting data is a time-

consuming and expensive task, and, in some cases, collecting additional training observations is simply impossible. 

Thus, in such a situation, being able to decide whether the available observations are enough for a successful training 

process would reduce the cost associated with gathering additional observations. 

Despite the importance of this problem, the ML literature does not present significant contributions in this area [3], 

and, usually, the experience of ML practitioners and empirical methods guide the choice concerning the size of the 

training set. For instance, it is generally expected that the prediction skills of machine learning models improve with the 

amount and quality of data available for training. Nevertheless, it is also expected that, independently of data quality, 

there is likely to be a non-zero lower-bound error past which models will be unable to improve [4]. Thus, if there is a 

limit above which adding extra data to train models brings small or no gains, what is that limit? The answer to this 

question is especially useful to have an estimation of how many samples need to be annotated when training a model 

using a new dataset. 

As previously pointed out, a limited number of studies have been proposed in the literature for very specific 

applications. In Beleites et al. [5], the authors investigated the performance of an ML model as a function of the training 

sample size in bio spectroscopy classification tasks. In particular, they analyzed the tradeoff between performance and 

training set size for small sample size cases, with up to 25 observations per class. The authors show that around 100 

samples are usually needed to achieve good performance on the considered problems and ensure good performance on 

unseen data. While the study is interesting for the specific application, the findings cannot be generalized to other 

benchmarks and tasks. Another study dealing with classification tasks in bioinformatics was proposed by Dobbin and 

Simon [6]. They developed a method to determine the size of the training set for a prediction task in the context of high-

dimensional data (i.e., where each observation consists of a significant number of variables). The method is based on a 

parametric probability model, and the authors showed that many prediction problems do not require a large training set 

for building a classifier with satisfactory performance. Similarly, Dobbin et al. [7] investigated training set size for the 

task of building a classifier for gene expression microarray data. They presented a model-based approach to determining 

the sample size required to adequately train a classifier. Based on the experimental results, they concluded that sample 

size can be determined from three quantities: standardized fold change, class prevalence, and the number of genes or 

features on the arrays. Based on these findings, they developed a tool for the prediction of dataset size for building gene 

expression classifiers. 

A more general study investigated the influence of the training data on the classification error of multiclass classifiers. 

To make a concrete statement, the authors focused on the k-NN classifier because of its large adoption in industrial 

settings. The proposed method is tested on four different multiclass problems, showing different qualities in terms of 

training set size estimation [8]. Despite the existence of some works, the problem is still poorly investigated in the ML 

literature. The existing studies focused on simple ML techniques, and, to the best of our knowledge, no studies 

investigated the effect of the training set size on more advanced and state-of-the-art deep learning models. To answer 

this call and fill the existing gap in the ML literature, in this study, we investigate the effect of fine-tuning the training 

set size on the performance of a transformer-based model [9]. 

The work stems from the importance of the relationship between dataset size and model quality. Having access to 

such a relationship would help practitioners estimate how much data they would need to collect and annotate to obtain 

satisfactory modeling results. The relation between the dataset size and the model performance (or error) may be given 

by a graphical representation, which in this work, following existing literature [10], is called the learning curve. It should 

be noted that “learning curve” is a term widely applied, often with different meanings. For example, the learning curve 

considered in this work is different from the curve that displays the value of any objective function as a function of the 

number of epochs or iterations used for optimization. 

For every new batch of samples made available, the existing dataset may be trained and evaluated, and the dataset 

size may be plotted against a performance metric (ex: the F1 score or the error rate). Such a curve reflects the concept 

of learning curves used not only in this work but also throughout the literature [10]. This representation is extremely 

useful to understand not only the learning pace of a model for a given dataset but also to understand whether there is a 

point after which adding more samples to the dataset is useless to improve the model performance. Also, extrapolating 

the learning curve may give a preliminary indication of how many examples to collect to achieve a specific performance, 

thus allowing one to judge when data collection can be stopped [10]. 

Another essential keyword in this work is transfer learning, which involves knowledge transfer across domains or 

tasks. It challenges the common assumption that both training and test data should be drawn from the same distribution 

[11]. As the usage of learning curves is transversal to any kind of model that requires data, it is also applicable in the 

fine-tuning stage of a pre-trained model. 



