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Abstract 

In recent years, the field of Topic Modeling (TM) has grown in importance due to the increasing 

availability of digital text data. TM is an unsupervised learning technique that helps uncover latent 
semantic structures in large sets of documents, making it a valuable tool for finding relevant patterns. 

However, evaluating the performance of TM algorithms can be challenging as different metrics and 

datasets are often used, leading to inconsistent results. In addition, many current surveys of TM 
algorithms focus on a limited number of models and exclude state-of-the-art approaches. This paper 

has the objective of addressing these issues by presenting a comprehensive comparative study of 

five TM algorithms across three different benchmark datasets using five different metrics. We offer 
an updated survey of the latest TM approaches and evaluation metrics, providing a consistent 

framework for comparing different algorithms while introducing state-of-the art approaches that 

have been disregarded in the literature. The experiments, which primarily use Context Vectors (CV) 
Topic Coherence as an evaluation metric, show that Top2Vec is the best-performing model across 

all datasets, disrupting the tendency for Latent Dirichlet Allocation to be the best performer. 
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1- Introduction 

The volume of digitally available text has grown exponentially, rendering manual analysis of this unstructured data 

an infeasible task. Consequently, techniques that allow for automatic extraction of information, known as information 

retrieval, have become increasingly important. One such approach that aids in the analysis of this type of data is Topic 

Modeling (TM), which involves grouping similar data elements, often referred to as documents. This unsupervised 

learning technique, whose popularity has been on the rise [1], leverages the latent semantic structure of documents to 

cluster them according to their content while offering insights into their distinguishing characteristics. 

With the number of models proposed in the literature increasing, different evaluation mechanisms at the metric and 

dataset levels are used for their proposals [2]. This diversity of evaluation approaches significantly hinders the 

consistency and comparability of the different techniques introduced across models and applications. Although recent 

research has addressed this issue, the literature mostly focuses on either comparing only two models [3-5] or examining 

very specific contexts [4, 6, 7]. Among the existing studies, the research done by Lisena et al. [2] and Harrando et al. [8] 

stands out as the most comprehensive to date. They employ two and three datasets, respectively, to evaluate various 

algorithms representing distinct approaches to TM. Nevertheless, despite the works being recent, the models employed 

do not reflect the current state-of-the-art, lacking new approaches that have the potential to improve the obtained results. 

In this work, we aim to address the aforementioned limitation by incorporating algorithms that have emerged in the 

meantime, in addition to the ones that had the best performance in the studies of Lisena et al. [2] and Harrando et al. [8]. 

The algorithms used will be evaluated on the same datasets using the same evaluation metrics. This approach ensures 
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consistency and comparability across experiments, enabling a fair and meaningful assessment of the algorithms’ 

effectiveness for TM. 

The remainder of this work is organized into four sections. The next section comprehends the Theoretical 

Background, including context on TM, its algorithms, the evaluation metrics utilized, and a review of previous surveys. 

Subsequently, we present the methodology employed in our work, followed by a section dedicated to the description of 

the experiments conducted and the respective results. Finally, the last section concerns the conclusions drawn from the 

experiments and offers suggestions for future work. 

2- Related Work 

Topic Modeling (TM) falls under the domain of Natural Language Processing (NLP), being an unsupervised learning 

technique used to find latent semantic structures within a collection of documents. The fundamental idea behind this 

technique is to explore the concept that each document tends to address at least one specific topic, which can be 

characterized by a meaningful set of words.  

Traditionally, TM methods have adopted a generative probabilistic approach, wherein each document is viewed as a 

mixture of topics, and each topic is represented by a probability distribution of words. Nevertheless, some recent 

techniques follow a different approach: while each topic is still represented by a probability distribution over words, 

each document is considered to belong to a single topic. This shift from traditional approaches reflects an evolution in 

TM techniques and highlights the diversity of methods employed in contemporary research. 

TM allows users to perform tasks at a much faster pace while reducing their complexity, making it highly efficient in 

grouping documents according to their topics on a larger scale than what a human could achieve manually. Due to its 

utility, it has seen applications in several fields. In the realm of NLP, TM has been employed for sentiment analysis [9], 

social media event extractions [10], text generation [11], document summarization [12], word sense disambiguation [13], 

translation [14], and has even been used for computer vision tasks [15]. Additionally, on a more macro-view, TM has 

been applied to a range of different areas, such as Politics [16], Healthcare [17], Marketing [18], Sociology [19], 

Economics [20], Employment [21] or Business [22]. 

Over the years, different techniques have been proposed in the field of TM. The pioneering approach, originally 

proposed to identify the most similar documents to a user’s query, was Latent Semantic Indexing (LSI) [23]. LSI 

leveraged Single Value Decomposition to extract latent semantic structures from a collection of documents. 

Subsequently, several algorithms specifically intended for TM were introduced: Probabilistic Latent Semantic Analysis 

(pLSA) [24], Non-Negative Matrix Factorization (NMF) [25], and, the most well-known and widely used, Latent 

Dirichlet Allocation (LDA) [26].  

Following these initial approaches, several models have been proposed over the years to cater to specific contexts, 

address limitations, or incorporate new advances in the Text Mining field, namely new document embedding techniques. 

In this regard, topic models traditionally employed the Bag of Words (BoW) method [27] to embed documents, which 

only takes into consideration word frequency, leading to the loss of semantic meaning and disregarding word order. 

Nonetheless, advances in Deep Learning have led to the emergence of new text embedding methods that address the 

BoW’s limitations, enabling the consideration of semantics and the preservation of word order. Techniques such as 

Word2Vec [28], Doc2Vec [29], Glove [30], Fast-text [31], Probabilistic Fast-text [32], Bidirectional Encoder 

Representations from Transformers (BERT) [33], and Sentence-BERT (S-BERT) [34] are examples of these new 

embedding techniques. Being able to represent text in a more meaningful way allowed for the exploration of new TM 

models, which took advantage of these text representations to create algorithms that were able to preserve the text’s 

structure and semantics. 

