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Abstract 

In this study, we introduce a novel tri-trophic food chain model that integrates cannibalism among 

basal prey and harvesting behaviors in the top predator, aiming to understand ecosystem dynamics 

comprehensively. Objectives encompass assessing system boundedness, computing fixed points, 

and determining stability characteristics using mathematical frameworks. The Routh-Hurwitz 

criteria and Lyapunov function are employed for local and global stability analyses of coexistence 

equilibrium points. Graphical interpretations elucidate relationships among pivotal parameters: prey 

growth rate, cannibalism intensity, and predator predation rate. Phase portraits and time series 

solutions illustrate parameter impacts. To enhance analytical depth and predictive capabilities, we 

utilize artificial neural networks (ANNs). Methods include connecting ANNs to computational 

proficiency for insights into the model's behavior over time. Findings demonstrate system 

boundedness, computed fixed points, and stability characteristics. Graphical interpretations reveal 

parameter impacts on system dynamics. ANNs offer predictive insights into model behavior. This 

study's novelty lies in integrating cannibalism and harvesting behaviors into a tri-trophic food chain 

model, employing mathematical analyses and ANNs to understand ecosystem dynamics 

comprehensively. Improvements include predictive capabilities and deeper analytical insights. 
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1- Introduction 

Lotka (1925) [1] and Volterra (1926) [2] presented the first-ever models for competition phenomenon communication 

between prey and predators. Holling restructured these models by introducing three types of functional responses in 

prey-predator models to explain predation dynamics. Non-linear systems construct biological models of interest. That 

system is concerned with ordinary and partial differential equations. Prey-predator dynamics is a mathematical model 

generated from the cohabitation of foxes with rabbits. Foxes consume rabbits for their prey, which is a culture of the 

clover plant. As the number of foxes decreases in rabbits' habitat area, the rabbits' safety increases, and vice versa, i.e., 

if the number of rabbits decreases, the population of foxes increases [3]. Two species of animal populations are 

decreasing, and the other is growing. In a non-linear prey-predator system, population dynamics are represented in 

ordinary differential equations. 

Mathematic ecology, which is of global importance, uses ordinary differential equations (ODEs). The existing and 

accurate models of ordinary differential equations (ODEs) are used to model biological systems [4]. The ODE models 

of biological systems are inherently non-linear. The first and second integrals are often difficult to come by, and this 
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inherent difficulty makes it challenging to solve non-linear ordinary differential equations (ODEs) often used to model 

predators and prey. 

These items are commonly classified as stiff or unrealistic and are known for posing significant challenges and 

complexities when attempting to discover analytical solutions. Hence, the effective and potent method for locating 

numerical solutions to complex non-linear systems has garnered significant interest. The research community's primary 

emphasis has been studying prey-predator models that incorporate interactions between two variables, namely 

interspecific interactions. 

Nevertheless, Danca et al. [5], Jing & Yang [6], Liu and Xiao [7], and Elsadany et al. [8] have researched discrete-

time non-linear models that describe the dynamics of prey-predator interactions. The lifetime of dynamics in discrete 

time models exceeds that of continuous-time systems in terms of endurance. Summers et al. studied four ecosystem 

models affected by periodic forcing effects in discrete time [9]. Danca et al. conducted research with Holling to 

investigate the chaotic dynamics of discrete-time prey-predator systems [5]. Several innovative methods have recently 

been created to tackle these non-linear problems efficiently. The study employed various methods, such as the Runge-

Kutta-Fehlberg method, the Laplace Adomian decomposition method [10], the differential transformation method [11], 

the finite element method [12], the Sumudu decomposition method [13], the Homotopy analysis method [14], and the 

new coupled fractional reduced differential transform method [15]. 

Food chains have a crucial role in the environment across several disciplines, including ecological science, applied 

mathematics, engineering, and economics. In a food chain model, organisms, energy, and resources flow along a single 

path. Food webs are complex due to their interconnection with multiple food chains. Various trophic levels have been 

seen in the food chain. Various categories of organisms in different stages include producers, consumers, and 

decomposers. Food chains play a vital role in the environment in various fields, such as ecological science, applied 

mathematics, engineering, and economics. Organisms, energy, and resources move linearly in a food chain model. Food 

webs are complex due to their interconnection with multiple food chains. Various trophic levels are present in the food 

chain. Various categories of organisms in different stages include producers, consumers, and decomposers. A food web 

employs a lattice architecture during its formation [16]. We may represent the food chain as a differential equation by 

employing mathematical analysis and modeling approaches. In ecology, food chains consist of a sequence of species 

that serve as a food source for the organisms immediately next to them. When many food chains are interconnected, they 

form a complex network known as a food web [17, 18]. The flexible food chain theory elucidates the structure and 

functioning of food webs with low trophic levels to understand the construction and dynamics of ecosystem stability 

[19, 20]. The life cycle of many species in nature is categorized into at least two groups, adult and juvenile, based on 

their behavior. The papers comprehensively examine food web models [21, 22]. The impact of cannibalism on the 

environmental perspective has been extensively discussed. Cannibalistic populations exist in terrestrial and marine food 

webs [23, 24]. Stage-structured individuals frequently engage in cannibalism, both within their population and 

throughout the aquatic food chain [25]. The article [26] examines the global stability of a predator-prey model, including 

both diffusive and non-diffusive dynamics. The model assumes that both species share a similar food source. 

The authors in Ejaz et al. [27] and Arif et al. [28] have introduced a three-species predator-prey system where a 

predator and a prey species share a similar food source and illness in the interacting species. A fractional-order predator-

prey model is introduced and examined in Arif et al. [29]. Artificial intelligence algorithms have effectively used 

stochastic computing paradigms to solve linear and non-linear models in many applications throughout applied science 

and technology [30, 31]. In Kumar et al. [32], authors look at a system of two fractional-order differential equations that 

describe the fear effect in prey-predator interactions, where the density of predators determines the rate of prey death. In 

Mollah & Sarwardi [33], they see the proposal of a three-dimensional prey-predator model that incorporates the factors 

of disease in predators and a temporal delay brought about by the gestation of the predator population. This work [34] 

examines the Lotka-Volterra model, a well-known dynamical system in mathematical biology, in its fractional version. 

