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Abstract 

This research introduces a pioneering solution to the challenges posed by gastrointestinal tract (GI) 

cancer in radiation therapy, focusing on the imperative task of precise organ segmentation for 
minimizing radiation-induced damage. GI imaging has historically used manual demarcation, which 

is laborious and uncomfortable for patients. We address this by introducing the ResECA-U-Net deep 

learning model, a novel combination of the U-Net and ResNet34 architectures. Furthermore, we 
further augment its functionality by incorporating the Efficient Channel Attention (ECA-Net) 

methodology. By utilizing data from the UW-Madison Carbone Cancer Center, we carefully 

investigate several image processing techniques designed to capture critical local characteristics. 
With its foundation in computer vision concepts, the ResECA-U-Net model is excellent at extracting 

fine details from GI images. Sophisticated metrics such as intersection over union (IoU) and the dice 
coefficient are used to evaluate performance. Our study's outcomes demonstrate the effectiveness of 

the suggested method, yielding an impressive 96.27% Dice coefficient and 91.48% IoU. These 

results highlight the significant contribution that our strategy has made to the advancement of cancer 
therapy. Beyond its scientific merits, this work has the potential to significantly enhance cancer 

patients' quality of life and provide better long-term outcomes. Our work is a significant step towards 

automating and optimizing the segmentation process, which can potentially change how GI cancer 

is treated completely. 
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1- Introduction 

Gastrointestinal tract cancer remains a formidable global health challenge, impacting an estimated 5 million 

individuals in 2019 [1], as reported by the World Health Organization. Among the array of treatment options, radiation 

therapy emerges as a pivotal intervention, accessible to approximately half of diagnosed patients. Traditional radiation 

therapy, spanning 1-6 weeks of daily sessions [2], demands precision in delivering high radiation doses to tumors while 

sparing adjacent healthy tissues, particularly the stomach and intestines. Recent technological advancements, such as 

integrated magnetic resonance imaging and linear accelerator systems (MR-Linacs), present an opportunity to enhance 

the precision of radiation therapy by allowing daily visualization of tumor and organ positions. Despite these 

advancements, the manual segmentation of stomach and intestines in MR images remains a time-consuming hurdle, 

prompting the exploration of deep learning solutions to automate this process and streamline radiation therapy. 
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This research initiative, generously supported by the UW-Madison Carbone Cancer Center, pioneers developing a 

deep-learning model utilizing a dataset of anonymized MRIs from cancer patients. The primary objective is to create a 

model capable of automating the segmentation of the stomach and intestines in MRI scans, ultimately revolutionizing 

cancer treatment by significantly reducing session times and enhancing overall care quality [3]. 

In recent years, deep learning has proven transformative in various domains, particularly in computer vision. The 

success of convolutional neural networks (CNNs) in extracting intricate features from images has led to unprecedented 

accuracy in tasks like object recognition and image segmentation. This paradigm shift has impacted diverse applications, 

including medical image analysis [4]. This paper focuses on applying deep learning to medical image analysis for 

stomach and tract segmentation, exploring the methodology, model architectures, dataset introduction, data analysis, 

preprocessing, loss function choice, and evaluation metrics. The paper introduces the ResECA-U-Net model and 

evaluates its effectiveness through experimental results. Furthermore, it addresses the computational challenges inherent 

in traditional U-Net architectures, designed to balance computing power with accurate image segmentation. The research 

aims to analyze the ResECA-U-Net model's effectiveness for GI tract image segmentation, comparing its performance 

against various U-Net models. 

As collateral damage to healthy cells remains a concern in radiation therapy, introducing Artificial Intelligence 

techniques, such as convolutional neural networks, has shown promise in auto-segmentation for various cancer types. 

However, segmenting gastrointestinal (GI) tract organs poses unique challenges due to the surrounding soft tissues and 

the dynamic nature of organ positions [5]. 

With the increasing prevalence of GI-related illnesses, the demand for reliable and automated segmentation methods 

has grown exponentially. This research contributes to the field by proposing advanced computational techniques that 

accurately and efficiently delineate GI organ boundaries. Deep learning, specifically the ResECA-U-Net model, is 

presented as a solution to automate the segmentation of healthy organs, offering potential improvements in treatment 

efficiency and patient outcomes [6]. The study involves experimenting with different pre-trained models to gain insights 

into feature extraction and segmentation performance, guiding future advancements in the field. 

Our research work has contributed to the following:  

• We employed the U-Net model as the backbone for our performance analysis, incorporating various transfer 

learning models for comparison. The top five transfer learning models we explored are ResECA-U-Net, 

ResNet34, Efficient-NetB0, EfficientNetB1, and EfficientNetB2—all exhibiting commendable performance and 

leveraging the ECA-Net architecture. 

• Our research introduced a U-Net model in computer vision, specifically designed to enhance local features for 

segmentation tasks. The ResECA-U-Net model proposed in this work was applied to the UW-Madison GI tract 

image segmentation dataset. 

To evaluate the performance of the models, we employed metrics such as dice coefficient, Intersection over Union 

(IoU), and model loss. These metrics offered a comprehensive assessment of the proposed models' effectiveness in image 

segmentation. 