Existing surveys in the literature can be broadly categorized into two main groups. Some surveys exclusively focus 

on traditional models [4, 5, 6, 35]; others combine both traditional and neural models [2, 3, 7, 8, 36]. Besides this, some 

studies have a more narrow scope, limiting their analysis to only two models [3-5], while others have chosen to address 

a specific use case [4, 6, 7]. 

Regarding the surveys’ conclusions, even though neural topic models would be expected to outperform the more 

traditional algorithms proposed several years before, in studies in which both types are included, the opposite happens: 

LDA tends to obtain the best results [2, 4, 6, 8, 35]. 

Concerning the metrics employed, some studies rely on ‘traditional’ metrics such as Perplexity, Recall, Precision, or 

F1-Score [3, 35] when there is information about the test set. On the other hand, some authors prefer to employ a 

combination of the aforementioned metrics with TC and human evaluation [2, 6, 7, 8, 36]. Lastly, the studies presented 

in Mohammed and Al-Augby [4] and O’Callaghan et al. [5] offer us examples of authors who prefer to use only TC to 

evaluate an algorithm’s solution. 
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The most comprehensive studies on Topic Modeling are the studies of Lisena et al. (2020) [2], and Harrando et al. 

(2021) [8], which explore two and three datasets, respectively. In these works, the authors apply the following nine 

models: LDA, Latent Feature Topic Models (LFTM)*, Doc2Topic (D2T)†, Gibbs Sampling for a Dirichlet Mixture 

Model (GSDMM)‡, NMF, Hierarchical Dirichlet Processing (HDP) [37], LSI, PVTM, and Context Topic Model 

(CTM)§. 

2-1- Review of the Models Evaluated 

In this work, we conduct a comparative analysis of five different models: PVTM [38], Top2Vec [39], BERTopic [40], 

and the more traditional LDA [26] and NMF [25]. LDA and NMF are included in this work not only for representing 

the most conventional take on TM, but also for having been previously identified as being among the top three best-

performing models in the studies of Lisena et al. [2] and Harrando et al. [8]. The other algorithm present in this top three 

is PVTM, which is thus also part of this work. To introduce more state-of-the-art approaches, this work includes 

Top2Vec and BERTopic, in representation of more recent approaches, with the potential to outperform the remaining 

three models in analysis. The following table (Table 1) summarizes these five algorithms, and their key properties. 

Table 1. Comparison of algorithms’ key aspects 

Algorithm Authors Key Aspects 

LDA [26] 

Aims at obtaining a corpus approximation, recurring to topic-word and document-topic distributions. Follows 

a generative probabilistic approach. Uses BoW as an embedding method and requires the number of topics to 

be defined a priori. 

NMF [25] 
Uses a document-term matrix as the product of word-topic and document-topic matrixes. Requires the number 

of topics to be defined a priori. 

PVTM [38] 
Represents documents and words in a semantic space and clusters the former through a Gaussian Mixture 

Model. Employs Doc2Vec as an embedding technique and requires the number of topics to be known a priori. 

Top2Vec [39] 
Represents documents and words in a sematic space and clusters the former through HDBSCAN. Uses 

Doc2Vec as an embedding technique and does not require the number of topics to be defined. 

BERTopic [40] 
Clusters documents through HDBSCAN, finding topic vectors through class-based TF-IDF. Uses BERT as 

an embedding technique and does not require the number of topics to be defined. 

LDA [26] is the most well-known and used model in the field of TM, a reflection of its simplicity of use and tendency 

for good results. The algorithm utilizes the Dirichlet distribution to model both the topics’ distribution over words and 

the documents’ distribution over topics. This distribution becomes sparser as one of its parameters decreases, which 

allows to obtain a good representation of documents given these sparse identities (e.g., a document will not contain all 

words in the corpus). LDA aims at generating a good corpus approximation by building the document-term matrix 

through the topic-word and document-topic distributions. However, LDA utilizes the most frequent words as 

representatives, which can become problematic if the corpus is not pre-processed due to the existence of stop-words that 

can dominate the results. Hence, pre-processing is a must when applying LDA to ensure meaningful topic 

representations. One limitation of LDA is that it requires the number of topics to be known a priori, which is something 

rarely known in a real-life scenario. Lastly, LDA is not well-suited for short text [41]. 

NMF, proposed in Paatero & Tappe [25], consists of decomposing a non-negative matrix in the multiplication of two 

matrixes, both also non-negative, by performing a low-rank approximation. The document-term matrix (with the shape 

Number of Words in Corpus x Number of Documents in Corpus) can be decomposed into the product of a word-topic 

matrix (with the shape Number of Words in Corpus x Number of Topics) and a document-topic matrix (with the shape 

Number of Topics x Number of Documents in Corpus). By minimizing a cost function whose goal is to make sure that 

the matrix multiplication is as close to the original document-term matrix as possible, NMF aims at finding a local 

minimum. 

Once more, this algorithm demands the number of topics (e.g., the factorization rank) to be specified beforehand 

while requiring the text to be pre-processed. 

Paragraph Vector Topic Model (PVTM) [38] aims at representing documents and words in a semantic space, recurring 

to Doc2Vec [29] to perform the words and documents’ embedding. With the documents’ vector representations found, 

PVTM takes advantage of the fact that in a semantic space, the vectors that are closer are more semantically similar in 

order to cluster these through a Gaussian Mixture Model. 
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A downside of this clustering technique is the requirement to define the number of clusters in advance (as with LDA 

and NMF). Once the documents are semantically grouped, the vectors that represent the clusters’ centroids—topic 

vectors—can be computed, representing the ‘average’ document of each cluster. Afterwards, having both words and 

documents in the same semantic space, cosine similarity is used to discover the most similar words to each topic vector, 

hence finding each cluster’s most characteristic words. 