For partial functional differential equations with non-linear diffusion, Xing & Jiang [35] established the exact formulae 

for the normal form coefficients associated with Turing-Hopf bifurcation. Recently, some researchers investigated the 

broader dynamics of tri-trophic food chain systems. In Kumari and Kumar [36], the authors investigated the impact of 

cannibalism within the middle predator. A range of cannibalism rates are used to investigate the impact of cannibalism 

on the stability property of the system. Different rates of cannibalism parameters are taken in the study, ranging from 

0.02 to 0.29. In Kumari & Kumar [36], it is also shown that diffusion does not reveal a noticeable impact on the dynamic 

of the system. In Kar et al. [37], the authors investigated the tri-trophic food chain, and the Lyapunov function was 

constructed to show the global stability of the model. The author showed that under certain conditions the system shows 

stable behavior for the interior equilibrium point. It is observed that when basal prey population density is high, 

competition for resources for basal prey can increase, which may lead to cannibalism as an alternative food source. In 

the present study, we have shown that cannibalism in the basal prey impacts the interacting species’ behavior. It is shown 

that the system is globally stable under some conditions. Moreover, a high cannibalism rate moves the system towards 

the stability of interacting populations for their coexistence. Below is an analysis of the identified gaps in the existing 

literature and the proposed approach to address them: 
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Identified Gaps in the Literature: 

Limited Integration of Cannibalism and Human Harvesting Practices: Cannibalism among basic prey and the effect 

of human harvesting on top predators are complex dynamics that current ecological models frequently ignore. 

Unfortunately, existing models do not take cannibalism and harvesting into account nearly enough, despite the fact that 

these practices can drastically change population dynamics and ecological stability. 

Challenges in Addressing Non-linearities and Stiff Dynamics: The non-linear dynamics present in ecological systems 

are difficult for traditional models grounded in ordinary differential equations (ODEs) to capture. The interactions 

between different species in food webs might be difficult to depict precisely due to rigid dynamics. 

Insufficient Utilization of Innovative Methodologies: Diverse numerical methods and discrete-time non-linear models 

have been investigated in the past, but there has been little progress in applying these and other novel approaches to the 

complicated problems of ecological dynamics. A lot of the current models can only account for certain kinds of 

ecological interactions since they use old-fashioned mathematical methods. 

Proposed Approaches to Fill the Gap: 

Integration of Cannibalism and Harvesting in Ecological Models: The suggested method involves developing a tri-

trophic food chain model that explicitly includes cannibalism among the lowest-level prey and the impacts of human 

harvesting on the highest-level predators. Researchers will be able to assess the combined impact of these factors on 

population dynamics and stability with the help of an all-encompassing model, which will provide an improved 

comprehension of ecosystem dynamics. 

Integration of Artificial Intelligence Algorithms: Using AI algorithms like ANNs and machine learning algorithms 

can enhance the analytical depth and predictive power of ecological models significantly. Artificial neural networks are 

ideally suitable for simulating the intricate dynamics of ecological systems as they are capable of identifying the intricate 

patterns and correlations within the data sets, and contributing AI algorithms to ecological models increases the accuracy 

and precision of these ecological models. Thus, these models can make sharper predictions and provide better 

comprehension regarding the general behavior of complex ecosystems. 

The study adheres to a well-organized format with well-defined sections. In Section 2, a three-species tri-trophic 

ecological model is presented, including a description of its characteristics and an analysis of how cannibalism affects 

the basal prey. Section 3 presents the model's analysis, identifying equilibrium points, discussing their existence 

conditions, and exploring local and global stability through the Routh-Hurwitz criterion and a Volterra-type Lyapunov 

function. Section 4 discusses the outcomes of the results and simulation. Section 5 thoroughly analyzes the discussion. 

Section 6 offers a brief conclusion summarizing important discussions and suggests potential areas for future 

investigation. 

Figure 1 shows the flowchart of the research methodology through which the objectives of this study were achieved. 

 

Figure 1. Flow chart of the methodology 

2- The Model 

Ordinary differential equations (ODEs) proficiently explain the sophisticated dynamics of the interrelationships of 

species. These equations are a strong basis for understanding the complex behaviors in ecological systems. A 

combination of numerical methods and theoretical analysis is used to understand such a complex model. We will now 

Tritrophic Food 
Chain 

Modeling
Analysis of the 

Model
Boundedness

Stability of the 
System

Application of Routh 
Hurwitz Criterion for 

Local Stability 

Application of 
Lyapunov Function 
for Global Stability

Graphical 
Representation and 

Explanation  of 
Results

Incorporation of 
ANN

Graphical 
Representation of  

Results by ANN and 
Discussion



Emerging Science Journal | Vol. 8, No. 4 

Page | 1265 

focus on a tri-trophic model that includes three species – a basal prey, a medium predator, and an apex predator. In this 

story, the main prey is a primary one. It has to swim through the complex environment of predation threats by both 

intermediate and apex predators. Thus, this model focuses on not only the external predation pressures but also the 

internal dynamics of the basic prey population. The internal dynamics involve the impact of cannibalism inside its 

community. 

To quantify the complex set of interactions and dynamics of the ecosystem, it is important to establish its ecosystem 

through quantitative mathematical representations. These representations help establish the mathematical models. These 

interactions can be broken down into a series of differential equations. These equations depict the changes over time to 

intrinsic growth rates, predation rates, carrying capacities, and intra-specific interactions. It involves modeling a system 

of differential equations for the prey, the medium predator, and the apex predator. Population over time. 

