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Abstract 

This paper presents a solution for building and implementing data processing models and 

experimentally evaluates new possibilities for improving ensemble methods based on multilevel 

data processing models. This study proposes a model to reduce the cost of retraining models when 

transforming data properties. The research objective is to improve the quality indicators of machine 

learning models when solving classification problems. The novelty is a method that uses a multilevel 

architecture of data processing models to determine the current data properties in segments at 
different levels and assign algorithms with the best quality indicators. This method differs from the 

known ones by using several model levels that analyze data properties and assign the best models to 

individual segments of data and training. The improvement consists of using unsupervised clustering 
of data samples. The resulting clusters are separate subsamples for assigning the best machine-

learning models and algorithms. Experimental values of quality indicators for different classifiers 

on the whole sample and different segments were obtained. The findings show that unsupervised 
clustering using multilevel models can significantly improve the quality indicators of “weak” 

classifiers. The quality indicators of individual classifiers improve when the number of data clusters 

is increased to a certain threshold. The results obtained are applicable to classification when 
developing models and machine learning methods. The proposed method improved the classification 

quality indicators by 2–9% due to segmentation and the assignment of models with the best quality 

indicators in individual segments. 
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1- Introduction 

Today, applying artificial intelligence methods to separate tasks improves the achieved qualitative indicators of data 

processing. Machine learning algorithms enable the identification of the characteristics, statistical properties, and 

implicit knowledge necessary to achieve a given result by systematically analyzing sufficient relevant data samples. The 

constantly rising need to improve the qualitative indicators when solving classification, regression, and forecasting 

problems causes the need to improve data processing methods. Adequate model building depends on the properties of a 

limited training sample, which should replicate the properties of the general population. A large volume of observation 

objects is required to achieve high-quality indicators, which is not always possible. Emerging external and internal events 

in the system can change the properties and characteristics of the analyzed data. Consequently, the problem of model 

adequacy assessment and the need for retraining arise. However, training many models is unique and requires significant 

resources, time, research, and experience. 

To improve the processing results, models using ensemble methods are applied. They integrate several basic models 

using simple, weighted, and average voting functions and apply bagging, busting, and stacking methods to form a group 
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of algorithms to improve the results [1, 2]. Studies have shown that one of the main advantages of ensembles over 

individual models is their ability to achieve higher-quality indicators of data processing. By aggregating the results of 

different underlying algorithms, it becomes possible to level out the erroneous predictions obtained from individual 

models [3]. However, in practice, there are situations where poorly trained classifiers can degrade the results compared 

to the application of individual algorithms [4]. 

Aggregating several basic models provides an opportunity to smooth out the deviations of each algorithm when 

external influences occur. In transforming the properties of the processed information sequence, the problem of 

determining noise, outliers, or detecting changes in data properties arises, leading to significant resource consumption 

for the retraining of classification algorithms [5]. Assigning a separate model to a data segment makes it possible to 

reduce the labor and resource intensity of these processes and increases the speed of model adaptation to the changed 

properties of the input sequences of observation objects. 

Overtraining can occur during the initial stages of ensemble training [4]. Its manifestation is characteristic of using 

both complex models and a large number of relatively simple data processing algorithms [6]. Ensemble retraining is a 

more costly procedure than individual model retraining [5, 7]. Combining multiple models requires solving several 

problematic issues related to their settings to ensure “distinguishability” in the case of large datasets or limited 

computational resources [2]. 

The papers provide various ways of combining ensemble models, but their selection and building are empirical, which 

does not make it possible to transfer the experience to other subject areas and data structures [2, 3]. Another problem 

with ensemble approaches is that setting optimal parameters requires considerable knowledge and experience and many 

analysis procedures [4, 5]. Combining the results of different classification algorithms cannot always reduce the 

processing error [4, 6]. In addition, there are significant difficulties in forming training subsamples of data aimed at 

creating distinguishable models that give optimal variance and result bias [2]. In any case, the ensemble quality usually 

depends on the quality of the underlying models. However, the aggregation functions used in ensembles do not always 

allow us to respond quickly to changes in data properties related to changes in the distribution, frequency of occurrence 

of observation objects, presence of noise, and outliers, according to Mohammed & Kora (2023) [2] and Akano & James 

(2022) [5]. 

This study proposes a three-level model of data processing to solve several identified problematic issues. At the lower 

level, the model solves information processing tasks. At the middle level, the model assesses the properties of incoming 

data and makes decisions related to sample segmentation and data separation to improve the quality indicators of 

processing algorithms. At the upper level, the model monitors quality indicators and performs general management. 

This research aims to enhance quality indicators in processing information flows and data samples. The proposed 

method differs from the known ones by using multilevel models that implement the processes of analyzing data 

properties, assigning the best models by quality indicators to individual data segments, and training. This study proposes 

splitting the data sample into separate clusters to improve processing efficiency, which makes it possible to train models 

on each segment separately and then select and assign the model with the best quality indicators of processing for this 

cluster from the group of models. The application of unsupervised clustering in generating data segments makes it 

possible to determine the limit values of processing data quality indicators by changing the number of clusters. This 

method allows the use of less resource-intensive models to reduce the computational cost of retraining models in the 

case of changes in data properties. 