2- Related Work 

Chou et al. [7] presented their approaches to the Kaggle UW-Madison GI Tract Image Segmentation challenge to 

improve cancer treatment planning for radiation oncology. The difficulty was in accurately segmenting the stomach and 

intestines in MRI images such that strong radiation doses could be delivered to malignancies while sparing vital organs. 

For organ segmentation, the scientists used U-Net and Mask R-CNN techniques. Their top U-Net and Mask R-CNN 

models on the validation set had a Dice score of 0.51 and 0.73, respectively. This is not encouraging for the advancement 

of medicine. The reported Dice scores of 0.51 and 0.73 indicate potential improvement in attaining precise organ 

segmentation, highlighting the need for more developments in the area. In a groundbreaking study by Chia et al. [8], 

significant advancements were made in semantic segmentation for medical imaging. Their research focused on 

improving the U-Net architecture by implementing two baseline methods and exploring multi-task learning approaches. 

They found that contrastive learning proved especially beneficial when the test distribution differed greatly from the 

training distribution, particularly when encountering new patients. Additionally, integrating Feature-wise Linear 

Modulation (FiLM) into the U-Net model enhanced performance, especially when there was a slight overlap between 

the training and test distributions involving future scans of previously trained patients. These findings highlight the 

potential for more accurate and robust medical image segmentation techniques. To evaluate the performance of these 

approaches, the researchers employed validation and tested Dice coefficient results.  

The Small U-Net (FiLM) model achieved promising results, with a validation Dice coefficient of 0.8345 for overall 

segmentation, 0.7985 for large bowel segmentation, 0.8114 for small bowel segmentation, and 0.8941 for stomach 

segmentation. Further evaluations were conducted on the test set, and the impact of auxiliary tasks was also explored, 
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highlighting the potential of these methods to improve semantic segmentation performance in medical imaging. In his 

2022 study, Sharma [1] proposed a novel approach to automate the segmentation process for GI Tract scans in radiation 

treatment. They aimed to outline the stomach and intestines accurately using deep learning techniques. By comparing 

various encoder architectures, they found that EfficientNet encoders outperformed others, achieving high levels of 

accuracy. The models were trained for 80 epochs with minimal data augmentation. The (BCE + Tversky) Loss function 

was identified as the optimal choice for the task. Evaluation of different encoders revealed that Efficientnet-B3 achieved 

an IoU Loss of 84.9%, a BCE + Tversky Loss of 85.3%, 84, and an IoU + Tversky Loss of 84.8%. Other encoders, 

including Efficientnet-B1, Resnet34, Resnet50, MobileNet V2, and VGG16, did not yield good results. By considering 

these results, we can achieve better results from our model.  

In medical advancements, a groundbreaking study emerged in 2020 when Khan et al. [9] introduced a pioneering 

deep learning-based methodology. Their proposed approach employed a modified mask RCNN for ulcer segmentation 

and fine-tuned the ResNet101 pre-trained CNN model for feature extraction. The acquired features underwent 

optimization using grasshopper optimization techniques, and a multi-class SVM with a cubic kernel function was utilized 

for the final disease classification. The results showcased exceptional performance in ulcer segmentation and disease 

classification through extensive experiments, surpassing existing methods with an MOC of 0.8807, an average precision 

of 1.0, and a classification accuracy of 99.13%. This method holds significant promise in advancing the diagnosis of 

gastrointestinal diseases using wireless capsule endoscopy. The stomach, small bowel, and large bowel organs are 

divided in this study using the ResNet34-U-Net (RU-Net) model [10]. The validation set of the UW-Madison GI Tract 

Image Segmentation dataset yielded the best dice score for our model of 0.9049. Various methods, including Mask R-

CNN, LeViT128-U-Net, and LeViT384-U-Net++, are also compared to the model in this study.  

Wang et al. [11] have made significant advancements in accurately segmenting lesions in endoscopy images for 

automated GI Tract disease diagnosis. They identified the limitations of previous methods that relied on hand-crafted 

features and treated feature definition and segmentation as separate tasks, which often led to sub-optimal performance 

due to heterogeneity. In response, they proposed the multi-scale context-guided deep network (MCNet) as a ground-

breaking solution. MCNet introduces the novel capability of capturing global and local contexts during model training. 

By incorporating a global subnetwork for high-level semantic context extraction and two cascaded local subnetworks 

for multi-scale appearance and semantic information, MCNet demonstrated remarkable performance in experimental 

evaluations conducted on a data set of 1,310 endoscopy images. Notably, it outperformed state-of-the-art techniques for 

automated lesion segmentation in GI Tract endoscopic pictures with mean intersection over union (mIoU) scores of 74% 

and 85% for aberrant and polyp segmentation, respectively. In 2023, a research team [12] led by Neha Sharma introduced 

a U-Net model specifically tailored to segment GI tract organs, such as the small bowel, large intestine, and stomach. 

The concept was designed to help radiation doctors treat cancer more precisely and effectively.  