Interactions among the species drive the ecosystem dynamics in such a tri-trophic system. Every species plays a 

unique role in this model, made clear by the limitations and limitations of each species. The prey species that is basic 

has constraints on population expansion due to resources and predation and is the principal food source of the medium 

and top predators. The medium predator in this study maintains a balanced prey population because it is the prey of the 

top predator, and its principal food is the prey population. The top predator uses the medium predator as prey to build 

up pressure on the prey species, which is the basic prey population's food, to limit their population growth in this amicable 

system. 

The model got more complex by introducing cannibalistic traits into the basal prey. This greatly influences the 

population dynamics of the basal prey by adding another rate of mortality that depends upon the abundance. It's another 

way to make the population interact with the inhabitants. 

Mathematical representation and simulation with theoretical analysis help to gain insight into the tri-tropic system's 

stability, robustness, and behavior. This mathematical framework effectively helps us understand the complex 

relationship between species and environmental factors in ecological systems, which is crucial for better managing and 

preserving natural ecosystems. 

𝑑𝑈

𝑑𝑡
= 𝑈(1 −

𝑈

𝑘1
) 𝑟1 − 𝑈𝑉𝛼1 − 𝑈𝑊𝛽1 − 𝑐𝑈

2  (1) 

𝑑𝑉

𝑑𝑡
= 𝑉 (1 −

𝑉

𝑘2
) 𝑟2 + 𝑈𝑉𝛼2 − 𝑉𝑊𝛾1  (2) 

𝑑𝑊

𝑑𝑡
= 𝑈𝑊𝛽2 + 𝑉𝑊𝛾2 − (ℎ + 𝑑)𝑊.  (3) 

The parameters and their physical meanings are presented next. 

Table 1 represents all the parameters and their physical meanings. The values of all parameters are taken to be positive. 

Moreover, 𝑈(0) > 0, 𝑉(0) > 0 𝑎𝑛𝑑 𝑊(0) > 0. For the sake of simplicity, we take ℎ + 𝑑 = 𝜇. 

Table 1. Parameters and their Description 

Quantity Physical Meanings 

𝑈 Density of basal prey 

𝑉 Density of medium predator 

𝑊 Density of top predator 

𝑘1, 𝑘2 Carrying capacity of U and V 

𝑟1, 𝑟2 Intrinsic growth rate of U and V 

𝛼1, 𝛽1, 𝛾1 Predation rate of U by V and W and predation rate of V by W 

𝛼2, 𝛽2, 𝛾2 Growth rate of V and W due to predation 

𝑐 Cannibalism rate of basal prey 

h, d Death rate of a top predator due to harvesting and natural reasons 

𝜇 Combined death rate of a top predator due to harvesting and natural reasons 

3- Analysis of the Model 

In this section, we present boundedness, the equilibrium points of the model, and the analysis of the fixed points for 

the global stability of coexistence fixed point constructing the Lyapunov function. 
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3-1- Boundedness of the System 

Theorem 1: All solutions of the system (1-3) exhibit bounded behavior. 

Proof: Considering the dynamics of each equation in the system (1-3), we derive the following inequalities: 

𝑑𝑈

𝑑𝑡
≤ 𝑈 (1 −

𝑈

𝑘1
) 𝑟1  

(4) 

𝑑𝑈

𝑑𝑡
≤

𝑈

𝑘1
(𝑘1 − 𝑈)𝑟1  

𝑈(𝑡) ≤ 𝑟1𝑘1 − 2
𝑈

𝑘1
𝑟1  

𝑈(𝑡) ≤ 𝑟1𝑘1  

which proves the boundedness of Equation 1 . 

Now, Equation 2 gives the following inequalities. 

𝑑𝑉

𝑑𝑡
≤ 𝑉 (1 −

𝑉

𝑘2
) 𝑟2 + 𝑈𝑉𝛼2  

(5) 

𝑑𝑉

𝑑𝑡
≤ 𝑉 (

𝑘2−𝑉

𝑘2
) 𝑟2 + 𝑈𝑉𝛼2  

𝑑𝑉

𝑑𝑡
≤

𝑉

𝑘2
(𝑘2 − 𝑉)𝑟2 + 𝑈𝑉𝛼2  

𝑉(𝑡) ≤ 𝑟2𝑘2 + 𝑈𝛼2  

𝑉(𝑡) ≤ 𝑟2𝑘2 + 𝛼2𝑟1𝑘1  

Similarly, Equation 3 gives 

𝑑𝑊

𝑑𝑡
≤ 𝑈𝑊𝛽2 + 𝑉𝑊𝛾2  (6) 

𝑊(𝑡) ≤ 𝑈(𝑡)𝛽2 + 𝑉(𝑡)𝛾2  

𝑊(𝑡) ≤ (𝑟1𝑘1)𝛽2 + (𝑟2𝑘2 + 𝛼2𝑟1𝑘1)𝛾2  

Hence, the theorem. 

3-2- Equilibrium Points and Stability 

We present equilibrium points of the model (1-3) and discuss the stability of the coexistence equilibrium point.  

Consider the following system of equations for computing the equilibrium points of the model presented in (1-3) 

−𝑐𝑈2 + 𝑈 (1 −
𝑈

𝑘1
) 𝑟1 − 𝑈𝑉𝛼1 − 𝑈𝑊𝛽1 = 0,  (7) 

𝑉 (1 −
𝑉

𝑘2
) 𝑟2 + 𝑈𝑉𝛼2 − 𝑉𝑊𝛾1 = 0,  (8) 

−𝑊𝜇 + 𝑈𝑊𝛽2 + 𝑉𝑊𝛾2 = 0.  (9) 

The solution of the above system leads to the following equilibrium points. 