The rest of this paper is as follows: Section 2 provides an overview of the studies on improving data quality and 

classification models, highlighting the distinctive features of the proposed solution. Section 3 provides a formalized 

problem statement and describes the method developed in this study and the application of unsupervised clustering to 

improve the quality indicators of the data processed on its basis. Section 4 presents the data testing results and discusses 

the applicability of the method considered in this study based on the conducted experiments. Section 5 provides an 

interpretation of the obtained results. 

2- Literature Review 

Improving the quality indicators of classification methods is one of the essential problems in machine learning. 

To date, one of the main directions for improving the quality of processed data is to combine models into various 

ensembles. Interest in such methods does not fade despite the prevalence of the neural network approach [8, 9] because 

the need arises to implement hybrid models that combine deep learning methods with classical classification algorithms 

to improve quality indicators in data processing. Such symbiosis for particular tasks makes it possible to significantly 

improve quality indicators [10, 11]. However, such models have complexities in interpreting results, are prone to 

saturation of the neural network, and are difficult for retraining processes when the properties of the processed data 

change. 
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Ensemble data processing techniques have been improving since their introduction. Studies on the aggregation of 

data processing models constantly consider sampling ensembles using various weighted sampling voting functions, 

cascades of simple algorithms, and deep neural networks, according to Huang et al. (2023) [12] and Brown et al. (2023) 

[13]. The task of such functions is to remove the dependence of the underlying algorithms on each other by averaging 

the results. Each function has its advantages and disadvantages. Implementing weighted voting requires constant 

updating of the weight coefficients of the underlying algorithms of simple voting, which are not sensitive to changes in 

the data properties; the applied cascades are highly dependent on the initial settings and complicated to reconfigure. 

Using algorithm ensembles improves quality indicators of processing in many data mining tasks by evaluating the 

results of different processing methods. It creates a more accurate model that aggregates the output results, helps improve 

the prediction result, and reduces the model's dependence on a particular dataset [14]. All these methods improve some 

qualitative indicators to a greater or lesser extent, but their main disadvantages are training complexity, resource 

intensity, and increased algorithm running time. 

Another direction for improving the indicators of data processing quality is sampling. The modern approach to 

machine learning methods is defined by the paradigm of “model plus data,” in which both model and data have the same 

significance. Data-splitting techniques improve the quality indicators of processing and optimize learning processes. 

Sampling separation for processing models is an auxiliary element of the ensemble methods, which involves grouping 

the data first and then independently training algorithms on subsamples. However, the issue of forming segments 

optimized to improve the performance of models trained on them is not usually considered [15, 16]. 

Many datasets have complex base structures. When applying, for example, different classification algorithms to the 

whole sample, situations may arise that affect the achievement of the given quality indicators. Linear classifiers lose 

completeness and accuracy in the case of nonlinear data distribution. Nonlinear classifiers and neural networks require 

large training datasets and resources to achieve quality results. However, if segments are detected in the data, using such 

information in many cases will improve the processing quality for both linear and nonlinear classifiers [17, 18]. 

Deep analysis for sample separation often reveals relatively homogeneous characteristics in segments, which provides 

advantages for building processing models [19, 20]. Investigated various aspects of vertically separated data, proposed 

techniques, basic algorithms, and combination strategies aimed at selecting observation objects [21, 22]. This makes it 

possible to obtain the main characteristics of sequences and samples and exclude values that lead to distortion of 

properties [23]. Djouzi et al. (2022) [24] determined the principles of data segmentation, investigated the effect of 

clustering on the quality of SVM classifier predictions, and concluded that there is a relationship between the number of 

clusters and classification quality. 

However, using the described methods incurs significant costs for analyzing the processed data [25, 26]. In their 

application, situations may arise when they deteriorate instead of improving quality indicators [27, 28]. Reduction of 

computational costs for analysis and determination of internal data structures is possible based on unsupervised 

clustering, which defines clusters by grouping objects based on their similarity without prior knowledge of the number 

of clusters [29, 30]. Such approaches lose qualitative indicators to some processing models but, compared with other 

algorithms, do not require significant costs for deep data analysis. Clustering makes it possible to identify groups of 

similar objects, consider outliers, and identify atypical objects. Belonging to a cluster and analyzing the properties of 

objects belonging to it (distributions, value ranges, incidence of classes) provide additional information for the machine 

learning method. 

The most popular modern machine learning methods, such as ANFIS, RBF, ANN, NB, LD, SVM, DT, and K-nearest 

neighbors (KNN), as well as their ensembles, are often used for data processing in various subject areas. The analysis of 

the outlined sources shows some shortcomings of the state-of-the-art models. ANFIS suffers from limitations related to 

dimensionality and computational costs [31]. RBFs have poor extrapolation properties [19]. ANN has non-guaranteed 

convergence and significant training costs [31, 32]. NB uses a not always correct assumption of feature independence 

[18]. LD is sensitive to data distribution [20]. SVM performs poorly in the presence of outliers and noise [15]. DT is 

susceptible to uncontrolled growth in the presence of some variants [34]. RNN has temporal and spatial complexity [24]. 