Emerging Science Journal | Vol. 7, No. 5 

Page | 1493 

Most of the research studies on learning curves focus on two specific subjects: finding a function that fits learning 

curves and predicting the parameters of such a function. Learning curves for machine learning models such as decision 

trees [12], SVMs, or KNNs [13] generally show a very good fit for a power law. Moreover, exponential [14] and 

logarithmic [15] functions may also be a good fit for such models. As for deep learning models, studies mostly claim to 

find the best fit for power-law behavior [10]. It is important to highlight that such a relationship is considered empirical 

and is yet to be explained by theoretical work [4]. 

Also, the procedures to plot a learning curve on the existing research works are not strict. Some evaluate the model 

performance using holdout, having a fixed test set that is independent of the training dataset size [16–18]. Other 

researchers use cross-validation, in which the k-fold size increases with the dataset size [12–14, 19, 20]. 

A few works were found focusing on what determines the parameters of the fit functions. It was found that the 

asymptotic value of the power law and its exponent could be related [18, 21]. Mukherjee et al. [22] construct empirical 

learning curves for several molecular classification problems. Yet, most studies on learning curves for deep learning 

models consider the learning phase of a deep learning model trained from scratch and not the fine-tuning phase. One of 

the few works that analyze learning curves for the fine-tuning stage is presented by Hoiem et al. [21], who focus 

specifically on analyzing the learning curve to compare performance between models and not on the prediction of the 

curve itself. 

Considering the problem of having a better knowledge of learning curves and the reduced literature about it, two 

objectives are defined. First, to predict which functions would better fit the learning curves for a specific transformer-

based model (LayoutLM), data originated from three datasets of invoices. Second, to define an empirical formula to 

estimate the learning curve parameters when only a few samples are available. 

Knowing the learning curve of a model with none or few data available may provide a useful estimation of the 

minimum size of a dataset needed to obtain consistent results after training. This depends on several factors, such as 

dataset quality, type of data used, model algorithm and hyperparameters, as well as training techniques. Consequently, 

this work is considered an empirical approach to the problem. Nevertheless, it may be used as a solid reference by authors 

or users who wish to use the same model to extract information from similar sources (invoices). Furthermore, it is also 

considered a valid and useful contribution to, as advocated by other authors, make empiricism on data mainstream [23, 

24] and promote the usage of learning curves as part of a standard learning system evaluation [21]. One example of how 

such empiricism has gained importance in the practical usage of deep learning models is the Model Cards of the well-

known Hugging Face repository (https://huggingface.co/docs/hub/model-cards). Such a tool allows the users to easily 

see how a model has performed when trained on a wide variety of datasets. 

Additionally, two new datasets with invoices, including annotation of relevant fields, are made available. Those were 

gathered, curated, and pre-processed by the authors for this specific research work. Yet, such datasets will certainly be 

useful to other researchers or users who want to apply supervised learning to document data extraction. All in all, the 

contributions of the paper are the following: 

• A method to estimate the size of the dataset necessary for fine-tuning a transformer-based architecture with a 

certain performance; 

• The availability of two new datasets that may be used by ML practitioners interested in computer vision tasks and, 

in particular, the automatic recognition of relevant information from invoices; 

• A simple and interpretable formula for estimating the necessary size of a training set. The formula can be used in 

different settings and will provide a baseline for future studies aiming at analyzing the tradeoff between the model’s 

performance and the dataset’s size.  

In the subsequent sections, the used datasets and models are described, as well as the methods to create sub-datasets 

and plot the learning curves. A brief explanation concerning which functions fit the curves and the empirical relation to 

define the function parameters is also provided. Then, the results are presented and discussed. In the final section of the 

manuscript, we summarize the main findings of this work and suggest possible future research avenues. 

2- Material and Methods 

2-1- Datasets 

All the samples used in this work are digitalized invoices or receipts, being provided from 3 different origins. For the 

sake of clarity, the three original datasets are named FLH, SROIE, and OWN. Each comprises a set of pictures of 

invoices, having each document its corresponding annotation file with the text transcription of relevant fields. 