E1 = (0,
𝜇

𝛾2
,

𝑟2(−𝜇 + 𝑘2𝛾2)

𝑘2𝛾1𝛾2
), 

E2 = (0, 𝑘2, 0), 

E3 =

(

 
 

𝑘1(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
,
𝑘2(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
,

𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2 )

 
 

 

E4 = (
𝜇

𝛽2
, 0, −

𝑐𝜇𝑘1 + 𝜇𝑟1 − 𝑘1𝑟1𝛽2

𝑘1𝛽1𝛽2
), 
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E5 = (
𝑘1𝑟1

𝑐𝑘1 + 𝑟1
, 0, 0), 

E6 = (−
−𝑘1𝑟1𝑟2 + 𝑘1𝑘2𝑟2𝛼1

𝑐𝑘1𝑟2 + 𝑟1𝑟2 + 𝑘1𝑘2𝛼1𝛼2
,

𝑘2(𝑐𝑘1𝑟2 + 𝑟1𝑟2 + 𝑘1𝑟1𝛼2)

𝑐𝑘1𝑟2 + 𝑟1𝑟2 + 𝑘1𝑘2𝛼1𝛼2
, 0), 

E7 = (0, 0, 0) 

Theorem 2: The Equations 1 to 3 are locally stable for the coexistence equilibrium point 𝐸3 if following holds 

i. 𝑚11 +𝑚22< 0, 

ii. 𝑚13𝑚22𝑚31 +𝑚11𝑚23𝑚32 > 𝑚12𝑚23𝑚31 +𝑚13𝑚21𝑚32, 

iii. 𝑚11𝑚22 > 𝑚12𝑚21 +𝑚13𝑚31 +𝑚23𝑚32, 

iv. 𝑚11(−𝑚12𝑚21 +𝑚22(𝑚11 +𝑚22) − 𝑚13𝑚31) < 𝑚12(𝑚21𝑚22 +𝑚23𝑚31) + (𝑚13𝑚21 +𝑚22𝑚23)𝑚32. 

where, 

𝑚11 = −
(𝑐𝑘1 + 𝑟1)(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚12 = −
𝑘1𝛼1(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚13 =
𝑘1𝛽1(𝑟2𝛽1(−𝜇 + 𝑘2𝛾2) + 𝑘2𝛾1(𝜇𝛼1 − 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚21 =
𝑘2𝛼2(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚22 =
𝑟2(−𝜇𝑟1𝛾1 − 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚23 = −
𝑘2𝛾1(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚31 =
𝛽2(𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2)))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚32 =
𝛾2(𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2)))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
. 

Proof. We find Jacobian for the system (1-3), which is given as under. 

J =

(

 

−2𝑐𝑈 + (1 −
𝑈

𝑘1
)𝑟1 −

𝑈𝑟1

𝑘1
− 𝑉𝛼1 − 𝑉𝛽1 −𝑈𝛼1 −𝑈𝛽1

𝑉𝛼2 (1 −
𝑉

𝑘2
)𝑟2 −

𝑉𝑟2

𝑘2
+ 𝑈𝛼2 − 𝑉𝛾1 −𝑉𝛾1

𝑉𝛽2 𝑉𝛾2 −𝜇 + 𝑈𝛽2 + 𝑉𝛾2)

 .  (10) 

Now we find Jacobian at the fixed point 𝐸3 

𝐽𝐸3 = [

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 0

]  (11) 

where, 

𝑚11 = −
(𝑐𝑘1 + 𝑟1)(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚12 = −
𝑘1𝛼1(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 
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𝑚13 =
𝑘1𝛽1(𝑟2𝛽1(−𝜇 + 𝑘2𝛾2) + 𝑘2𝛾1(𝜇𝛼1 − 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚21 =
𝑘2𝛼2(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚22 =
𝑟2(−𝜇𝑟1𝛾1 − 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚23 = −
𝑘2𝛾1(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚31 =
𝛽2(𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2)))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
, 

𝑚32 =
𝛾2(𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2)))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
 

The characteristic polynomial can be written as 

𝑃(𝜆) =  𝜆3 + 𝜆2(−𝑚11 −𝑚22) + 𝑚13𝑚22𝑚31 −𝑚12𝑚23𝑚31 −𝑚13𝑚21𝑚32 +𝑚11𝑚23𝑚32
+ 𝜆(−𝑚12𝑚21 +𝑚11𝑚22 −𝑚13𝑚31 −𝑚23𝑚32). 

(12) 

The equilibrium point will be stable under the following conditions 

𝑚11 +𝑚22< 0 (13) 

𝑚13𝑚22𝑚31 +𝑚11𝑚23𝑚32 > 𝑚12𝑚23𝑚31 +𝑚13𝑚21𝑚32 (14) 

𝑚11𝑚22 > 𝑚12𝑚21 +𝑚13𝑚31 +𝑚23𝑚32 (15) 

and  

𝑚11(−𝑚12𝑚21 +𝑚22(𝑚11 +𝑚22) − 𝑚13𝑚31) < 𝑚12(𝑚21𝑚22 +𝑚23𝑚31) + (𝑚13𝑚21 +𝑚22𝑚23)𝑚32 (16) 

Hence, the proof. 

Theorem 3: The system (1-3) is globally asymptotically stable for the coexistence equilibrium point 𝐸3 under the 

following conditions. 

i. 𝛼1 > 𝛼2, 𝛽1 > 𝛽2 and 𝛾1 > 𝛾2, 

ii. U, V, and W must deviate from 𝑈∗, 𝑉∗and 𝑊∗.   