Top2Vec [39] also refers to Doc2Vec [29] as an embedding technique to create jointly embedded words and 

documents, preserving the words’ semantics. As with PVTM, the main reasoning behind this approach is to take 

advantage of the semantic space in which both words and documents are represented. By using this embedding technique, 

Top2Vec is also able to deviate itself from some disadvantages of the BoW approach, namely the loss of semantics. 

Considering documents can be represented as vectors with high dimensionality, in order not to incur the Curse of 

Dimensionality [42], Uniform Manifold Approximation and Projection (UMAP) [43], a manifold learning technique, is 

the chosen tool to reduce dimensionality, since the author found it to be better than t-distributed Stochastic Neighbor 

Embedding (t-SNE) [44] at preserving the global structure and when dealing with large datasets. 

In this reduced dimension, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 

[45] is applied to the transformed documents’ vectors to discover dense areas, benefiting from the semantic space to find 

meaningful semantic clusters. As with PVTM, the reasoning is that a dense area of semantically similar documents will 

represent documents that concern the same topic, allowing for the centroid (topic vector) of each cluster to be a 

representative document of its elements. Taking advantage of the continuous representation of topics and the joint words 

and documents’ embedding the words closer to each topic vector are considered the most representative ones. 

Top2Vec has the advantage of not requiring any pre-processing, namely stop-word removal, lemmatization, or 

stemming. In addition, this algorithm can find the optimal number of clusters by itself. Lastly, the author claims to have 

found topics ‘significantly more informative and representative of the corpus trained on than those found by LDA and 

pLSA’ [39]. 

BERTopic [40] builds on Top2Vec to introduce some changes and a more recent embedding technique. The 

documents’ embedding is done recurringly in BERT [33], in detriment of Doc2Vec. The dimensionality reduction and 

clustering are performed using the same approaches as with Top2Vec: UMAP and HDBSCAN. However, since the 

words and documents are not projected in the same semantic space, there is a need for a new way to find representative 

words for each cluster. For this, an adaptation of the Term Frequency – Inverse Document Frequency (TF-IDF) [46] is 

applied: Class-based TF-IDF. This variation works in the following way: all documents from the same cluster are 

combined into just one document, leading to the same number of documents and clusters; from this point, TF-IDF can 

be used as usual, finding the most relevant words within each cluster to differentiate it from the remaining. 

As a final step, BERTopic takes advantage of Maximal Marginal Relevance (MMR) [47] to assess the similarity 

between a document’s last chosen descriptive word and both the document itself and the previous words already selected 

to ensure that only words that will bring diversity are chosen, avoiding redundancy and words that are not discriminative 

enough throughout topics. 

2-2- Evaluation Metrics 

The evaluation of a topic model’s output, which typically consists of the 10 words that better describe each topic [48, 

49], is not a straightforward process. Being a subjective task, the assessment of how good these words are at describing 

the topic at hand was traditionally done by humans through manual inspection. In this regard, Chang et al. [50] introduced 

two metrics for evaluating topics’ interpretability: topic intrusion and word intrusion. Topic intrusion consisted of, given 

a document, presenting the associated topics and an extra one that had not been considered related to the document at 

hand, with the goal being to assess if a person could distinguish what was the non-applicable topic. On the other hand, 

word intrusion was assessed by, given a topic, displaying the words that best characterized it alongside extra ones. Once 

more, the objective was to assess if a person could easily detect which words didn’t belong next to the remaining. In 

both cases, the easier the task was for a human controller, the better the solution’s quality was offered by the model. 

Nonetheless, this approach is faulty, at best, as it requires human intervention, which is not only subjective but also time- 

and cost-consuming. 

Intending to improve this, in Newman et al. [49], the authors proposed Topic Coherence (TC), a metric computed 

without human intervention, whose goal is to mimic the human perspective when assessing if a topic is coherent or not. 

The authors found that when computing TC through term co-occurrence, based on Pointwise Mutual Information (PMI) 

(UCI Coherence), the results obtained were in line with human labeling. Building on this work, similar metrics have 

since been proposed. For instance, in Mimno et al. [51], the researchers have proposed a TC measure through term co-

occurrence, but recurring to log conditional probability, while Lau et al. [52] introduced a TC similar to the one in 

Newman et al. [49], but utilizing Normalized Pointwise Mutual Information (NPMI Coherence) [53] instead and showed 

that TC is able to obtain the same results as human experiments. On the other hand, Aletras & Stevenson [48] approached 
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TC differently, claiming to have surpassed previous methods through ‘distributional semantic similarity methods’, by 

representing each topic’s words as a vector in a semantic space and creating context vectors for each word based on 

word co-occurrence. Then, TC was obtained from either the similarity between the words’ context vectors or from the 

average similarity of each word to the centroid. 

Although this seems like a good evaluation metric, it is important to note that TC has to be measured between two 

different corpora, so the topics from the training corpus can be evaluated on a corpus that has never been contacted by 

the model [54]. This may be an issue when trying to use datasets not already prepared for NLP tasks, especially if they 

do not contain any labels. A way to overcome this is to either compare it to a corpus that is known to be similar to the 

one the model trained on or, when the dataset used is ‘general’ enough, use Wikipedia’s pages as a comparison, as done 

in Lisena et al. [2]. Nonetheless, it is important to note that if Wikipedia does not reflect the content of the corpus at 

hand, the results will tend to not be as positive. Reflecting this TC’s characteristic, in Doogan & Buntine [55], the authors 

found TC to not always be a good metric to use, as although performing well in general datasets, when these are more 

case-specific (in their case, a Twitter dataset), that tends not to happen. 