The first original dataset is named after the owner of the invoices, which is Feels Like Home, Mediação Imobiliária 

(FLH), a Portuguese company in the tourism industry that manages apartments for short renting. Every document 

represents a purchase made by FLH, for a total of 813 samples. The second dataset is from the SROIE (Scanned Receipts 

OCR and Information Extraction) competition [25], including 727 documents. Finally, the OWN dataset [26], which is 

also original, includes 190 invoices that belong to one of the authors of the paper. 
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All original datasets include the following annotated fields: merchant name, merchant address, total amount, and date 

of the invoice. Moreover, FLH and OWN datasets include extra annotated fields: invoice number, tax identification 

number of the merchant, tax identification number of the buyer, and VAT amount. Both FLH and OWN datasets have a 

considerable part of low-quality and noisy pictures. Also, the language of the invoices is English for the SROIE dataset 

while Portuguese for the other two datasets. Such factors are thought to increase the heterogeneity of data, therefore 

enriching the present analysis. 

To increase the diversity of learning curves to analyze, 19 sub-datasets are created based on both variations and 

combinations of the 3 original datasets. While such sub-datasets are just parts, unions, or transformations of the original 

datasets, it is thought that they provide a wider variety of learning curves to study. The combinations considered in this 

study are as follows: 

• #1, #2, and #3 represent each of the original datasets; 

• #4, #5, and #6 each represent the union of two original datasets; 

• #7 represents the union of the three original datasets; 

• #8, #9, and #10 represent each of the original datasets, only modeled for the fields “merchant name” and “merchant 

address”; 

• #11, #12, and #13 represent each of the original datasets, only modeled for the fields “total amount” and “invoice 

date”; 

• #14, and #15 represent each of the original FLH and OWN datasets, only modelled for the fields “VAT amount”, 

“buyer tax id”, “merchant tax id” and “invoice number”; 

• #16, #17, and #18 represent each of the original datasets with a specific transformation: after performing OCR on 

the pictures, the text is sorted reversely; 

• #19, and #20 represent each of the original FLH and OWN datasets, selecting only merchant names which start 

with letters A-L; 

• #21, and #22 represent each of the original FLH and OWN datasets, selecting only merchant names which start 

with letters L-Z. 

2-2- Model 

LayoutLM [27] is a Transformers-based model which jointly models interactions between text and layout information 

across scanned document images. LayoutLM has demonstrated state-of-the-art results across several document image 

understanding tasks, including the extraction of relevant information from scanned documents. For this reason, it 

represents the ideal model to be considered in the experimental phase. LayoutLM enhances the performance of deep 

neural networks as it overcomes two main limitations of existing models. In particular, existing models are strongly 

dependent on human-labeled training samples and do not exploit the availability of vast amounts of unlabeled training 

samples. Second, they used to leverage pretrained computer vision models but without considering joint training of 

textual and layout information. 

To overcome these limitations, LayoutLM represents input textual information by text embeddings and position 

embeddings and relies on two additional types of input embeddings: a two-dimensional position embedding representing 

the relative position of a token within a document and an image embedding for representing scanned token images within 

a document. While the model does not process images directly, a pre-processing phase performs OCR converting the 

images to their text and corresponding bounding box coordinates. Then, text and coordinates are tokenized to provide 

input for the model. A pre-trained model is made available so it may be fine-tuned for specific tasks. Similar to BERT, 

LayoutLM is fine-tuned by initializing with the pre-trained weights, plugging in a specific model for the downstream 

task, and training the parameters end-to-end using labeled data. This way, weights are obtained both from unlabeled and 

labeled data in a semi-supervised [28] manner. 

To avoid heavier computations, the pre-trained model chosen is LayoutLM Base, with 110 million parameters. The 

model hyper-parameters are mostly based on the ones presented in the LayoutLM presentation article [27]. After running 

a brief parametrization, the original parameters are kept, except for the number of attention heads which was modified 

from 12 to 8. The choice of maintaining the original set is motivated by the result achieved after a preliminary tuning 

phase, in which we tried to modify some of the existing parameters’ values. In particular, we did not observe a 

performance improvement after changing the parameters’ values with respect to the ones used in the LayoutLM paper. 