Proof: Consider the following Lyapunov function for the coexistence equilibrium point 𝐸3(𝑈
∗, 𝑉∗,𝑊∗), where, 

𝑈∗ =
𝑘1(𝑟2𝛽1(𝜇 − 𝑘2𝛾2) + 𝑘2𝛾1(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
,                                                    

𝑉∗ =
𝑘2(𝜇𝑟1𝛾1 + 𝑘1(𝛽1(𝜇𝛼2 + 𝑟2𝛽2) + (𝑐𝜇 − 𝑟1𝛽2)𝛾1))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
,                                                     

𝑊∗ =
𝑟1𝑟2(−𝜇 + 𝑘2𝛾2) + 𝑘1(𝑟2(−𝑐𝜇 + (𝑟1 − 𝑘2𝛼1)𝛽2 + 𝑐𝑘2𝛾2) + 𝑘2𝛼2(−𝜇𝛼1 + 𝑟1𝛾2))

𝑘1𝛽2(𝑟2𝛽1 − 𝑘2𝛼1𝛾1) + 𝑘2(𝑘1𝛼2𝛽1 + (𝑐𝑘1 + 𝑟1)𝛾1)𝛾2
.

  

𝐿(𝑈, 𝑉,𝑊) = 𝑙1 (𝑈 − 𝑈
∗ − 𝑈∗𝑙𝑜𝑔

𝑈

𝑈∗
) + 𝑙2 (𝑉 − 𝑉

∗ − 𝑉∗𝑙𝑜𝑔
𝑉

𝑉∗
) + 𝑙3 (𝑊 −𝑊∗ −𝑊∗𝑙𝑜𝑔

𝑊

𝑊∗)  (17) 

where 𝑙1, 𝑙2 and  𝑙3 are positive constants whose value is to be determined. 

The derivative of the above equation leads to the following result. 

𝑑L

𝑑𝑡
= 𝑙1 (1 −

U∗

U
)
𝑑U

𝑑𝑡
+ 𝑙2 (1 −

V∗

V
)
𝑑V

𝑑𝑡
+ 𝑙3 (1 −

W∗

W
)
𝑑W

𝑑𝑡
.  (18) 
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Some simplification of the above leads to 

𝑑L

𝑑𝑡
= 𝑙1 (

𝑈−𝑈∗

𝑈
)
𝑑𝑈

𝑑𝑡
+ 𝑙2 (

𝑉−𝑉∗

𝑉
)
𝑑𝑉

𝑑𝑡
+ 𝑙3 (

𝑊−𝑊∗

𝑊
)
𝑑𝑊

𝑑𝑡
.  (19) 

𝑑L

𝑑𝑡
= 𝑙1(𝑈 − 𝑈

∗) [−𝑐𝑈 + (1 −
𝑈

𝑘1
)𝑟1 − 𝑉𝛼1 −𝑊𝛽1] + 𝑙2(𝑉 − 𝑉

∗) [(1 −
𝑉

𝑘2
)𝑟2 + 𝑈𝛼2 −𝑊𝛾1] + 𝑙3(𝑊 −

𝑊∗)[−𝜇 + 𝑈𝛽2 + 𝑉𝛾2]  
(20) 

As we have; 

−𝑐𝑈∗ + (1 −
𝑈∗

𝑘1
) 𝑟1 − 𝑉

∗𝛼1 −𝑊
∗𝛽1 = 0 ⇒ 𝑟1 =

𝑟1𝑈
∗

𝑘1
+ 𝑐𝑈∗ + 𝑉∗𝛼1 +𝑊

∗𝛽1.  (21) 

Also (1 −
𝑉∗

𝑘2
) 𝑟2 + 𝑈

∗𝛼2 −𝑊
∗𝛾1 = 0 ⇒ 𝑟2 =

𝑟2𝑉
∗

𝐾2
− 𝑈∗𝛼2 +𝑊

∗𝛾1. (22) 

And, 

−𝜇 + 𝑈∗𝛽2 + 𝑉
∗𝛾2 = 0 ⇒ 𝜇 = 𝑈∗𝛽2 + 𝑉

∗𝛾2.  (23) 

Using Equations 21 to 23 in Equation 20, we have 

𝑑L

𝑑𝑡
= 𝑙1(𝑈 − 𝑈

∗) [−𝑐𝑈 −
𝑈

𝑘1
𝑟1 − 𝑉𝛼1 −𝑊𝛽1 +

𝑟1𝑈
∗

𝑘1
+ 𝑐𝑈∗ + 𝑉∗𝛼1 +𝑊

∗𝛽1] + 𝑙2(𝑉 − 𝑉
∗) [

𝑟2𝑉
∗

𝐾2
− 𝑈∗𝛼2 +

𝑊∗𝛾1 −
𝑉

𝑘2
𝑟2 + 𝑈𝛼2 −𝑊𝛾1] + 𝑙3(𝑊 −𝑊∗)[−𝑈∗𝛽2 − 𝑉

∗𝛾2 + 𝑈𝛽2 + 𝑉𝛾2].  
(24) 

𝑑L

𝑑𝑡
= 𝑙1(𝑈 − 𝑈

∗) [−𝑐(𝑈 − 𝑈∗) −
𝑟1

𝑘1
(𝑈 − 𝑈∗) − 𝛼1(𝑉 − 𝑉

∗) − 𝛽1(W −𝑊∗)] + 𝑙2(𝑉 − 𝑉
∗) [−

𝑟2

𝑘2
(𝑉 −

𝑉∗) + (U − 𝑈∗)𝛼2 − 𝛾1(𝑊 −𝑊∗)] + 𝑙3(𝑊 −𝑊∗)[(𝑈 − 𝑈∗)𝛽2 + (𝑉 − 𝑉
∗)𝛾2]  

(25) 

For simplicity, we assume that; 

𝑙1 = 𝑙2 = 𝑙3 = 1.  (26) 

Using Equation 26 in Equation 25, we get the following: 