Lastly, in Dieng et al. [56], the authors proposed Topic Diversity to measure how different the top N (e.g., 25) words 

obtained across topics are by computing the percentage of unique words. 

3- Research Methodology 

All experiments were conducted in the Python programming language and the libraries employed are going to be 

addressed when appropriate. Figure 1 summarizes the steps followed in the methodology, which will be addressed during 

the present section. 

 

Figure 1. Methodology Steps 

The datasets used throughout the experiments were chosen with two criteria in mind: being publicly available and/or 

being a well-known dataset in this field of research. Consequently, this work ensures it is reproducible, while providing 

easily comparable results.  

Firstly, the 20 Newsgroup (20NG) dataset [57], available in Scikit-learn*, includes 18 846 messages from the Usenet 

platform, in regards to 20 different subjects. This dataset was chosen due to its popularity in the literature for TM 

applications, both for new models’ proposals [39, 40, 58] and for comparisons in this field [2, 8, 48, 59]. In this work, 

only the main text is used. Additionally, the dataset was divided into train, validation and test set, ensuring the equal 

division of documents according to their labels. In what concerns the cleaning of each set, the documents were subjected 

to a pre-processing pipeline, which will be described further ahead. 

In regard to the Yahoo! Q&A dataset, it originally has 4 483 032 questions, distributed over 19 areas, and is available 

through the Webscope program†. Due to computational limitations, in our experiments we use a sample of 87 362 

elements, available in the Hugging Face platform‡, containing information regarding the question made, the answer 

considered the best, and the remaining. As input to the experiments, a concatenation of the question and the best answer 

is used. Through an analysis of the dataset, the observations corresponding to the categories ‘Yahoo!7 Products’ and 

‘Asia Pacific’ were disregarded, due to corresponding to 0.05% of the dataset, not containing enough documents for the 

experiments to be conducted. 

In what concerns the split of the dataset between train, validation, and test sets, this was done ensuring 60% of 

elements belonged to the train set, 20% to the validation set, and 20% to the test set. Once more, we ensured that there 

was an equal proportion of topics within each set. Additionally, all sets of data were subjected to a pre-processing 

pipeline. Lastly, regarding the Big Patent dataset [60], it originally contains approximately 1.3 million entries, with 

information regarding the full patent text, the respective abstract, and the label provided according to the area of study. 

In this work, only the abstracts are utilized, due to their smaller length. The complete original dataset, whose documents 

are ununiformly divided through nine subjects, is available through the Hugging Face platform§.  
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† https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=11 
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The dataset is already divided into train, validation, and test sets, with the different topics equally represented across 

them. From this initial partition, a sample of 42 000 entries is obtained, in order to be more in line with the remaining 

datasets in this work: the train set contains 25 000 documents, while the validation and test sets both have 8 500 abstracts. 

This sample is obtained through the following steps: 

 The definition of the sample size. The value of 42000 documents is arbitrarily defined, making sure that the division 

within the train, validation, and test sets is approximately equal to 60%, 20%, and 20%, respectively; 

 The percentage of each topic per set in the original dataset is computed, so it can be reproduced in the sample; 

 Considering the previous percentage, the exact number of documents to include in each set per category is found; 

 A random subset is found among the original dataset’s partitions to reflect the number of documents found in the 

previous step. 

It’s worth mentioning that the datasets described contain the documents’ respective labels, according to the category 

in which they are inserted. Although these are not used during training, they are utilized to ensure that the proportion of 

documents belonging to a certain topic is similar in the training, validation, and test sets. 

From the work conducted by Lisena et al. [2], one can infer that the algorithms are trained on a training set and then 

evaluated on a test set, without mention of any validation set. In the specific case of the 20NG dataset, the authors claim 

the model trained on the 20NG dataset was then ‘tested against the same dataset’. However, from a data science 

perspective, it does not make sense to optimize the different models with the same test set on which the final evaluation 

results are obtained. This being said, the approach taken in this work’s experiments will imply that the complete original 

dataset is divided into three partitions: training, validation, and testing. The first two will be used during the parameter 

tuning phase, by training the model on the training set and evaluating it on the validation one. In the final phase, these 

two sets will be combined and used as training sets against the test sets to find the best-performing model. 

Nonetheless, it is important to note that the distinction between training, validation, and test sets is only possible given 

the existence of labels, due to the nature of these datasets, which are publicly available to the research community. For 

a task where this information is unavailable, the evaluation metrics would have to be obtained by comparing the topics 

obtained to another dataset. For instance, in Lisena et al. [2], the authors refer to a Wikipedia corpus to check how good 

a solution is. Nonetheless, even assuming Wikipedia contains information on the most diverse subjects, it may not be 

appropriate to use it when a dataset’s nature is too specific, and the documents do not address several areas. 

In what concerns the pre-processing pipeline followed in this work, it goes in line with the works of Lisena et al. [2] 

and Harrando et al. [8], consisting of the following steps: 

 Removal of all numbers; 

 Removal of all punctuation; 

 Lowercasing of all documents; 

 Removal of stop-words, though the Gensim* library; 

 Lemmatization, through the Wordnet module of the NLTK† platform; 

 Removal of all words whose length is lower than three; 

 Removal of blank documents resulting from the previous steps. 

It is noteworthy that despite some algorithms employed theoretically do not require pre-processing to keep 

consistency across results, and since none of the pre-processing steps applied change the results significantly (e.g., 

lemmatization is the step with a higher influence sphere, but its applicability should only slightly improve topics’ 

readability), these were nonetheless performed. 