Incorporating additional information about data clusters can improve quality indicators of processing in some cases. 

Nevertheless, choosing the best method is difficult because the space of a single or mere hypothesis of learning 

algorithms shows difficulties in satisfying all possible scenarios as the data used changes, according to Wei et al. (2022) 

[34]. 

The overwhelming majority of methods have disadvantages related to computational complexity, processing of noisy 

information, sensitivity to dimensionality, distributions, and statistical properties of processed data. In this regard, it is 

possible to use multilevel models that can analyze and divide the sample into separate segments according to their 

properties and assign the most effective processing model to each segment. Thus, there is a need to develop new and 

adapt existing strategies that enable accurate and robust learning within the separation of functions and samples. Data 

becomes an essential component, affecting the quality of models within the paradigm under consideration. Data and their 

properties are fundamental to model selection and ensemble building. 
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This paper proposes a possible solution to improve quality indicators, which considers the application of unsupervised 

clustering of the data sample in multilevel models for solving classification problems. It investigates the possibility of 

assigning a model to a cluster that shows better results on the objects belonging to it than other algorithms. This study 

also determines the limits of the values of quality indicators based on the number of clusters into which the sample is 

divided. 

3- Proposed Model 

3-1- Basic Notation 

Currently, most machine learning methods are highly dependent on the properties of the processed data. Each model 

is optimized to achieve high-quality indicators for the training samples, which consist of a predetermined set of 

observation objects. In the case of shifts in the ranges of predictors and target variables, changes in distributions in 

information sequences processing quality indicators may decrease, which leads to the necessity of reapplication of 

training methods. Model retraining processes require a considerable time and resources. When phenomena such as 

concept drift occur, the processing model may lose its relevance by the time of retraining. 

Therefore, this study considers a solution aimed at reducing the resource intensity of learning processes based on the 

segmentation of samples, on which, depending on the data properties, the model selection with the best quality indicators 

occurs, implemented by generating data processing models consisting of several levels. Each of them solves 

predetermined tasks: analysis and segmentation of incoming information flows, training of predetermined models, and 

assignment of the model with the best qualitative indicators for the current segment. Figure 1 shows the three-level data 

processing model. 

 

Figure 1. A three-level data processing model 

At the lower level, the model performs tasks such as forecasting or classification. At the middle level, the model 

performs tasks arising from changing properties of incoming data associated with finding cluster structures, time series 

change points, and concept drift detection. At the upper level, the model monitors quality indicators and performs general 

management and model assignments. 

In many systems that process information flows, due to external and internal influences, data properties may change 

or return to the initial state after particular time intervals. Therefore, it is necessary to monitor the incoming sequences 

and segment them by considering the influencing factors. The aim of dividing the sample is to obtain data subgroups to 

build relatively simple separating surfaces between their classes, thus minimizing errors. It is desirable to minimize 

computational complexity and resource intensity. 

3-2- Formal Description of the Proposed Method 

Models of different levels interact on the basis of the analysis of the current properties of the processed data. The 

initial stage of multilevel structure formation implies the presence of predetermined sets of data processing models 

𝑎1, . . . , 𝑎𝑟 and data sample separation functions 𝜇1, . . . , 𝜇𝑚. For data analysis and initial adjustment of the models, a data 

sample X reflecting the properties of the general population is required. 

Different separation functions form segments in the sample depending on the type of input data. These can be, for 

example, methods of searching for change points for time sequences, determining concept drift, and sample clustering. 

The sets of observation objects in the obtained segments may have different properties. Any data processing models 

𝑎1, . . . , 𝑎𝑟 in different segments will show different quality indicators. Therefore, it is necessary to evaluate the quality 

indicators of the segment data processing models obtained using different functions 𝜇1, . . . , 𝜇𝑚 of sample separation. 

Each function 𝜇𝑙: 𝑋 → {1𝜇𝑙
, . . . , 𝑀𝜇𝑙

} splits the sample X into a different number of segments 𝑀𝜇𝑙
. 

Upper-level models 

(Model management: quality assessment, decision-making on sampling and 

model training, selection of processing quality metrics) 

Data flow 

Middle-level models 

(Data analysis and generation: preparation and formation of segmentation 

algorithms) 

Data flow 
Lower-level models  

(Solution of predefined tasks: solution of data 

processing tasks) 
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By defining separation functions {𝜇1, . . . , 𝜇𝑚}∈М as clustering methods, for each 𝜇𝑙 it is possible to obtain different 

separations of the data sample {𝑋1𝜇𝑙

𝜇𝑙 ,…,𝑋𝑀𝜇𝑙

𝜇𝑙 }∈X, differing in the number of clusters and the composition of observation 

objects. Setting different parameters for the same algorithm, for example, applying various distance measures, gives 

groups of clusters with significant differences in data shapes and properties. For a chosen separation function 𝜇𝑙 on each 

segment 𝑋𝑖
𝜇𝑙 ∈ 𝑋 obtained using its application, it is possible to determine processing models 𝑎𝑗

𝜇𝑙(𝑥) that achieve better 

results. 