The U-Net topology effectively recovered local features from small pictures using six transfer learning models, 

including Inception V3, ResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0. Model loss, dice 

coefficient, and IoU metrics were used to assess the proposed model’s performance compared to previous transfer 

learning models. Notable results for these metrics were 0.122 for model loss, 0.8854 for the dice coefficient, and 0.8819 

for the IoU. Although the suggested U-Net model for GI tract organ segmentation seems promising, the study is short 

on information on the technique, dataset, and comparison with other strategies. The provided performance figures also 

lack context and do not give a complete picture of how well the model performs in actual-world situations. 

3- Research Methodology 

The fundamental model structure for this investigation is the U-Net architecture put forth by Ronneberger et al. (2015) 

[13]. The encoder-decoder design is utilized by the U-Net network. During the encoding stage, the input image is 

subjected to successive convolutions and down sampling, producing a smaller-scale feature map with high-dimensional 

semantic feature information. In the decoding stage, the network performs convolution and up-sampling operations to 

return the feature map to its original size, finally producing the segmentation results for the image. The concat layer, 

which combines context information, links the feature maps from the encoding and decoding phases in the network’s 

center region. The final prediction results are produced through feature fusion and continual upsampling. In this study, 

a residual network, called ResNet architecture, is the U-Net network down-sampling component. We additionally include 

Efficient Channel Attention modules in the intermediate connection layer. An improved network model called ResECA-

U-Net is the consequence of this change. Figure 1 shows the phases that comprise our approach for segmenting images 

of the gastrointestinal (GI) tract in sequential order. The figure highlights the methodical methodology used for precise 

and effective medical image analysis by outlining essential steps such as pre-processing, feature extraction, 

segmentation, and post-processing. 
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Figure 1. The workflow diagram for our study 

3-1- Data set 

We used a large dataset with 115,488 cases for our research. Each segment in the dataset had three distinct annotations 

for the stomach, small bowel, and large colon. There were a total of 38,496 segments in the dataset. Nevertheless, only 

21,906 segments contained annotations for these organs. The large intestine received 36.6% of the annotated segments, 

followed by the small intestine with 29.1% and the stomach with 22.4%. Figure 2 depicts these segments graphically, 

while the background is completely labeled. The remaining sections show the abdominal regions where the specified 

organs are not visible. With variable 224×224-pixel dimensions, each segment in the dataset was a different size. Two 

sets, dubbed training and testing, were created from the data set. Data was split into three sets: training, validation, and 

testing, with training making up 80%, validation 10%, and testing 10% of the total. Twenty percent of the data from the 

training set was also set aside for validation. 

 

Figure 2. Per class segmentation distribution 
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3-2- 1D Array 

In this study, we preprocess the data set by utilizing the relay encode and relay decode functions to encode and decode 

binary image masks. These functions enable us to compress the masks into strings and convert them into numeric arrays. 

We employ the encode and decode functions, which require binary numpy arrays with 1 representing the object mask 

and 0 representing the background. To encode the array, we flatten it into a 1D array, add 0 at the beginning and end, 

identify the start and end indices of consecutive values, and compute the length of each run. The encoded image is then 

returned as a string of space-separated integers [14]. On the other hand, the decode function splits the input string into 

two numpy arrays [14], subtracts one from each start index, computes the end indices, initializes a numpy array of zeros 

with the original image’s shape, and reshapes the 1D array back into the original image shape. These preprocessing steps 

ensure our dataset is prepared for image segmentation tasks with TensorFlow. 

3-3- 2D Array 

In this study, we present a custom implementation of a data generator for image segmentation tasks using TensorFlow. 

Our proposed approach is based on inheriting from the base class tf.keras.utils. The sequence is used for implementing 

data generators in TensorFlow. The constructor of our data generator takes a data frame containing information about 

the images and masks, the batch size to determine the number of samples in each batch and the mode of the generator, 

specifying whether it is for training or validation. Our data generator utilizes the get-item method to load images and 

masks for each batch. This method loads grayscale images using the tf.keras.preprocessing.image.load img function and 

resize them using the tf.image.resize function. We normalize the pixel values by dividing them by 255. In the case of the 

generator mode being trained, the method also loads the corresponding mask for each image and resizes it using 

tf.image.resize. Using the decode function, we convert the mask from the run-length encoding format to a 2D array. Our 

data generator returns a tuple containing a batch of images and masks if the mode is trained. Otherwise, it only returns 

a batch of images. We determine the number of batches in the generator using the len() function method. We implement 

it with the floor division operator to ensure all samples are included, even if the batch size does not divide them evenly. 

3-4- Data Visualization 

In our image processing pipeline, the next step in image preprocessing is embedding the mask information obtained 

from the metadata. The metadata contains details of organ segmentation based on pixel position and length. For each 

case ID, there can be three possibilities: no mask, all organs masked, or only some organs masked. Figure 3 presents a 

side-by-side representation of the images with their corresponding masks to provide a clear visualization of the 

segmentation process. The visual depiction shows that the separation between the stomach and large intestine decreases 

with each successive slice. This suggests a gradual decrease or less prominence of the stomach and large intestine regions 

in the images as we move through the slices. On the other hand, the segmentation of the small intestine shows a 

progressive increment with each consecutive slice. This indicates a growing prominence or clearer appearance of the 

small intestine region in the images as we progress through the slices. 