𝑑𝐿

𝑑𝑡
= −(c +

𝑟1

𝑘1
)(𝑈 − 𝑈∗)2 − 𝛼1(𝑈 − 𝑈

∗)(𝑉 − 𝑉∗) − 𝛽1(W −𝑊∗)(𝑈 − 𝑈∗) −
𝑟2

𝐾2
(𝑉 − 𝑉∗)2 +

𝛼2(𝑈 − 𝑈
∗)(𝑉 − 𝑉∗) − 𝛾1(𝑊 −𝑊∗)(𝑉 − 𝑉∗) + 𝛽2(𝑊 −𝑊∗)(𝑈 − 𝑈∗) + 𝛾2(𝑉 − �̇�

∗)(𝑊 −𝑊∗).  
(27) 

Some simplification leads to 

𝑑𝐿

𝑑𝑡
= −(c +

𝑟1

𝑘1
)(𝑈 − 𝑈∗)2 − (𝛼1 − 𝛼2)(𝑈 − 𝑈

∗)(𝑉 − 𝑉∗) − (𝛽1 − 𝛽2)(W −𝑊∗)(𝑈 − 𝑈∗) −
𝑟2

𝐾2
(𝑉 −

𝑉∗)2 − (𝛾1 − 𝛾2)(𝑊 −𝑊∗)(𝑉 − 𝑉∗).  
(28) 

The coexistence equilibrium point is stable iff the following hold. 

i. 𝛼1 > 𝛼2, 𝛽1 > 𝛽2 and 𝛾1 > 𝛾2, 

ii. U, V and W must deviate from 𝑈∗, 𝑉∗and 𝑊∗   

Now,  
𝑑𝐿

𝑑𝑡
< 0 if the above conditions i and ii hold. Hence, the theorem is proved. 

Figure 2 depicts a hidden circuit, a recurrent neural network (RNN), used to protect privacy or security. It consists of 

three layers of neurons, with the first layer taking input, the second layer taking output, and the third layer taking output. 

The weights represent connections, biases, and summation. The arrows indicate the direction of information flow through 

the hidden circuit, from input to output. This helps us understand the RNN's functionality. 

 

Figure 2. Schematic representation of a recurrent neural network (RNN) including a concealed layer 



Emerging Science Journal | Vol. 8, No. 4 

Page | 1270 

Table 2 summarizes the simulation with varying cannibalism rate (c) and death rate of prey (𝜇). It includes 

performance metrics like Gradient, learning rate (Mu), epochs, and time for training, validation, and testing 

scenarios. The table provides a concise overview of the model's performance under different conditions, allowing a 

comparison of the effects of varying cannibalism and death rates on training speed, learning efficiency, and overall 

performance. 

Table 2. Simulation Results: Predator-prey dynamics with varying cannibalism rate (c) and death rate of top predator (𝜇). 

Performance metrics include Gradient (Grad), learning rate (Mu), epochs, and time for training, validation, and testing 

scenarios. 

Physical Quantities Training Validation Testing Performance Grad Mu Epochs Time 

Cannibalism rate of 

basal prey (c) 

0.03 1.129×10-10 2.19×10-10 8.09×10-10 3.07×10-9 1.29×10-5 1.07×10-7 312 11 

0.01 1.93×10-10 2.09×10-10 6.01×10-10 3.21×10-9 3.9×10-9 1.9×10-8 234 5 

Death Rate of Top 

Predator (𝜇) 

0.9 1.56×10-9 2.16×10-9 5.16×10-9 4.56×10-9 6.7×10-9 1.9×10-8 567 8 

0.10 1.46×10-9 2.96×10-9 5.96×10-9 3.6×10-9 6.07×10-9 1.8×10-8 560 7 

4- Results and Discussion 

Here, we present the simulation results of the model (1-3). The solution of the model is provided using ode45. Time 

series solutions and phase portraits are presented to show the impact of key parameters like intrinsic growth rate, 

cannibalism, and death rate of top-predator species. 

Figure 3 depicts the impact of the intrinsic rate growth of basal prey on the interacting population for two different 

values of the said rate. Figures 3-a and 3-b clearly show that the parameter significantly affects the population. In these 

plots, the values of the parameters are taken as follows. 𝑟1 = 0.49978, 𝑟2 = 0.50980, 𝛼1 = 67581, 𝛽1 = 0.5600, 𝛾1 =

0.08794, 𝛼20.645, 𝛽2 = 0.2549, 𝛾2 = 0.0643, 𝑐 = 0.3421, 𝜇 = 0.00854 whereas the values of 𝑟1 are taken as 𝑟1 =

0.49978 and 𝑟1 = 0.99978.  

Figures 3-a and 3-b depict a simulated food chain where the growth rate of the basal prey significantly influences the 

entire system’s stability. In the first figure, with a very high growth rate for U, we see a boom-and-bust cycle. The basal 

prey flourishes initially, leading to a surge in medium predators. However, this abundance attracts top predators, who 

then feast on the medium predator, causing their population to crash. This decline in medium predators eventually 

reduces the food source for the top predators, potentially leading to their population decline as well. The cycle can then 

repeat as the basal prey recovers. In contrast, the second figure shows a more stable system with a lower growth rate. 

The limited growth restricts the medium predator population, resulting in smaller fluctuations for both herbivores and 

top predators. This comparison highlights how the intrinsic growth rate of the basal prey plays a critical role in shaping 

the dynamics of the food chain. A higher growth rate can lead to dramatic fluctuations, while a lower growth rate 

promotes a more stable system. 

   

(a) Time series and phase portrait at r=0.49978 
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(b) Time series and phase portrait at r_1=0.99978 

Figure 3. Impact of 𝒓𝟏 on the population dynamics for two different intrinsic growth rate 

Figure 4 depicts the impact of the cannibalism effect of prey on the interacting population for two different values of 

the said rate. Figures 4-a and 4-b clearly show that the parameter significantly affects the population. In these plots, the 

values of the parameters are taken the same as in Figure 3 for two different values of c=0.03421 and 0.013421, 

respectively, whereas as 𝑟1 = 0.49978. It is evident from the plots that decreasing the parameter’s value increases the 

oscillations in the solution, and the limit cycle is evident in Figure 4-b. Figure 5 depicts the impact of harvesting of top 

predators on the interacting population for two different values of the said rate. Figures 5-a and 5-b clearly show that the 

parameter significantly affects the population. In these plots, the values of the parameters are taken the same as in Figure 

3 for two different values of 𝜇=0.90085 and 0.10085, respectively, whereas as 𝑟1 = 0.49978 and c=0.013421. 