𝑎𝑗
𝜇𝑙(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑗

𝜇𝑙∈𝐴,𝜇𝑙∈𝜇

𝑄(𝑎𝑗
𝜇𝑙(𝑥), 𝑋𝑖

𝜇𝑙)  
(1) 

Equation 1 allows us to determine the processing model assigned to a segment when separating the data sample. Due 

to possible limitations in the use of computational resources, it is necessary to initially limit the number of data processing 

models in a given multilevel model and to determine the limit of the number of possible clusters for clustering methods. 

For the chosen function 𝜇𝑙, the separation of the data sample is multiple and depends on the given limit. By applying the 

function 𝜇𝑙, different separations of the data sample containing from 2 to M limits of clusters appear. The values of the 

achieved quality indicators of all processing models in each cluster were calculated for the obtained separations. The 

evaluation of the achieved indicators uses the averaged quality functional for each clustering method when processing 

by different models: 

𝑄𝜇𝑙
=

1

𝑀𝜇𝑙

∑ [𝑚𝑎𝑥 ∑ 𝑄(𝑎𝑗
𝜇𝑙(𝑥), 𝑋𝑘

𝜇𝑙)𝑛
𝑗=1 ]

𝑀𝜇𝑙
𝑘=1   (2) 

The following expression determines the choice of clustering method based on Equation 2: 

µ = a𝑟𝑔max
𝜇𝑙

(𝑄𝜇1,…, 𝑄𝜇𝑙
)  (3) 

Thus, the initial sample is separated into several parts. Then, pre-selected models 𝑎1, 𝑎2, . . . , 𝑎𝑟  are trained on clusters, 

determining the values of the quality functional 𝑄(𝑎𝑗
𝜇𝑙(𝑥), 𝑋𝑘

𝜇𝑙) achieved by each model. Based on their values, the 

models are ranked, determining for each segment those models from the set {𝑎1, 𝑎2, . . . , 𝑎𝑟} ∈ 𝐴 that have the highest 

quality indicators. 

The observation objects of the information flow coming to the input are processed, determining their belonging to the 

cluster selected in the training sample and assigning the processing model with the best values of the quality functional 

on a similar segment of the training sample. The obtained results were analyzed. If the errors increase above a 

predetermined threshold, a decision is made to generate data for algorithm refinement, which is subsequently added later 

to the training sample. 

3-3- Method Implementation 

The proposed method involves several operations necessary to customize the models and perform predefined tasks. 

However, some limitations need to be considered during implementation. Figure 2 shows the sequence of data 

processing. This method requires a training dataset that repeats the properties of the analyzed dataset. Initially, it is 

assumed that there are sets of predetermined data processing algorithms and clustering methods. Data processing 

involves several steps: 

1. Generating a training dataset X containing training examples; 

2. Selecting several clustering methods 𝜇1, . . . , 𝜇𝑚for sample X. Each clustering method processes the training dataset. 

The number of clusters k is a varying parameter 𝑘 = 1, … , 𝑀. For each clustering method, several datasets appear, 

differing in the number of clusters; 

3. Determining the number of considered datasets using the number of clustering methods and the maximum number 

of clusters; 

4. Training data processing models𝑎1, . . . , 𝑎𝑟 on all clusters of the obtained datasets𝑋𝑖
𝜇𝑙 ∈ 𝑋, calculating the quality 

indicators of all models for each; 

5. Determining the best method of data clustering 𝜇𝑖 according to a given quality indicator of the data processing 

models and the resulting number of clusters; 

6. Creating for the clustering method 𝜇𝑖, a classification model that includes a group of algorithms 

𝑎1
𝜇𝑙(𝑥, 𝑋1𝜇𝑙

𝜇𝑙 ), … , 𝑎𝑀
𝜇𝑙(𝑥, 𝑋𝑀𝜇𝑙

𝜇𝑙 ), …, performing processing on each segment. 

Thus, clustering sample X sets the maximum number of clusters based on the availability of computing resources. 

Then, all models are trained on each cluster to solve the required information processing tasks, generate the values of 

qualitative indicators for each model, and assign the best model to each cluster. 
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Figure 2. Flowchart of the data processing 

Figure 3 shows a general view of the processing algorithm. 