 

Figure 3. Visual analysis of some images and masks 
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3-5- ResECA-U-Net 

In our ResECA-U-Net architecture, we incorporate the Efficient Channel Attention (ECA) mechanism into the middle 

Concat layer, which is based on the original U-Net structure. To enhance the down-sampling component of U-Net, we 

focus on the first five elements of ResNet34 and replace maximum pooling with 3x3 convolutions, reducing information 

loss. 

We improve the spatial and channel dimensions of the last three down-sampling output feature maps by maintaining 

the U-Net’s skip connection and introducing the ECA module in the intermediate connection layer. For complete 

information fusion, we combine the corresponding up-sampling components. Figure 4 visually illustrates the structure 

of the ResECA-U-Net network, showcasing the operations and network modules in various colors. During the feature 

extraction process of ResECA-U-Net, we utilize four groups of 1×1 convolutions, maximum pooling, and residual 

convolutions. The convolution kernels have a size of 3×3, and the maximum pooling operations are 3×3 as well. We 

employ five sets of 2×2 upsampling and 3×3 convolution operations to restore the feature map size during decoding. In 

the first three upsamplings, the feature map in the middle layer undergoes information fusion, and the ECA attention 

module improves the matching down-sampled feature map. By combining upsampling and 1×1 convolution, our network 

generates a prediction image of the same size as the input image, completing the image segmentation process. Precise 

network parameters include layer names, output feature map sizes, and operations (stride, convolution, maximum 

pooling, and up-sampling). Overall, our ResECA-U-Net architecture leverages the strengths of both U-Net and ResNet 

while incorporating attention methods to enhance feature representation and accelerate segmentation speed. 

 

Figure 4. Traditional semantic segmentation methods are transcended by the advanced ResECA-U-Net architecture 
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3-6- Residual Module Basic Block 

In our study, we delve into the concept of the Deep Residual Network (ResNet), which was introduced by He et al. 

in 2015. We adopt the term "residual" to describe the discrepancy between the observed value and the estimated value 

in the network mapping. By considering the network input as x and the expected mapping as H(x), we can express the 

relationship as follows: 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (1) 

In ResNet, the inclusion of residual blocks alleviates the problem of network degradation, which often arises in deeper 

networks. These residual blocks enable smoother optimization compared to explicitly optimizing H(x). 

We can express the relationships between multiple layers in the context of layer L as follows: 

𝐹(𝑋(𝐿)) = 𝑋(1) + [𝑖 = 1 𝑡𝑜 𝐿 − 1] 𝐹(𝑋(𝑖)) (2) 

where 𝑋(𝐿 + 1) = 𝑋(𝐿) + 𝐹(𝑋(𝐿));  

Equation 2 denote the output and input of layer L as XL+1 and XL, respectively. By adding the residual F(X(i)) to 

the input X(i), this relationship exemplifies the 246 additive nature of residual connections. Such a relationship can be 

recursively employed, enabling the network to learn the residual mapping and improve its performance effectively. 

Figure 5 shows the architecture of ResNet34. Each colored block in the model represents a group of convolutions with 

comparable dimensions. The 3×3 convolutions used in each layer, with fixed feature map dimensions of 64, 128, 256, 

and 512, respectively, follow the same pattern. As the solid lines show, the input travels through every two convolution 

layers, maintaining the exact dimensions. 

 

Figure 5. Visualizing the architecture of ResNet34 
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Contrarily, the dotted lines signify modifications to the input volume dimensions. We noticed that the convolution 

procedure, when the initial convolution of each layer’s stride size changes from 1 to 2, causes the dimension reduction. 

Each layer of ResNet’s architecture contains several blocks. ResNet maintains the total number of layers while increasing 

the number of tasks within a block as it learns deeper. As a result, the model can better handle deep representations and 

learn more sophisticated characteristics. 

3-7- Efficient Channel Attention (ECA-Net) 

We implemented the Efficient Channel Attention (ECA) mechanism to increase the variety and heterogeneity of the 

tested models, as shown in Figure 6. In our approach, we propose a channel attention module with significant 

performance advantages with minimal parameter usage, unlike previous methods that often rely on complex module 

construction for improved performance [15]. The channel attention method has demonstrated promise in enhancing the 

performance of deep convolutional neural networks (CNNs). It enables the model to focus on essential features while 

suppressing irrelevant ones by selectively attending to different channels within the network. This attention process 

enables CNN to extract more meaningful and discriminative representations from the input data. Incorporating channel 

attention into the CNN design increases accuracy and improves generalization power. ECA-Net captures local cross-

channel interactions using 1-D convolution, with the extent of cross-channel interaction determined by the convolution 

kernel size. The selection of the convolution kernel is based on conventional exponential function formulas that 

correspond to the number of channels [16]. Overall, the channel attention mechanism has proven to be a successful 

approach for enhancing the performance of deep CNNs. It improves the model’s ability to generalize and achieve higher 

accuracy and provides a means to focus on relevant information selectively. In this work, we employ the Efficient 

Channel Attention (ECA) technique to ensure improved performance while maintaining simplicity and utilizing sparse 

parameters. 