Thus, we decided to maintain the original set of parameters’ values, and we only modified the number of attention heads 

from 12 to 8 as competitive performance can be achieved by also reducing the computational effort. 
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3- Experimental Settings 

This section reports the experimental settings used in the experimental campaign. Figure 1 summarizes all the steps 

of the experimental pipeline, from the data collection and preprocessing to the determination of the formula to estimate 

the size of the dataset. 

 

Figure 1. Flowchart reporting the steps performed in this study 

The data preparation steps comprised gathering the documents, scanning, and preprocessing, as well as the definition 
of 22 sub-datasets, as described in the previous section. To plot the learning curves, the first 200 samples of each sub-
dataset are split into batches of 5, while the remaining samples are split into batches of 50. The increase of batch size 
from 5 to 50 is done only to reduce computing time once the learning curve becomes almost flat after around 200 samples 
for the used sub-datasets. This iterative process correctly simulates the real use case of training and testing while batches 
of annotated samples become available. For every iteration, the cumulative batch is modeled through 5-fold cross-

validation, thus ensuring the robustness of our results and findings. F1 was used to assess the results, and we resorted to 
the Python package Seqeval [29] for computing the score. Considering that the classes are equally important, the option 
“micro” is used to average the score over the classes. Thus, the evaluation is made at the word level. F1 is computed for 
a multi-class problem, yet it excludes the correct predictions on the class “other”, which represents the tokens that are 
not labeled as relevant fields. The relation between sub-dataset batch size and F1 score is plotted into the learning curve 
graph. Consequently, 22 learning curves are obtained, one for each sub‑dataset. 

Given the shape of the learning curves, three functions of different families are chosen as possible candidates for 
fitting. These are the Morgan-Mercer-Flodin function (MMF4) function (Equation 1), the Hyperbolic function (Equation 
2), and the Bi-asymptotic function (Equation 3). 

𝑓(𝑥, 𝑎, 𝑏, 𝑐, 𝑑) =
𝑎×𝑏+𝑐×𝑥𝑑

𝑏+𝑥𝑑
  (1) 

𝑓(𝑥, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑏1 + 𝑒 − 𝑐 − 𝑑(𝑥 − 𝑎) (2) 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =
−𝑎

𝑥−𝑏
+ 𝑐  (3) 

The three functions are fitted to each of the learning curves through a non-linear least squares technique, using the 
optimization.curve_fit method of the SciPy package for Python [30]. It should be noted that the fit is not applied to every 
point of the learning curve. For very small sizes of the sub-dataset, it is expected that the model is not able to learn 

enough to provide scores higher than 0%. Consequently, the learning curve develops only after a specific threshold, 
having usually an initial straight line with a 0% score. Figure 2 illustrates this 0-score initial stage of the learning curve, 
with a length equal to p. The fitting of the curve would expectably be affected by the initial stage, so such points are 
removed before applying the least squares technique. To evaluate the fit, the r2 score is applied by employing the method 
metrics.r2_score of the package Scikit learn [31]. 

Finally, a separate fit is applied to find a relation between p and one of the fit function parameters. This prediction is 

made by applying a separate linear regression to the relation between the initial stage size p (see Figure 2) and each of 
the parameters a, b, and c of the fit function 𝑓(𝑥, 𝑎, 𝑏, 𝑐, … ). Such relation between parameters is then represented by a 
new function, in which the learning curve may be represented by the parameter p. 

 

Figure 2. Learning curve with an initial stage with 0% score 
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4- Results and Discussion 

4-1- Curve Fitting 

The learning curves for each of the sub-datasets are displayed in Figure 3. It is noticeable how the curves present a 

similar shape, even though the maximum F1 score varies between ~0,78 and ~0,99. The presence of the 0-score initial 

stage is also evident for most curves. It is confirmed that a model such as LayoutLM is not suited to zero-shot learning 

when applied to data extracted from invoices, as in most cases, it returns a near 0% score when just a few samples are 

used for fine-tuning. 

 

 

Figure 3. Learning curves for all sub-datasets. Detail on the right side 

It should also be highlighted that a relation is visible between the value of p and the maximum value of the curve. 

The largest is p, the lower is the learning curve performance and its maximum score. Such a relation is explored further 

to empirically predict a learning curve for each sub-dataset based on the value of p. 