Algorithm 1: Processing algorithm 

Input: flow sample x, dataset X, methods {a1,…,ar}∈A, split methods{ µ1, …,µm }∈ M 

Output: quality indicator q, method for flow sample a(x) split methods µ 

begin 

for l = 1 to m 

{ 

fork=1 to M 

 { 

µl: X→ { 𝑋1
𝜇𝑙,…,𝑋𝑘

𝜇𝑙}       //Generation of clusters 𝑋1
𝜇𝑙,…,𝑋𝑘

𝜇𝑙by µl method 

for i=1 to k//cluster searching 

 { 

for j=1 tor//model searching 

 { 

𝑞𝑖,𝑗
𝜇𝑙 = 𝑄(𝑎𝑗(𝑥), 𝑋𝑖

𝜇𝑙) //determining the value of the quality indicator for all models in the cluster𝑋𝑖
𝜇𝑙 

𝑎𝑖,𝑗
𝜇𝑙 (𝑥) ← 𝑞𝑖,𝑗

𝜇𝑙// identifying the model that has achieved the quality indicator  

} 

𝑞𝜇𝑙,𝑖 = max (𝑞𝑖,𝑗
𝜇𝑙)// selection of the best quality indicator value in the cluster 𝑋𝑖

𝜇𝑙 for all models aj∈A 

𝑎𝜇𝑙,𝑖(𝑥) ← 𝑞𝜇𝑙,𝑖// identifying the model that has achieved the value of the quality indicator 

 } 
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𝑞𝜇𝑙,𝑘 =
1

𝑘
∑ 𝑞𝜇𝑙,𝑖𝑘

𝑖=1 // calculation of the average quality indicator for k clusters obtained from method µl 

𝑎𝜇𝑙,𝑘(𝑥) ← 𝑞𝜇𝑙,𝑘 // determining the aggregate model (consisting of models assigned to clusters), 

// which has reached the value of the quality indicator 

 }  

𝑞𝜇𝑙 = max (𝑞𝜇𝑙,𝑘)// selecting the best quality indicator value for all models aj∈A 

 // using µl method at separations from 1 to M clusters 

𝑎𝜇𝑙(𝑥) ← 𝑞𝜇𝑙// determining the aggregate model that has reached the value of the quality indicator 

}  

𝑞 = max (𝑞𝜇𝑙)// selecting the best quality indicator for all models 

        // when clustering using µ methods with different numbers of clusters 

𝑎(𝑥) ← 𝑞//determining the aggregate model that has reached the value of the quality indicator 

𝜇 = max
µ

(𝑞𝜇𝑙)// identifying the clustering method that achieved the value of the quality indicator 

end 

Figure 3. General view of the processing algorithm 

Later, when a new observation object comes for processing, its cluster membership is determined. The incoming 

observation object, supplemented with cluster membership information, is passed to the data processing model assigned 

to process this cluster. The model makes a prediction. All actions of the machine learning algorithms occur with separate 

data regions selected in the preliminary stage. However, with this approach, one of the main problematic issues is 

separating the sample into clusters in which the objects have particular properties. An essential disadvantage of clustering 

methods is the need to select the number of clusters. Simultaneously, homogeneity problems appear in different 

situations, where a cluster can have another range of values, distributions, forms of representation, and others. There are 

many ways to determine the number of separations; however, under the conditions of possible changes in data properties, 

their application does not always have a proper effect on quality indicators of processing. In this regard, we consider 

using unsupervised clustering with a previously unknown number of clusters. 

4- Evaluation 

4-1- Experimental Setting 

When experimenting, clustering was chosen as the method of data separation [35, 36]. It separates observation objects 

of the sample with high similarity into one cluster and those with low similarity into different clusters, according to Tong 

et al. (2023) [37]. There are many clustering methods [38, 39]; however, the algorithms considered in the experiment 

are hard clustering algorithms. Observation objects in the set belong to only one cluster. Figure 4 shows the framework 

of the experimental implementation. The preparatory stage involves training set formation. Then, metrics that determine 

quality indicators of processing are selected. The sets of algorithms for separating the sample into clusters and the data 

processing models under study are defined. 

 

Figure 4. Implementation framework for the data processing experiment 

Clustering algorithms µ1,…,µm, having different parameters that determine the number of clusters and types of 

distance functions between them, process the training sample. For each clustering algorithm, sets of 

segments𝑋1𝜇𝑙

𝜇𝑙 ,…,𝑋𝑀𝜇𝑙

𝜇𝑙  are generated and considered separately. Each segment of the set feeds into the inputs of the 

models a1,…,ar, and the models are trained on them to determine the quality measures they achieve. Then, for each 

separation method, the processing models analyze the achieved processing quality indicators to select the best method 

of sample separation and generate a processing model. In sample segmentation, the effect of the number of clusters on 

the quality indicators of the model is considered. 
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4-2- Model Data Processing 

In the experiment, K-means was used as the basic clustering algorithm. During the training processes, the processed 

sequences were separated into clusters, considering different distance measures (Euclidean measure, "city blocks" 

distance measure, correlation coefficient-based measure, "cosine measure"), which influenced the shapes of the clusters. 

In each cluster, the value of its center was calculated. Data processing models were trained on the selected clusters to 

determine the optimal values of the quality functional. Subsequently, the remaining part of the records simulated the 

information flow. According to the incoming values, cluster membership determination uses the distance function 

between objects. The share of correct answers (accuracy) served as the analyzed indicator. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑎𝑙𝑙𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
× 100%  (4) 

All samples were processed entirely by clusters using different algorithms. In the considered example, each model 

(naive Bayesian classifier NB, linear discriminant LD, support vector method SVM, decision trees DT, K-nearest 

neighbors KNN, ensemble model of all classifiers ENS) was trained on the sequence as a whole and on the data subsets 

obtained because of clustering using four distance measures. Figure 5 shows an example of the model data under 

consideration. 