 

Figure 6. Efficient Channel Attention (ECA-Net) architecture 

3-8- Transfer Learning 

Transfer learning is a valuable method to shorten training times because segmentation depends on the capacity to 

acquire and transfer knowledge. Different visual identification tasks, such as detection and semantic segmentation, have 

succeeded with transfer learning [17]. Valuable parameters are enhanced, and unnecessary factors are removed when 

employing transfer learning. In Rusu et al. [18], transfer learning is not a general norm, and the task-specific nature of 

the learning will determine how effective it is. 

In the U-Net design, we experimented with many types of transfer learning, such as EfficientNet-B0, EfficientNet-

B1, ResNet-18, ResNet-34, ResNet-50, and ResNet-101, taking inspiration from transfer learning methodologies. These 

tests showed that employing transfer learning with ResNet-34 in conjunction with U-Net led to successful segmentation 

outcomes. With the addition of ECA Net to our design, we increased efficiency and improved segmentation performance 

significantly. As a result, we created a brand-new architecture called ResECA-U-Net. 

3-9- Loss Variations 

During semantic segmentation in medical imaging, the class imbalance can be a significant issue, as the background 

class tends to dominate the dataset. To address this issue, we propose modifying the loss function to assign greater weight 

to the positive classes. The overall loss function used to optimize the models is defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙(𝑌, 𝑌ˆ) = 0.5𝐿𝐵𝐶𝐸(𝑌, 𝑌ˆ) + 0.5𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝑌, 𝑌ˆ) (3) 

Here, 𝑌 represents the ground-truth label, and 𝑌ˆ represents the predicted value. The binary cross-entropy (BCE) loss 

function, given by Equation 4, is defined as: 
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𝐿𝐵𝐶𝐸(𝑌, 𝑌ˆ) = −𝜆𝑌𝑙𝑜𝑔(𝜎(𝑌ˆ)) − (1 − 𝑌)𝑙𝑜𝑔(1 − 𝜎(𝑌ˆ) (4) 

where λ = 1, σ(·) denotes the sigmoid function, 𝑌 is the ground-truth label, and 𝑌ˆ is the predicted value. The Tversky 

loss function, defined in Equation 5, is also used: 

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝑌, �̂�) = ∑
�̂�0,𝑖𝑌0,𝑖

�̂�0,𝑖𝑌0,𝑖 + 𝛼�̂�0,𝑖𝑌1,𝑖 + 𝛽�̂�1,𝑖𝑌0,𝑖𝑖

 (5) 

Here, �̂�0,𝑖 represents the predicted background voxel, �̂�1,𝑖 represents the predicted organ voxel, 𝑌0,𝑖 represents the ground-

truth background voxel, �̂�1,𝑖  represents the ground-truth organ voxel, and α and β are weighting factors for false positives 

and false negatives, respectively. Here α and β are both set to 0.5, and the sum is taken over all voxels i. In our research, 

we explore two different configurations for the loss function as defined in Equation 4. The first configuration sets λ = 1, 

which represents the standard BCE loss, where both positive and negative examples have an equal impact on the loss 

function. In contrast, the second configuration, where λ = 10, introduces a positively skewed BCE loss that places a 

higher weight on the positive classes. Consequently, incorrect classification of non-background pixels as background 

incurs a higher penalty [19]. By adopting this loss function, our approach aims to minimize the number of false negative 

pixels, which refers to those that are erroneously classified as background 

3-10- Diversity-Promoting Ensemble 

By employing a typical technique of restricting the number of models included in the ensemble to address limited 

processing resources [20], our study focuses on ensuring a more accurate ensemble by minimizing the correlation among 

the models, as the presence of a high correlation may lead to aggregated results resembling those of a single model. To 

promote diversity among the models and consider the relationship between their outputs, we propose a novel approach 

for ensemble generation [21]. Initially, a wide range of U-Net models is trained to establish a robust ensemble, with 

particular emphasis on minimizing the correlation between the outputs of different networks, as empirical evidence 

suggests that encouraging decorrelation can result in more accurate ensembles. To establish an upper bound for 

ensembles without budget constraints, we consider an ensemble that includes all available models while eliminating 

restrictions. It is important to note that our suggested ensembles and other ensembles rely on soft plurality voting, 

involving the averaging of softmax activations from multiple models [17]. Moreover, we introduce our diversity-

promoting ensemble (DiPE) construction technique, which utilizes a correlation matrix between pairwise combinations 

of models [22]. In contrast to conventional approaches that primarily focus on selecting the best-performing models, our 

method aims to choose highly diversified models that mutually enhance each other’s performance, thus contributing to 

the overall effectiveness of the ensemble [23]. 

3-11- Diversity-Promoting Ensemble Creation Algorithm 

Diversity-Promoting Ensemble Creation Algorithm:  

Input: Trained models {M1, M2, ..., Mn}, validation set X = {X1, X2, ..., Xt}, diversity-promoting parameter λ. 

Output: Ensemble model ME.  