Regarding the evaluation metrics employed in this work, our main focus is on TC. As mentioned in the Theoretical 

Background section, TC introduces a quantitative way of assessing the coherence of a set of topics, trying to mimic 

human perception in an automated process. This metric’s intuition is to compare the set of words that best characterizes 

each topic with the documents present in a corpus in order to discover how coherent these two sets are, being that the 

‘coherence of a word set measures the degree that a subset is supported by another subset’ [59]. 

The work of Röder et al. [59] introduces a four-dimension (Segmentation, Probability Calculation, Confirmation 

Measure and Aggregation) framework to compute TC, allowing to easily distinguish between approaches. We will use 

it to briefly cover the key differences between the four Coherences used in this work, which are available on Gensim‡, 

                                                           
* https://radimrehurek.com/gensim/ 
† https://www.nltk.org/index.html 
‡ https://radimrehurek.com/gensim/models/coherencemodel.html 
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ensuring this work’s reproducibility. It is noteworthy that all metrics took into consideration the top 10 words of each 

topic.  

Starting by the UMASS TC [51], it can be represented by Equation 1. 

𝑈𝑀𝐴𝑆𝑆 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = 
2

𝑁 × (𝑁−1)
∑ ∑ log

𝑃 (𝑤𝑖,𝑤𝑗)+ 𝜀

𝑃(𝑤𝑗)
𝑖−1
𝑗=1

𝑁
𝑖=2  (1) 

where wi and wj are two different words, N equals the corpus size and 𝜀 is a parameter added to avoid the logarithm of 

zero, that should by default be equal to 1. 

Firstly, regarding Segmentation, each word pair reflects a comparison between a word and the one which comes in 

the next position, given an ordered set of words that best describes each topic. In what concerns Probability Estimation, 

UMASS recurs to the Boolean document method to calculate the joint probability, by assessing in how many documents 

the word pair occurs, dividing it by the total number of elements in the corpus. Then, in the Confirmation Measure stage, 

the log-conditional-probability measure is used to obtain a value for each subset of word pairs, which are then 

(Aggregation) subject to a simple arithmetic mean to obtain a final overall TC value for the topics found by a model. 

In this work, this metric is computed due to comparability reasons: whilst not being the main metric chosen to decide 

which parameters are best in the parameter tuning phase, it may be useful to compare across models and to be available 

for readers who wish to compare with the results of their endeavours.  

In what concerns the UCI measure [49], based on PMI, it can be computed through Equation 2: 

UCI Coherence = 
2

𝑁 × (𝑁−1)
∑ ∑ 𝑃𝑀𝐼 (𝑤𝑖, 𝑤𝑗)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1  (2) 

where PMI (𝑤𝑖, 𝑤𝑗) = log
𝑃 (𝑤𝑖,𝑤𝑗)+ ε

𝑃 (𝑤𝑖) ×𝑃 (𝑤𝑗)
, wi and wj are two different words, N equals the corpus size and 𝜀 is a parameter 

added to avoid the logarithm of zero, that should by default be equal to 1. 

Contextualizing this metric in light of the structure proposed by the authors in Röder et al. [59], the Segmentation 

step is done by pairing each word with every other single word. After this (Probability Estimation), a Boolean sliding 

window of size 10 is introduced, which enables this technique to incorporate some information concerning the words’ 

closeness. Regarding the Confirmation Measure chosen, the log-ratio (PMI) is selected, followed by the computation of 

the arithmetic mean to obtain the value of the coherence for all topics (Aggregation stage). 

Lastly, when proposed, the researchers in Newman et al. [49] found this metric to be positively correlated with human 

assessment, meaning this metric has a traditional important role in evaluation. Nonetheless, as it will be shortly 

addressed, recent research has dethroned it as the one with the highest correlation.  

Regarding the NPMI Coherence, it was proposed in Aletras & Stevenson [48] and can be computed through Equation 

3: 

NPMI Coherence = 
2

𝑁 × (𝑁−1)
∑ ∑ 𝑁𝑃𝑀𝐼 (𝑤𝑖, 𝑤𝑗)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1  (3) 

where NPMI (𝑤𝑖, 𝑤𝑗) =
𝑃𝑀𝐼 (𝑤𝑖,𝑤𝑗)

− log(𝑃(𝑤𝑖,𝑤𝑗) + 𝜀)
 ; PMI (𝑤𝑖, 𝑤𝑗) = log

𝑃 (𝑤𝑖,𝑤𝑗)+ ε

𝑃 (𝑤𝑖) ×𝑃 (𝑤𝑗)
; wi and wj are two different words, N equals 

the corpus size and 𝜀 is a parameter added to avoid the logarithm of zero, that should by default be equal to 1. 

Decomposing the metric according to the framework proposed in Röder et al. [59], the steps obtained are exactly the 

same as the ones described for UCI Coherence, with the only difference being the Probability Estimation stage, where 

the normalized log-ratio (NPMI) measure is utilized in place of the log-ratio (PMI) measure.  

In Aletras & Stevenson [48], the authors found NPMI TC to be the metric with the highest correlation with human 

assessments, in the detriment of the UCI and UMASS Coherences. Being this said, at that moment, this metric was 

considered to be the best option to be in line with human perception. 

Lastly, the Context Vectors (CV) Coherence, proposed in Röder et al. [59], can be obtained through the following 

decomposition, per the authors’ own framework: regarding Segmentation, the authors utilize the method of comparing 

each word to ‘the total word set using words context vectors’; moreover, in what concerns Probability Estimation, a 

sliding window of size 110 is employed; for the Confirmation Measure stage, the cosine similarity between the NPMI 

of a vector and the remaining is used; lastly, the Aggregation is dealt with in line with the other metrics, through the 

computation of the arithmetic mean, to obtain an overall TC value, reflecting all topics. 