 

Figure 5. Model data series of X,Y values for two classes 

To implement the assumed model, the first step is to divide the set into separate clusters. The obtained clusters should 

satisfy the functional quality criteria (3). In the experiment, the number of segments was determined by the achievable 

processing quality of the data processing models. Figure 6 shows the accuracy (Acc) indicators when increasing the 

amount of sample separating clusters from 2 to 70 for each classifier (accuracy values of models when processing the 

whole sample without clustering, average accuracy values of models when forming clusters using Euclidean distance 

measure, using city blocks distance measure, using correlation measure, using cosine measure). 
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Figure 6. Results of the data processing models 

The graphs in Figure 6 show that the number of clusters influences the achieved values of the accuracy indicator. The 

example of the share of correct answers shows that, up to a certain point, the more clusters there are, the higher the values 

of quality indicators. After that, the quality indicators of the model reach a plateau, and a further increase in the number 

of clusters does not lead to a significant improvement in the classification quality. In some cases, separation into clusters 

leads to the deterioration of processing model performance because, in unsupervised clustering, each cluster may have 

a different data distribution, and some algorithms, such as decision trees (DT), do not receive enough information to 

determine the data distribution. 

The shape of clusters, defined by a measure of the distance between points, can affect the performance of processing 

models. The emergence of complex shapes can complicate the construction of an effective separating surface. In addition, 

when the number of clusters is unlimited, microclusters containing only observation objects of the same class appear. 

When applying the decisive rule for assigning a new object based on its proximity to the center of the nearest cluster, a 

microcluster containing only objects of the same class will be assigned the current class. However, based on the training 

sample size, it is not always correct. 

The proposed solution makes it possible to use clusters as additional information for model training. However, clusters 

are often heterogeneous, and some algorithms may perform better on some segments, whereas other algorithms perform 

better on others. By dividing the models of the considered example into two groups ("strong" classification algorithms, 

where the accuracy value is close to 1, and "weak" algorithms, which produce results between 0.5-0.7), it is possible to 

see the improvement of processing data quality indicators by segments compared to the whole sample. Figures 7 and 8 

show the accuracy (Acc) values for different groups ("strong" and "weak") of classifiers when separating the sample into 

14 segments. Each algorithm for processing data falling into one of the numbered clusters has a value for the share of 

correct answers. 
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Figure 7. Performance of “strong” data processing models on different clusters 

 

Figure 8. Performance of “weak” data processing models on different clusters 

The histograms in Figures 7 and 8 show that for this sample, clustering allows a gain for each model when the 

classifier analyzes a segment individually compared to the whole sample. Figure 8 considers three “weak” processing 

models (NB, linear discriminant LD, and linear SVM). In the case of separating the sample into 14 clusters, it is possible 

to assign a better performing algorithm to each cluster, which improves the results compared with processing the whole 

sample. 

Increasing the number of sample clusters leads the data processing models to a definite limit of quality indicators, 

after which such an increase does not have a proper effect. Reducing the cluster "size" can lead to the fact that, for 

example, in classification tasks, it is possible to build a simplified separating surface for data separation. On the one 

hand, this allows for improving the quality of individual algorithms and reducing computational complexity, but on the 

other hand, it causes problems of representativeness, homogeneity, and sample adequacy. Each segment can affect the 

algorithm in different ways, either improving or worsening its performance. The shape of the clusters resulting from the 

application of different distances can affect the quality indicators of the data processing models. In the case of applying 

one distance measure in clustering, a particular set of algorithms that efficiently process clusters is possible; however, 

for another one, the composition of algorithms may change. By assigning a processing algorithm with better quality 

indicators to each segment, it is possible to obtain a gain in the indicator compared with processing the entire sample 

using one model. 
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4-3- Algorithm Evaluation 

The next stage of the experiment considered several available datasets and results obtained by other researchers [40–
47], adding the following models: adaptive neuro-fuzzy inference system (ANFIS), radial basis function (RBF) neural 
network, and neural network (ANN). Table 1 shows the proportion of correct responses in the data processing models 

with and without segmentation. 

Table 1. Characteristics of the datasets and results of the accuracy of the processing models 

Database/Dataset Classification model All dataset Proposed solution (segmentation) 

PIMA CNN 73.54% 80.1% 

PIMA DT 78.01% 82.03% 

PIMA LD 73.11% 80.1% 

PIMA LR 75.72% 77.31% 

PIMA NB 73.12% 79.18% 

PIMA NN 72.1% 72.6% 

PIMA RF 73.51% 74.01% 

PIMA SVM 92.6% 96.8% 

PCU ANN 82.96% 85.34% 

PCU DT 84.09% 84.11% 

PCU LR 79.9% 86.01% 

PCU NB 78.91% 84.65% 

LCLDA KNN 83.14% 87.21% 

Hepatitis RBF 75.31% 80.12% 

Compustat ANFIS 90.22% 94.31% 

Table 2 shows the results of the proportion of correct responses of the data processing models on selected segments 
and on the whole sample (without segmentation) for the ensemble models of simple voting and assigning models. 