1: Initialize empty set E = ∅ 

2:  for i = 1 to n do 

3:    Si ← ∅ 4: for r = 1 to t do 

5:    Yˆ i, r ← Mi(Xr) 

6:    Si ← Si ∪ {Yˆ i,r}  

7:    end for 

8:    for j = 1 to n do 

9:      if i ̸= j then 

10:      Di,j ← 1 t Pt r=1 Dice(Yˆ i,r, Yˆ j,r) 

11:     end if  

12:    end for 

13:   wi ← 1 n−1 P j̸=i Di,j 

14:   E ← E ∪ {(Mi , wi)} 

15:  end for 

16: Sort E in descending order of wi 

17: ME ← Weighted combination of the top λn models in E 

18: Return ME 
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In this algorithm [24], we first initialize an empty set E, which will contain the ensemble models. Then, for each of 

the trained models, we compute the Dice coefficient between its segmentations and those of the other models. We use 

these coefficients to compute a weight wi for each model, which reflects its diversity with respect to the other models. 

We add each model and its weight to the set E. After all the models have been processed, we sort the set E in descending 

order of weights. Finally, we combine the top λn models in E with weights proportional to their weights in E to obtain 

the ensemble model ME. 

4- Results & Discussion 

Metrics like the Dice coefficient and Intersection over Union (IOU) were used to assess the segmentation model. 

Three distinct models were compared, namely U-Net, ResNet-34, and ECA-Net. The U-Net model achieved a Dice 

coefficient of 87.55% and an IOU of 79.61%. Researchers incorporated ResNet-34 into the U-Net model to improve its 

performance. This resulted in a Dice coefficient of 91.92% and an IOU of 89.57%. This enabled the model to capture 

and represent more intricate features, producing superior segmentation outcomes. Maximum optimal performance was 

achieved by ResNet-34, ECA-Net (c), and the U-Net model with optimizer Adam with batch size eight and a learning 

rate of 0.0001. This model had an impressive Dice coefficient of 96.27% and an IOU of 91.48%, resulting in the highest 

accuracy among the three compared models.  

Figure 7 visually illustrates the comparison of the three models, effectively showcasing the performance enhancement 

achieved through the incorporation of ResNet-34 and ECA-Net. The graph or visualization presented in Figure 7 serves 

to demonstrate the gradual increment in model performance with each modification, ultimately resulting in the most 

outstanding performance with the combination of U-Net, ResNet-34 and ECA-Net. 

 

Figure 7. Visually illustrates the comparison of the three models: (a)UNet, (b) UNet+ResNET 34, (c) UNet+ResNet 34+ECA Net 

From Table 1, we can observe the performance of four different models, i.e., EfficientNet-B0, EfficientNet-B1, 

ResNet-34, and EfficientNet-B2, evaluated on the basis of four different metrics - Dice, IoU, Valid dice and Valid IoU. 

The accuracy of the model’s picture segmentation is shown by the Dice and IoU scores (Figure 8). The Valid dice and 

Valid IoU scores show how well the model performed on the validation set, or the data that it was not exposed to during 

training. Looking at the Dice and IoU scores, we can see that ResNet-34 with ECA-Net outperforms all the other models 

with the highest scores of 96.27% and 91.48%, respectively. ResNet-34 comes in second with 91.92% and 89.57% Dice 

and IoU scores, respectively. EfficientNet-B1 comes in second with 91.86% and 88.60% Dice and IoU scores, 

respectively. EfficientNet-B2 and EfficientNet-B0 have comparable scores, with EfficientNet-B2 performing slightly 

better than EfficientNet-B0. 
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Table 1. Obtained from individual U-Net model variants based on different backbones are Dice and IoU scores, which serve 

as evaluation metrics for assessing segmentation accuracy 

Transfer-learning Dice (%) IoU (%) Valid dice (%) Valid IoU (%) 

EfficientNet-B0 91.11 88.39 88.75 87.92 

EfficientNet-B1 91.86 88.60 91.72 88.03 

EfficientNet-B2 91.75 88.48 91.16 87.51 

ResNet-34 91.92 89.57 87.83 87.46 

ResECA-U-Net (proposed) 96.27 91.48 92.03 87.90 

 

Figure 8. Dice and IoU scores over epochs on training data for various U-Net-based models 

Table 2, Evaluation metrics of PSP-Net model variants with different backbones based on Dice and IoU scores for 

segmentation accuracy assessment. The segmentation accuracy of PSP-Net models with different backbones is evaluated 

using Dice and IoU scores, which are presented in Table 2. The results indicate that ResNet-18 achieves the highest Dice 

and IoU scores with 92.25% and 93.15%, respectively, followed by ResNet-34 with 89.75% and 90.78%. EfficientNet- 

B1 and EfficientNet-B2 exhibit lower Dice and IoU scores with 88.57% and 87.12%, and 89.84% and 89.96%, 

respectively. These findings suggest that the choice of backbone architecture can significantly impact the segmentation 

accuracy of PSP-Net models. 