Additionally, the authors found this metric to obtain the highest correlation with human assessment of topics, followed 

by NPMI Coherence, among the other metrics present in this work. Being this said, in this work, CV Coherence will be 

the primary metric used, followed by NPMI Coherence if needed to resolve any impasse situations. 
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Lastly, we will analyze the values for Topic Diversity [56], defined as the ‘percentage of unique words in the top 25 

words of all topics’. Despite being a rather non-complex measure, it offers some insight on a model’s ability to provide 

distinct words to describe each topic, reflecting a model’s capacity to generate topics that are able to be described by 

different words, which is the expected outcome of a good solution. We compute this metric by assessing how many 

unique words exist in the total word universe in the topics found, defining 25 as the number of words per topic that 

should be taken into consideration. 

Regarding the algorithms’ implementations, LDA’s used implementation [61], available on Gensim*, builds on the 

original LDA algorithm but is modified to allow for faster execution and to effortlessly deal with large sets of documents. 

In what concerns the NMF model, the implementation employed [62] can also be found on Gensim†. This variation is 

able to deal efficiently with large datasets, including ‘sparsely corrupted data’. Top2Vec‡, PVTM§, and BERTopic** 

were implemented according to the respective authors’ implementations. 

4- Results and Discussion 

To ensure fair comparisons across datasets and algorithms, regardless of the dataset at hand, the first step consisted 

of dividing the data into training, validation, and test sets through a valid and appropriate division process. Subsequently, 

parameter tuning was conducted. All five algorithms were applied to each dataset with various parameter combinations, 

aiming to identify the best values for each dataset-algorithm pair. To account for the variability in solutions, a random 

state was defined, enabling differences in results to be attributed solely to parameter changes rather than other factors. 

It is important to note that the training set was exclusively used for model training, while the validation set was 

utilized to evaluate the results based on the chosen evaluation metrics. Additionally, as already justified in the 

methodology section, the primary metric employed is CV coherence, with NMPI coherence serving as an alternative if 

necessary. The remaining metrics were computed and presented only for potential future comparisons to ensure the 

comparability of results. Nonetheless, the Topic Diversity’s value will be taken into consideration when analyzing a 

solution, as it provides information beyond the topic’s coherence. 

The process of parameter tuning involved a combination of empirical evidence, information from the algorithms’ 

respective papers, default values provided by the implementations, and results obtained in other studies where 

comparisons were made recurring to the same dataset-algorithm pairs. Tables 2 to 6 summarize the parameters used for 

each algorithm according to the dataset at hand. In these tables, the best parameter values are signaled in bold, while the 

default parameters provided by the implementations are marked in italic style. Testing parameters from several sources 

allowed us to select the most suitable parameter configurations for each algorithm-dataset pair, ensuring a robust and 

well-informed evaluation process. 

Table 2. Parameters Evaluated for NMF Algorithm (best parameters are highlighted in bold) 

Dataset  

Parameters 
20NG Yahoo! Q&A BIG Patent 

Chunksize 500, 1000, 1500, 2000 1500, 2000, 2500, 3000 1500, 2000, 2500,3000 

Kappa 0.5, 0.7, 1 0.5, 0.7, 1 0.5, 0.7, 1 

Minimum_Probability 0.01, 0.05, 0.1 0.01, 0.05, 0.1 0.01, 0.05, 0.1 

w_max_iter 200, 250 200, 250 200, 250 

h_max_iter 50, 75 50, 75 50, 75 

Eval_every 10, 20 10, 20 10, 20 

Num_Topics 20 19 9 

Table 3. Parameters Evaluated for LDA Algorithm (best parameters are highlighted in bold) 

Dataset 

Parameters 
20NG Yahoo! Q&A BIG Patent 

Chunksize 500, 1000, 1500, 2000 1500, 2000, 2500, 3000 1500, 2000, 2500, 3000 

Alpha Symmetric, Auto Symmetric, Auto Symmetric, Auto 

Decay 0.5, 0.7, 0.9 0.5, 0.6, 0.7, 0.8, 0.9 0.5, 0.6, 0.7, 0.8, 0.9 

Offset 1, 4, 36, 64 1, 4, 36, 64 1, 4, 36, 64 

Iterations 50, 75 50, 100 50, 100 

Num_Topics 20 19 9 

                                                           
* https://radimrehurek.com/gensim/models/ldamodel.html 
† https://radimrehurek.com/gensim/models/nmf.html 
‡ https://github.com/ddangelov/Top2Vec 
§ https://github.com/davidlenz/pvtm 
** https://github.com/MaartenGr/BERTopic 

https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/nmf.html
https://github.com/ddangelov/Top2Vec
https://github.com/davidlenz/pvtm
https://github.com/MaartenGr/BERTopic
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Table 4. Parameters Evaluated for PVTM Algorithm (best parameters are highlighted in bold) 

Dataset 

Parameters 
20NG Yahoo! Q&A BIG Patent 

Vector_size 50, 150, 200, 300 50, 150, 300 50, 150, 300 

Window 1, 10, 20 1, 10, 20 1, 10, 20 

Epochs 1, 15, 30 1, 15, 30 1, 25 

Min_count 5, 30, 50 5, 50, 90 5, 30, 50 

Alpha 0.01, 0.025, 0.1 0.1, 0.01 0.01, 0.025, 0.1 

Covariance_type Diag, Full Diag, Full Diag, Full 

Num_Topics 20 19 9 

For the 20NG dataset, when used in conjunction with the NMF, LDA, and PVTM models, we incorporated the 

parameters* that were identified as producing the best results in the experiments conducted by Harrando et al. [8]. 

Moreover, default parameters were included for almost all datasets and algorithms. Regarding LDA, we referred to the 

findings of Hoffman et al. [61], where the authors determined the values of 0.5 and 64 to be optimal for ‘Decay’ and 

‘Offset’, respectively. Hence, these values were included in our analysis. Furthermore, we introduced some additional 

values based on those investigated by Hoffman et al. [61] to provide a thorough exploration of parameter space.  