Table 2. Characteristics of the datasets and results of accuracy of the processing ensemble models 

Database/Dataset Classification ensemble model Result simple voting model Proposed solution (segmentation) +purpose model 

PIMA NB+DT 78.9% 84.23% 

PIMA NB+LR 75.81% 79.31% 

PCU NB+LR+DT 82.1% 86.9% 

Table 3 shows the results of the proportion of correct responses of the data processing models on selected segments 
and the entire sample when the models reach the limit of the quality indicator of accuracy (Equation 4). 

Table 3. Comparison of the obtained quality indicator of accuracy with the results of other researchers 

Database/Dataset Classification model Result Proposed solution (segmentation) 

PIMA NB (Iyer & Sumbaly, 2015) [41] 76.95% 79.18% 

PIMA RF (Zou et al., 2018) [42] 73.88% 74.01% 

PIMA SVM (Sharma & Shah, 2021) [43] 95.6% 96.8% 

PIMA LD (Sharma & Shah, 2021) [43] 74% 80.1% 

PIMA DT (Iyer & Sumbaly, 2015) [41] 78.24% 82.03% 

PIMA NB+DT (Iyer & Sumbaly, 2015) [41] 80.1% 84.23% 

PIMA NN (Zou et al., 2018) [42] 74.14% 72.6% 

PCU ANN (Nai-arun & Moungmai, 2015) [40] 84.81% 85.34% 

PIMA CNN (Yahyaoui et al., 2019) [44] 76.8% 80.1% 

PIMA LR (Sharma & Shah, 2021) [43] 76.54% 77.31% 

PIMA NB+LR (Sharma & Shah, 2021) [43] 77.01% 79.31% 

PCU NB (Nai-arun & Moungmai, 2015) [40] 81.01% 84.65% 

PCU LR (Nai-arun & Moungmai, 2015) [40] 82.3% 86.01% 

PCU DT (Nai-arun & Moungmai, 2015) [40] 85.09% 84.11% 

PCU NB+LR+DT (Nai-arun & Moungmai, 2015) [40] 84.6% 86.9% 

Compustat ANFIS (Rahbar, 2022) [45] 92.71% 94.31% 

Hepatitis RBF (Novaković, 2015) [46] 78.10% 80.12% 

LCLDA KNN (Muslim et al., 2023) [47] 86.69% 87.21% 
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Verification of the obtained values uses statistical criteria. We evaluated the possible normal distribution of the 

random variable and the difference between the values obtained with and without the proposed method. Verifying the 

data using the Shapiro-Wilk criterion determines the null hypothesis H0: “The random variable distribution corresponds 

to the normal law” and the alternative hypothesis H1: “The distribution law is not normal.” For the data groups in Table 

1, the values are W = 0.638 and W = 0.690. At n = 18, for a significance level of p≤0.05, the critical value for the Shapiro-

Wilk criterion is Wcr = 0.897. W<Wcr indicates that hypothesis H0 is rejected. With a high probability, the data 

distribution is not normal. 

Next, two hypotheses are introduced to evaluate statistically significant differences. H0: “F1(x)=F2(x), accuracy 

values obtained without using the proposed method are the same as those obtained with the proposed method; differences 

can be due to random influences.” H1: “F1(x)≠F2(x), the accuracy values are not the same; differences in the results are 

significant.” The evaluation of the obtained values in Table 1 used the Wilcoxon criterion. The results of the parameters 

Temp =12 for p≤0.05 and n = 18, Tcr =40. Temp<Tcr shows that the differences are statistically significant. Hypothesis H0 

is rejected. 

Comparative experiments have shown that the selection of sequences of data sampling segments, in most cases, 

improves the quality indicators of data processing (Equation 4). 

4-4- Analysis of the Results 

Increasing the accuracy of classification models is possible by improving the quality of the data coming to the input 

of algorithms. For this purpose, the clustering of input sequences can be used. Clustering, in some cases, can reduce data 

scatter, localize outliers, and, to a certain extent, reveal data structures to improve the quality of models. Incorporating 

information about the belonging of an observation object to a particular cluster provides additional information that can 

have an impact, especially when there are relatively few predictors in the sample. 

Table 1 and the graphs in Figure 6 show that separating the sample into clusters usually improves the quality indicators 

of the classification algorithms. Clustering produces multiple copies of the classification model, where each copy is 

trained on data from a single selected cluster. However, there is a threshold in the number of clusters, after which there 

is no significant improvement in quality indicators. Increasing the number of clusters to a particular limit can obtain 

quite simple areas of object locations, making it possible to build relatively uncomplicated separating surfaces. 