Table 2. Obtained from individual PSP-Net model variants based on different backbones are Dice and IoU scores, which 

serve as evaluation metrics for assessing segmentation accuracy 

Transfer-learning Dice (%) IoU (%) Valid dice (%) Valid IoU (%) 

RestNet-34 89.75 90.78 82.8 82.72 

EfficientNet-B1 88.57 87.12 80.52 79.66 

EfficientNet-B2 89.84 89.96 85.52 84.88 

ResNet-18 92.25 93.15 80.08 80.88 

ResECA-U-Net (proposed) 96.27 91.48 92.03 87.90 

Upon consideration of the evaluation metrics, ResNet-34 emerges as the superior model for the image segmentation 

task at hand [25, 26]. Nevertheless, it is important to take into account additional factors, such as computational resources 

and model complexity, before making a final decision. Overall, our study emphasizes the significance of carefully 

selecting CNN architectures that are most suitable for particular image segmentation tasks in order to attain optimal 

performance. 

Table 3 presents a comprehensive comparative analysis of segmentation models, including U-Net+EfficientNet-B1, 

LeViT with U-Net++, Small U-Net-B2, and U-Net, along with our proposed model, ResECA-U-Net. The evaluation of 

these models’ performance relies on the adoption of widely accepted metrics, namely the Dice coefficient and 

Intersection over Union (IoU) score, which are extensively recognized for their effectiveness in quantifying segmentation 
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accuracy. Our proposed model, ResECA-U-Net, demonstrates superior performance in terms of both the Dice coefficient 

and IoU score. It achieves a Dice coefficient of 96.27% and an IoU score of 91.47%, outperforming U-Net with 

EfficientNet-B1 (Dice: 91.30%, IoU: 88.60%), LeViT+U-Net++ (Dice: 79.50%, IoU: 72.80%), Small U-Net-B2 (Dice: 

83.14%, IoU: 79.61%), and U-Net (Dice: 88.54%, IoU: 88.19%). 

Table 3. A comparison of existing systems for UW-Madison GI Tract Image Segmentation in teams of Model, 

Dice coefficient and IoU 

Model Dice (%) IoU (%) 

U-Net with EfficientNet-B1 91.30 88.60 

LeViT with U-Net++ 79.50 72.80 

SmallUnet-B2 83.14 83.14 

U-Net 88.54 88.19 

Proposed model (ResECA-U-Net) 96.27 91.47 

Table 4 presents segmentation models, including R-CNN, U-Net, ResNet34-U-Net, Light Weight U-Net, Unet2.5D, 

PSPNet with ResNet34, and a standalone U-Net, that were applied to diverse medical imaging datasets, such as UW-

Madison GI Tract Image Segmentation and UW-Madison Carbone Cancer Center. Results indicate a progression in 

segmentation accuracy from basic models to more sophisticated architectures. Notably, ResECA-U-Net, a proposed 

model for UW-Madison GI Tract Image Segmentation, outperformed all counterparts with an exceptional Dice score of 

96.27% and an IoU score of 91.47%, showcasing the efficacy of incorporating Efficient Channel Attention. This 

highlights the continuous refinement and innovation in segmentation models, with the ResECA-U-Net emerging as a 

state-of-the-art solution for accurate medical image segmentation. 

Table 4. Compare propose model with prev ious model 

Ref. Dataset type Model Score 

[7] UW-Madison GI Tract Image Segmentation 
R-CNN 

U-Net 

Dice score- 73% 

Dice score- 51% 

[27] UW-Madison GI Tract Image Segmentation ResNet34 - U-Net Dice score-90.49% 

[28] UW-Madison GI Tract Image Segmentation 
Light Weight U-Net 

U-Net with ResNet34 

Dice score- 77.91% || IoU score- 82.69% 

Dice score- 77.91% || IoU score- 82.69% 

[29] UW-Madison Carbone Cancer Center Unet2.5D model Dice score- 84.8% 

[30] UW Madison GI tract dataset PSPNet Model with ResNet34 Dice score- 88.44% 

[12]  U-Net Dice score- 88.54% || IoU score- 88.19% 

(Proposed Model) UW-Madison GI Tract Image Segmentation ResECA-U-Net Dice score- 96.27 || IoU score- 91.47 

4-1- Discussion 

The improved performance of our proposed model is attributed to several key factors. Combining U-Net, ResNet-34, 

and ECA-Net architectures enhances the overall segmentation accuracy. U-Net, renowned for its effectiveness in 

segmentation tasks, is further empowered by the deep feature extraction capabilities of ResNet-34. This fusion allows 

our model to leverage the features of ECA-Net, U-Net, and ResNet-34, resulting in improved and effective segmentation 

accuracy. In terms of both the Dice coefficient and IoU score, our proposed model, U-Net with ResNet-34 and ECA-

Net, exhibits superior performance compared to the current state-of-the-art segmentation models. The fusion of U-Net, 

ResNet-34, and ECA-Net architectures, along with the utilization of residual connections and deep feature extraction 

capabilities, significantly improves the accuracy of our model. These findings highlight the potential of our proposed 

model for advancing medical image segmentation, providing valuable insights and support for clinical decision-making. 