These two, Figures 4-a and 4-b, depict a simulated food chain where the basal prey can consume each other. Figure 

4-a has a higher cannibalism rate (c = 0.03421) compared to Figure 4-b (c = 0.013421). The presence of cannibalism can 

potentially reduce the dramatic fluctuations sometimes seen in food chains. By consuming each other, the plants (basal 

prey) help regulate their population growth. This can lead to smaller fluctuations in the populations of medium and top 

predators compared to scenarios without cannibalism. By comparing these two plots, we can see that the lower 

cannibalism rate in Figure 4-b might be associated with slightly larger fluctuations in the populations compared to the 

higher cannibalism rate in Figure 4-a.  

Moving to Figure 5, the focus shifts to the impact of harvesting the top predator on the interacting population. Figures 

5-a and 5-b echo the trend observed in the previous plots, emphasizing the significant influence of this parameter on the 

population. The parameter values for this scenario align with those in Figure 3, while 𝜇 assumes two different values, 

0.90085 and 0.10085, with𝑟1 = 0.49978 and c=0.013421. Analogous to Figure 4, a decrease in the parameter 𝜇 

intensifies oscillations in the solution, culminating in an evident limit cycle as portrayed in Figure 5-b, underscoring the 

behavior identified in Figure 4.  

The plots show how this death rate can affect the population dynamics of all three trophic levels. When the top 

predator death rate is high (Figure 5-a), the top predator population appears smaller. This potentially allows the medium 

predator population to grow with less predation pressure. However, the primary producers might experience increased 

grazing pressure from the larger top predator population. In contrast, a lower death rate for top predators (Figure 5-b) 

suggests a larger and more stable carnivore population. This can lead to increased predation on herbivores (green line), 

potentially regulating their population at a lower density. Consequently, the primary producers (blue line) might 

experience less grazing pressure and potentially show larger fluctuations or reach higher densities. 
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(a) Time series and phase portrait at c=0.03421 

  
(b) Time series and phase portrait at c=0.013421 

Figure 5. Impact of c on the population dynamics for two different cannibalism rates 

  
(a) Time series and phase portrait at 𝜇=0.90085 

  
(b) Time series and phase portrait at 𝜇=0.10085 

Figure 4. Impact of 𝜇 on the population dynamics for two different harvesting rates 
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Figure 6 disentangles the impact of the growth rate of the top predator stemming from predating the basal prey. This 

elegantly crafted graph illuminates the population’s response to two distinct values of this pivotal rate. It can be observed 

from the multifaceted choreography depicted in Figures 6-a and 6-b that this parameter exerts a profound influence on 

the population. Remarkably, these plots maintain parameter consistency with the preceding narrative in Figure 5, holding 

steadfast to the values that have woven the complex ecological tale. The growth rate parameter 𝜇 stands at 0.10085, 

while the dynamic duo of 𝛽2 assumes the distinct values of 0.02459 and 0.00124, crafting a visual narrative that 

articulates the sensitivity of population dynamics to this parameter. The plots gracefully illustrate a key observation: the 

reduction in the parameter value is met with an amplified amplitude of oscillations in the solution, unveiling the 

captivating complexities of the ecosystem’s response to alterations in the growth rate of the top predator. 

  
(a) Time series solution at 𝛽2 = 0.02459 (b) Time series solution at 𝛽2 = 0.00124 

Figure 6. Impact of 𝜷𝟐 on the population dynamics for two different growth rate values 

Figure 7-a shows a training process for an artificial neural network (ANN) to model the impact of a specific 

cannibalism rate on population dynamics in two scenarios. The ANN’s accuracy is measured by the mean squared 

difference between its predictions and actual population data. The best validation performance was achieved at epoch 

1000, indicating the model’s optimal configuration. The model’s ability to generalize and develop during training 

suggests it may be resilient. As a result, the ANN may help understand and manage populations impacted by cannibalism 

by making accurate predictions on population dynamics under various cannibalism scenarios. Throughout one thousand 

training epochs, the train, validation, and test datasets’ mean squared errors (MSEs) are displayed in Figure 7-b. The 

effect of a single parameter, c=0.013, on population dynamics is the target of the ANN’s training. When an ANN 

achieves peak performance on a validation set, it can reliably predict outcomes in novel situations. Epoch 1000 is optimal 

since ANN learns and generalizes the most effectively 

  
(a) (b) 

Figure 7. Training process of an artificial neural network (ANN) for the impact of two different cannibalism (a) c =0.03421 

and (b) c=0.013421 on the population dynamics 



Emerging Science Journal | Vol. 8, No. 4 

Page | 1274 

Figure 8-a shows how an artificial neural network (ANN) is trained to account for the effect of μ=0.90085 on 

population dynamics for two distinct harvesting rates. Epoch 1000 was the sweet spot for the ANN’s performance on 

the validation dataset; at this time, the MSE was 2.6785e-09. Triangular in shape, the graphic depicts three curves: 

training, validation, and test. While avoiding overfitting, reducing the MSE on the training dataset should be the goal. 

An upward trend in the validation curve at epoch 800 indicates that overfitting is being monitored. The relatively low 

MSE shows good generalization to new data around 10−5, measured by the test curve, which evaluates the ultimate 

performance. A model of the effect of a specific harvesting rate on the dynamics of a fish population is shown in Figure 

8-b, which shows the training process of an ANN. The graph shows the ANN’s mean squared error (MSE) on training, 

validation, and test datasets over 1000 epochs. The ANN’s best validation performance is 2.6948e-09 at epoch 1000, 

indicating its lowest MSE on the validation dataset. The MSE on training data decreases rapidly over the first few epochs, 

while on validation data, it increases slightly after 200 epochs, indicating overfitting. 