Regarding the Top2Vec and BERTopic algorithms, the parameter tuning involved selecting values from the default 

values configured in their respective implementations. Additionally, we have combined these default values with similar 

values that make sense for each specific case. For instance, the number of documents in a dataset influences the 

reasonability of some parameter values, which we considered during the selection process. 

Regarding the parameters for NMF, Chunksize corresponds to the number of documents to use in each training chunk; 

Kappa is the gradient descent step size; Minimum_Probability is used to filter out topics with smaller probabilities; 

w_max_iter is the maximum number of iterations to train w (e.g., word-topic matrix) per batch; h_max_iter is the 

maximum number of iterations to train h (e.g., topic-document matrix) per batch; eval_every is the number of batches 

after which the l2 norm of v-Wh is computed; and num_topics is the number of topics to extract from the documents. 

In regard to the parameters used for LDA, Chunksize corresponds to the number of documents to use in each training 

chunk; Alpha refers to the default prior for document-topic distribution; Decay defines the percentage of the previous 

lambda value that is forgotten when assessing a new document. Offset is used to control the magnitide with which the 

first steps are slowed down in the first iterations; Iterations is the maximum number of iterations done on a corpus when 

aiming at capturing the corpus’ topic distribution, and num_topics is the number of topics to extract from the documents. 

The tuned parameters for the PVTM model were the vector_size, which defines the dimensionality of the feature 

vectors; the window, corresponding to the window size in Doc2Vec; epochs, which refer to the number of training 

epochs; min_count, used to define the minimal number of times a word has to appear to be considered in Doc2Vec; 

alpha, which corresponds to the initial learning rate; covariance_type, defying the covariance type employed during the 

use of the GMM model; and num_topics is the number of topics to extract from the documents. 

For Top2Vec, the parameters taken into consideration were min_count, which defines the minimal frequency needed 

for a word to be considered; n_neighbors, which constrains the size of the local neighborhood UMAP considers when 

learning from the data; n_components defines the dimensionality of the reduced dimension; min_dist offers the minimum 

distance between points in the low-dimensional space; and min_cluster_size corresponds to the minimum number of 

observations needed to consider a cluster. 

Table 5. Parameters Evaluated for Top2Vec Algorithm (best parameters are highlighted in bold) 

Dataset 

Parameters 
20NG Yahoo! Q&A BIG Patent 

Min_count 30, 40, 50 50, 70, 90 30, 50, 70 

N_neighbors (UMAP) 10, 15, 20 40, 50, 60 20, 30, 40, 50 

N_components (UMAP) 5, 10, 15 5, 10, 15 5, 10, 15 

Min_dist (UMAP) 0, 0.1, 0.2, 0.3 0, 0.1, 0.2 0, 0.1, 0.2 

Min_cluster_size (HDBSCAN) 15, 30, 45, 60 30, 60, 90 45, 60, 75, 90 

                                                           
* https://github.com/D2KLab/ToModAPI/blob/master/params.md 

https://github.com/D2KLab/ToModAPI/blob/master/params.md
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Table 6. Parameters Evaluated for BERTopic Algorithm (best parameters are highlighted in bold) 

Dataset 

Parameters 
20NG Yahoo! Q&A BIG Patent 

Min_topic_size 10, 20, 30 30, 60, 90 20, 40, 60 

N_neighbors (UMAP) 10, 15, 20 40, 50, 60 20, 30, 40 

N_components (UMAP) 5, 10, 15 5, 10, 15 5, 10, 15 

Min_dist (UMAP) 0, 0.1 0, 0.1, 0.2 0, 0.1, 0.2 

Min_cluster_size (HDBSCAN) 15, 30, 45, 60 30, 60, 90 45, 60, 75 

Lastly, BERTopic was tuned considering the parameters min_topic_size, which sets the minimum number of 

elements a topic must have to be considered as such; n_neighbors, which constrains the size of the local neighborhood 

UMAP considers when learning from the data; n_components defines the dimensionality of the reduced dimension; 

min_dist offers the minimum distance between points in the low-dimensional space; and min_cluster_size corresponds 

to the minimum number of observations needed to consider a cluster. 

After completing all optimizations and identifying the best parameters for each dataset-algorithm pair, the previously 

separate train and validation sets are merged into a new train set. All algorithms are then applied ten times to this 

combined train set to account for result variability. The evaluations are performed using the original test set. Since the 

differences across different runs of the same parameters are of interest, a random state is not defined, allowing the 

differences to be observable.  

Tables 7 to 9 summarize the results obtained for each dataset, containing the average coherence metric and topic 

diversity, along with their respective standard deviations. The values marked in bold correspond to the best values 

achieved by each metric. 

Table 7. Mean and Standard Deviation (between brackets) for all metrics and algorithms, for 20NG 

     Algorithm 

Metric 
NMF LDA PVTM Top2Vec BERTopic 

CV Coherence 
0.512 

(0.041) 

0.526 

(0.012) 

0.542 

(0.019) 

0.703 

(0.052) 

0.636 

(0.015) 

NPMI Coherence 
-0.085 

(0.033) 

-0.097 

(0.016) 

0.040 

(0.016) 

0.036 

(0.011) 

0.056 

(0.010) 

UCI Coherence 
-3.963 

(0.641) 

-4.190 

(0.397) 

-0.341 

(0.374) 

-2.220 

(0.539) 

-1.324 

(0.200) 

UMASS Coherence 
-5.671 

(0.644) 

-5.789 

(0.597) 

-2.188 

(0.224) 

-4.565 

(0.800) 

-3.051 

(0.193) 

Topic Diversity 
0.762 

(0.033) 

0.873 

(0.016) 

0.531 

(0.014) 

0.971 

(0.013) 

0.847 

(0.011) 