Table 2 and the graphs in Figures 7 and 8 show that the algorithms achieve different values of quality indicators when 

dividing the sample. Therefore, assigning different classification algorithms to different segments is possible to improve 

the processing quality. The gain in accuracy ranges from 2% to 9%. 

The application of methods aimed at identifying changes in value ranges and event balances allows us to form training 

samples that locally improve the quality indicators of classification algorithms. However, most experiments show that 

clustering impacts “weak” processing models more. Table 3 shows that for NB, LR, and DT, the increase in accuracy 

rate was up to 4%; RF and SVM were up to 1%; and ANN, CNN, ANFIS, RBF, and KNN were up to 2%. 

For ensemble methods that use NB+DT, NB+LR, and NB+LR+DT, using the proposed approaches, the increase was 

up to 4%. However, obtaining the results involved optimization and the setting of classification algorithms for the 

analyzed data. For NB, data processing was performed to remove correlated features [41]. In DT, depth, maximum 

number of final nodes, and node separation thresholds were selected [41]. In SVM, kernel function and sensitivity 

bandwidth settings were determined [43]. In ANN, ANFIS, and CNN, layer selection and setting of membership 

functions by the backpropagation algorithm were performed [40, 41, 45]. In KNN, the number of neighbors was 

optimized to construct the separating surface [47]. The presented solution determines the basic parameters without 

optimization. 

Figure 6 shows the increase in accuracy for individual underlying classification algorithms when the number of 

clusters on model data is increased by up to 7% compared to processing the entire dataset. On the dataset of the compared 

solutions, the improvement in accuracy was up to 5% because the use of unsupervised clustering makes it possible to 

localize groups of observation objects and combat various effects, for example, the effect of Simpson's paradox. 

However, in some cases, when using it, there are problematic issues with data separation. The use of models, methods, 

and algorithms that separate sequences requires analysis, and changing some parameters of the data sequence fed to the 

input of the classification algorithm can significantly affect the processing results. 

5- Discussion 

5-1- Theoretical Contributions 

The obtained results further improve the aggregation models of data processing. Using multilevel models makes it 

possible to reduce the resource intensity of training and retraining algorithms. The proposed paradigm of hierarchy 

application allows the parallel operation of algorithms, involves actions to coordinate them for achieving the objectives, 

and analyzes the preconditions used to determine effective models for obtaining results. The hierarchical structure allows 

the training of the models during operation. 
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In cases of transformation of input data properties or loss of model adequacy, the underlying algorithms can be 

promptly substituted. The unsupervised clustering of samples makes it possible to separate the data into relatively small 

clusters, whose properties are amenable to more qualitative analysis and simpler basic processing models without 

reducing quality indicators. In contrast to the generally accepted approaches for forming ensemble models, the model 

under consideration does not require the presence of complex aggregation functions. 

5-2- Practical Contribution 

Unsupervised clustering makes it possible to estimate the limits of the values of the quality indicators. Training 

models on clusters provide a preliminary assessment of potential quality indicators and make it possible to determine 

the processing algorithm for each segment in advance. Reducing the cluster size by increasing their number is reasonable 

up to a specific limit. After reaching this limit, there is no significant increase in the quality indicators of the data 

processing models. Assigning algorithms with better quality indicators to segments makes it possible to increase the 

quality indicators of sample processing compared to separate classifiers and ensemble methods from 2% to 9%. 

5-3- Limitations 

Despite the relative simplicity of the proposed method, several limitations require consideration when forming 

processing models. Data samples and information flows have different properties that strongly depend on the subject 

area. They may have different distributions, statistical indicators of the observation objects, and scatters of values that 

affect the selection of the most efficient models and algorithms for their processing. Not all models can achieve high-

quality indicators of data sampling. During data analysis, data properties may transform: value ranges, data distributions, 

and the frequency of occurrence of objects of different classes may change. To maintain the adequacy of the models, 

constant training is necessary. In addition to analyzing the adequacy of the processing models, evaluating the quality of 

the segmentation and clustering methods is necessary. Various shifts in data values will necessitate the constant 

evaluation of clustering results. Solving such problems requires constant analysis of not only the data processing models 

but also the methods of sample separation. 

6- Conclusion 

This study proposes a multilevel data processing model using sample clustering. The proposed solution involves the 

ability to build hierarchies, where the upper-level model assigns the most effective lower-level model to a separate 

cluster, and the middle-level models analyze and generate data. The novelty is the application of a multilevel processing 

model where, depending on the data properties, the selection of the base model with the best quality indicators occurs. 

Data separation aims to improve the quality indicators of model processing by identifying potential data structures and 

reducing the scatter of parameters inside individual segments. The formation of multilevel structures that process, 

analyze incoming information flows, and assign the most appropriate model for solving the current problem can reduce 

the complexity and resource intensity of classical ensemble methods, deal with overtraining, reduce dependence on base 

models, increase the efficiency of adjustment of underlying algorithms in transforming data properties, and improve the 

interpretability of results. The proposed solution aims to further improve and extend ensemble methods. 
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