Figures 9 to 11 visualize the training and validation losses, as well as the IoU and Dice coefficients, during the training 

of our model. The goal of this visualization is to provide insight into the performance of the model during training, which 

can help researchers diagnose any problems with the model architecture or training process. The history object contains 

the training and validation losses, as well as the IoU and Dice coefficients, for each epoch of the training process. These 

metrics are plotted using the matplotlib function, with the training metrics represented as blue dots and the validation 

metrics represented as a red line. This code generates a figure with three subplots, each of which represents one of the 

metrics being plotted. The first subplot displays the training and validation losses, with the epoch number on the X-axis 

and the loss value on the Y-axis. The training and validation IoU coefficients are shown in the second subplot, while the 

training and validation Dice coefficients are displayed in the third subplot. In Figure 12, we demonstrate the evaluation 

of a neural network model on a test dataset consisting of image-mask pairs. Specifically, we evaluate the performance 

of a segmentation model that produces a binary mask indicating the presence or absence of an object in the image. First, 
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we load a batch of image-mask pairs using a DataLoader object. Next, we pass the images through the segmentation 

model to obtain a set of logits, which are then converted to binary predictions using a threshold of 0.5. We then visualize 

the results of the segmentation on a sample of three images, showing the original image and the predicted mask side by 

side. 

 

Figure 9. Visualizing the performance of a ResECA-U-Net using Dice Coefficient 

 

Figure 10. Visualizing the performance of a ResECA-U-Net using IOU 

 

Figure 11. Visualizing the performance of ResECA-U-Net using Loss 
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Figure 12. Visual analysis and prediction using ResECA-U-Net 

Finally, we display the images using Matplotlib, demonstrating the efficacy of the segmentation model in accurately 

identifying object presence in the test dataset. Presenting segmentation masks of ensembles consisting of models (Figures 

9, 10) showcases qualitative results that compare the standard ensemble approach with our DiPE strategy, which is found 

to yield superior segmentation masks compared to the baseline approach. A medical evaluation of our method against 

the ground-truth segmentation produced by radiology specialists reveals only minimal variations, including a notable 

alignment of our method's segmentation of the stomach with the ground-truth segmentation, surpassing the baseline 

method. Demonstrating DiPE's proficiency, the first two rows exhibit greater accuracy in identifying and distinguishing 

between the stomach and the transverse colon than the baseline strategy, resulting in a result closely resembling the 

radiologists' annotations. While both techniques effectively detect the stomach region, our technique has a slight 

advantage. With exceptional proficiency, our DiPE strategy identifies tissues surrounded by substantial amounts of fat, 

as observed in the lower images, particularly the small bowel and mesentery. Our ability to differentiate between the 

small bowel and colon is almost flawless, nearly achieving a one-to-one match with the ground truth. Furthermore, the 

fourth row of images exemplifies the technique's capability to correctly identify the loop of the small bowel on the 

patient's right (or left) without mistaking it for gastric structures. Ultimately, while our new method delivers markedly 

superior results than the baseline approach, we recognize that additional improvements are necessary to match the 

precision of a human observer. 

5- Conclusion 

In conclusion, our research leveraged deep learning techniques to autonomously delineate the stomach and intestines 

within gastrointestinal (GI) tract images, employing the U-Net model complemented by ResNet-34 and ECA procedures. 

The proposed methodology exhibited a commendable segmentation accuracy of 96.27%. The significance of this 

achievement is particularly pronounced in the context of radiation therapy, where precise organ segmentation is pivotal 

for ensuring the protection of vital structures, facilitating beam direction adjustments, reducing treatment durations, and 

enhancing overall patient comfort. Throughout the study, we diligently considered the intricacies of the U-Net model, 

contemplating current designs and making pertinent adjustments to optimize its performance. Our approach involved 
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meticulous data pre-processing on the extensive annotated dataset comprising 115,488 samples. Techniques such as 

encoding, decoding, scaling, and normalization were systematically applied to enhance the model's capacity for accurate 

segmentation. The techniques section provides a comprehensive overview of the U-Net architecture, delving into 

intricate details such as backbone modifications involving ResNet-34, EfficientNet-B0, and EfficientNet-B1. 

Incorporating downsampling and upsampling blocks, alongside the careful orchestration of narrowing and expanding 

routes, further contributed to the robustness of our model. Additionally, integrating the Efficient Channel Attention 

(ECA-Net) mechanism was pivotal in augmenting overall model performance. 

5-1- Future Work 

The segmentation of the stomach and intestines on GI tract images using deep learning has significantly improved 

since our study’s initial results. There are a few areas, nevertheless, that call for more study and advancement. These 

include incorporating multi-modal data, investigating transfer learning and pre-training techniques, utilizing clinical data 

to predict outcomes, enhancing robustness to changes in picture quality, validating the technique on larger and more 

varied datasets, concentrating on clinical implementation, and developing user interfaces. To further improve treatment 

planning for GI tract cancer, real-time segmentation and adaptive radiation therapy should be researched. The outcomes 

and quality of life of patients will ultimately be enhanced by continued study in these fields, which will also advance the 

treatment of GI tract cancer and automate medical image segmentation. 
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