Figure 4 shows the boxplots for the r2 scores obtained for the best fit of each function to each sub-dataset. Both 

MMF4 and Bi-asymptotic functions present the best fit, with a median of 0,977 and 0,978, respectively. The Hyperbolic 

function has a slightly lower but still very good performance, with a median r2 of 0,938. 

Dataset Size  

Dataset Size 

F
1
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Figure 4. Distribution of r2 scores for each fit function 

The results show that, for this specific model and type of data (invoices), the shape of the learning curves may be 

represented by any of the presented functions: MMF4, hyperbolic, or bi-asymptotic. The fit for any of the functions may 

be considered excellent, and future works that use the same model and similar data may expect similar shapes for the 

learning curve. 

4-2- Curve Prediction 

Regarding the second objective of this work, a relation between the size p of the 0-score initial stage and the curve 

parameters is explored. The Bi-asymptotic function is used to study this relation, as it presents an excellent fit and has 

only three parameters. Figure 5 presents the best relation between each of the parameters a, b, c, and p, for the 22 

bi-asymptotic functions obtained in the previous curve fit. 

 

Figure 5. Best linear fit for relations between function parameters a, b, c, and p 

The linear functions obtained in the fit are: 

𝑎 = 0.447𝑝 + 8.341  (4) 

𝑏 = 0.461𝑝 − 6.271  (5) 

𝑐 = −0.0023𝑝 + 1.026  (6) 
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By replacing the parameters a, b, c of Equation 1 with the relations presented on Equations 4, 5 and 6, respectively, 

the following empirical relation is obtained: 

𝑓(𝑥, 𝑝) =
−0.447𝑝−8.341

𝑥+6.271−0.461𝑝
− 0.0023𝑝 + 1.026  (7) 

Figure 6 shows the boxplot with the distribution of r2 computed for the empirical curves for the 22 sub-datasets. 

Expectedly, the r2 median value of 0,86 is lower than the ones obtained with the least squares fit in the previous 

sub-section. Nevertheless, it would still be considered a good result for an empirical method that relates the learning 

curve function with only the parameter p. 

 

Figure 6. Distribution of r2 scores for the empirical relation 

Moreover, the relation between the bi-asymptotic function parameters and the size p (of the 0-score initial stage) 

represents a suitable empirical approach to estimating, with very few samples, the learning curve. This would certainly 

provide a good prediction on the number of samples needed for training and on the model’s expected performance. 

The main limitation of this work resides in its generalization. Although it was proven that the presented relations are 

valid for similar applications in which LayoutLM is used to extract data for invoices, this is an empirical method that 

needs prior confirmation before being used in other use cases. It is expected that when using different models, 

parameters, and datasets, other mathematical functions may be more suitable to fit the learning curves. Thus, we expect 

that this research will foster future research concerning the definition of a similar approach to different combinations of 

models and datasets. 

5- Conclusion 

This study focuses on finding the functions that best fit the learning curves of a model, as well as developing an 

empirical relationship between the initial shape of the curve and its parameters. Although empiricism of data has 

been encouraged by different authors, as well as the importance of learning curves to evaluate machine learning 

projects, a few works were found in the literature that analyzed learning curves. Within such works, only a few 

contributions analyzed learning curves on the fine-tuning stage of pre-trained models, none being applied to a similar 

use case. 

To answer this call, the paper presents three datasets, two of which are new to the research community, and the 

learning curves obtained by applying a pre-trained model (LayoutLM) to 22 combinations of the datasets. Then, three 

functions are fitted to the learning curves, and an empirical relation is found between the function parameters and the 

size of the initial stage of the curve. The presented results show an excellent fit of the three functions to the learning 

curves, as well as a good fit for the empirical relation. 

The two research objectives are achieved, and answers may be given. First, the hyperbolic and by‑asymptotic 

functions show the best fit for the learning curves. Second, the size p for which the model shows a near-0% performance 

can be easily related to the bi-asymptotic function parameters, thus allowing the prediction of the learning curve shape. 

This contribution is thought to be extremely useful to researchers or users that will use the LayoutLM model with 

similar datasets when planning the annotation process, as the number of samples that need annotation may be confidently 

predicted at a very early stage of the process. 
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