Table 8. Mean and Standard Deviation (between brackets) for all metrics and algorithms, for Yahoo! Q&A 

Algorithm 

Metric 
NMF LDA PVTM Top2Vec BERTopic 

CV Coherence 
0.517 

(0.024) 

0.476 

(0.021) 

0.481 

(0.030) 

0.575 

(0.136) 

0.570 

(0.033) 

NPMI Coherence 
0.055 

 (0.015) 

-0.035 

(0.033) 

0.015 

(0.033) 

0.076 

(0.087) 

0.063 

(0.028) 

UCI Coherence 
-0.088 

(0.277) 

-2.538 

(0.751) 

-0.584 

(0.772) 

-1.420 

(1.024) 

-1.832 

(0.634) 

UMASS Coherence 
-3.549 

(0.228) 

-6.202 

(0.873) 

-3.814 

(0.808) 

-5.791 

(0.375) 

-7.080 

(0.799) 

Topic Diversity 
0.568 

(0.014) 

0.795 

(0.025) 

0.445 

(0.021) 

0.865 

(0.070) 

0.762 

(0.038) 
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Table 9. Mean and Standard Deviation (between brackets) for all metrics and algorithms, for BIG Patent 

Algorithm 

Metric 
NMF LDA PVTM Top2Vec BERTopic 

CV Coherence 
0.537 

(0.014) 

0.532 

(0.030) 

0.568 

(0.012) 

0.636 

(0.026) 

0.561 

(0.097) 

NPMI Coherence 
0.064 

(0.007) 

0.049 

(0.015) 

0.069 

(0.004) 

0.079 

(0.017) 

0.070 

(0.038) 

UCI Coherence 
0.370 

(0.073) 

-0.052 

(0.356) 

0.423 

(0.034) 

-1.014 

(0.432) 

-0.457 

(0.221) 

UMASS Coherence 
-2.153 

(0.069) 

-2.707 

(0.472) 

-1.914 

(0.038) 

-4.605 

(0.549) 

-3.870 

(0.346) 

Topic Diversity 
0.634 

(0.025) 

0.707 

(0.031) 

0.536 

(0.017) 

0.981 

(0.011) 

0.716 

(0.014) 

The analysis of the experimental results across all datasets reveals that the Top2Vec algorithm consistently 

outperforms others when considering CV coherence. It is noteworthy that Top2Vec is a relatively recent and advanced 

approach to Topic Modeling, making its success in this study particularly relevant. Top2Vec is followed by either 

BERTopic or PVTM, depending on the specific evaluation metric. These three algorithms represent the latest 

advancements in TM among those under study. 

The evaluation of Topic Diversity provides an insightful perspective on the algorithms’ performance. Top2Vec stands 

out with significantly higher average values in this metric compared to all other algorithms. This finding highlights 

Top2Vec’s ability to generate topics described by a range of distinct words.  

Additionally, when comparing the three referred models (Top2Vec, PVTM, and BERTopic) in terms of Topic 

Diversity, more pronounced differences emerge. PVTM exhibits a weaker performance in this aspect, generating topics 

with lower quality regarding the distinct words provided. This limitation might impact its applicability in scenarios where 

topic diversity is crucial. 

Contrary to the expectations based on the findings in Lisena et al. [2] and Harrando et al. [8], LDA and other classic 

approaches to Topic Modeling have not demonstrated superior performance compared to all other algorithms in our 

analysis. Instead, the results indicate that more recent techniques, such as Top2Vec and BERTopic, have outperformed 

these traditional methods. 

This unexpected outcome suggests a shift in the landscape of Topic Modeling, where recent algorithms that leverage 

advanced methodologies and representations are proving to be more effective in capturing the underlying structures and 

semantic relationships within the data. The limitations of LDA and other classic techniques might stem from their 

reliance on simplistic assumptions or predefined number of topics, which may hinder their ability to handle the 

complexity and diversity of more complex textual data. 

The prominence of Top2Vec and BERTopic in our experiments emphasizes the importance of adopting state-of-the-

art approaches for Topic Modeling tasks, especially in the context of the ever-growing digital textual data and the need 

for more sophisticated topic representations. As we have found, the ability of Top2Vec to generate diverse and coherent 

topics, along with BERTopic’s competitive performance, indicates that these models are better equipped to address the 

challenges posed by large-scale unstructured textual data. 

5- Conclusion 

This work aimed to address the lack of studies with recent state-of-the-art algorithms in the field of Topic Modeling. 

This was achieved by comparing several models across different datasets, ensuring comparability, consistency, and 

transparency. Additionally, only open-source datasets and algorithm implementations were used, providing a followable 

framework for anyone who wishes to reproduce these results or build on them for future research. Through the evaluation 

metric of CV coherence, Top2Vec was found to be the best-performing algorithm across all datasets, followed by 

BERTopic and PVTM. These three models leverage recent embedding techniques and were thus expected to outperform 

the more traditional algorithms under study: LDA and NMF. 

Although this work attempts to provide a comparison of diverse TM algorithms, thus including representative models 

of different families, it is non-exhaustive, leaving potentially valid approaches unexplored. Similarly, although the 

datasets employed were selected to illustrate distinct contexts, including documents with different structures, there is no 

guarantee that slight variations in use case or context will not yield different results, including the best-performing model 

presented in this work. 
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Researchers can take advantage of this work’s framework to analyze other datasets that they find relevant. 

Additionally, due to the continuous interest in the Text Mining field, the tendency will be for new developments in word 

embedding techniques and/or new algorithms to appear, which can outperform the ones employed in this work and 

justify a new comparative analysis, although the models in this work cover the current state-of-the-art. Lastly, the 

development of new evaluation metrics that claim to be able to more accurately assess the topics obtained by an algorithm 

may be a reason for this work to be re-assessed. 
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