  
(a) (b) 

Figure 8. Training process of an artificial neural network (ANN) for the impact of two different harvesting rates  (a) 

𝜇=0.90085 and (b) 𝜇=0.10085 on the population dynamics 

Figures 9-a and 9-b show a simulation of a predator-prey system with cannibalism, depicting the population of basal 

prey changes over time for different cannibalism rates. This figure details the transition state of cannibalism rate, 

Gradient, and Mut. The simulation runs smoothly with no errors. The two plots show the population of basal prey for 

different cannibalism rates, with higher rates leading to a lower population of basal prey. This is a typical result in 

predator-prey models. Figures 10-a and 10-b show a study on population dynamics in a system affected by harvesting 

using a hybrid artificial neural network (ANN) approach. The model predicts system behavior for different harvesting 

rates with high accuracy. The population density decreases with higher harvesting rates, as harvesting removes 

individuals. The model’s performance is evaluated through validation checks over time, with zero validation checks for 

both rates. The image also provides additional information about the ANN model, including Gradient, mu value, and 

epoch. Overall, the ANN model accurately models the population dynamics of a system affected by harvesting 

  
(a) (b) 

Figure 9. Results of the transition state of cannibalism rate of basal prey (a) c=0.03421 and (b) c=0.013421 on the population 

dynamics 
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(a) (b) 

Figure 10. Results of the transition state on the population dynamics for two different harvesting rates (a)  𝜇=0.90085 and 

(b) 𝜇=0.10085 

The error histogram in Figures 11-a and 11-b is a visual representation of the error distribution between the target 

values and the output values of an ANN model for predicting the cannibalism rate of basal prey. The histogram has 20 

bins, with the x-axis representing the range of errors and the y-axis showing the number of instances within each bin. 

The errors are mostly concentrated around zero, indicating the ANN model’s good performance. However, there is a 

small tail of errors on both the left and right sides, indicating significant differences from the target values. The error 

histogram in Figures 12-a and 12-b is a graphical representation of the distribution of errors in a data set, illustrating the 

differences between the target values and the actual outputs of a training program. The histogram shows the number of 

errors within each of the 20 bins, with the zero-error line at the center. The training data has the most errors around zero, 

with fewer errors as the error magnitude increases. The validation and test data have similar error distributions to the 

training data, indicating that the training program is not overfitting. The histogram is useful for visualizing error 

distribution and tracking training progress. 

Figures 13-a and 13-b display four graphs illustrating the fit of a model for predicting the target variable (Y-T) against 

the actual target variable (Target). The model’s fit is better when points are closer to the diagonal line. The top left graph 

shows the model perfectly fitting the training data, while the top right graph shows it doesn’t. The bottom left graph 

shows the model fits the test data, and the bottom right graph shows it fits the combined data. The regression analysis 

shows the model fits the data well for both cannibalism rates. The Figures 14-a and 14-b show four graphs related to the 

training and validation of a neural network used for regression analysis. The top left graph shows the relationship 

between predicted and actual target values during the training phase, with all data points lying on the diagonal line. The 

top right graph shows the relationship between predicted and actual target values during the validation phase, with all 

data points close to the diagonal line. The bottom left graph shows the relationship between predicted and actual target 

values on a separate test dataset, with all data points close to the diagonal line. The bottom right graph combines data 

from all three phases into a single plot, indicating a good overall fit of the neural network model to the data. However, 

an R-value of 1 in all cases might suggest overfitting, where the model fits the training data too closely but may not 

generalize well to new data. 

  
(a) (b) 

Figure 11. Histogram of error analysis for cannibalism rate of basal prey (a) c=0.03421 and (b) c=0.013421on the population 

dynamics for two different cannibalism rate 
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(a) (b) 

Figure 12. Histogram of error analysis of (a) = 𝜇=0.90085 and (b) 𝜇=0.10085on the population dynamics for two different 

harvesting rates 

4   

(a) (b) 

Figure 13. Regression analysis using the target of cannibalism rate of basal prey (a) c=0.03421 and (b) c=0.013421 

  
(a) (b) 

Figure 14. Regression analysis from using the target of (a) = 𝜇=0.90085 and (b) 𝜇=0.10085on the population dynamics for 

two different harvesting rates 
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In this research, we use an artificial neural network (ANN) to predict and understand how the food chain model will 
act in the future. With the use of ANNs, we can better understand the interconnectedness of the tri-trophic food chain 
and predict how it will react in various scenarios. Particular insights and predictions offered by the ANN are listed below: 

Pattern Recognition and Prediction: Artificial neural networks are excellent at identifying trends in data, and as a 
result, they are good at predicting future occurrences based on historical data. For example, the ANN can detect the 
trends of population dynamics and predict future occurrences within the framework of our food chain model. If we 
change the important characteristics like the prey growth rate, the predator predation rate, and the cannibalism intensity, 
it would be able to predict the long-run influence on all populations on all trophic levels. 

Scenario Analysis: The ANN makes it possible to carry out a scenario analysis by simulating numerous hypothetical 

situations and assessing their outcomes. For instance, possible impacts of degrees of harvesting pressure on populations 
of Apex predators can be analyzed, and the capacity of the food chain model to adapt to radical alterations in climatic 
conditions can be evaluated. As a result of this, we can anticipate the potential barriers and create adaptable ways to 
handle them. 

5- Conclusion 

To better understand the complex dynamics of primary prey population cannibalistic interactions and the apex 

predator's selective harvesting techniques, we have developed a new tri-trophic food chain model. Our analysis, 

grounded in the rigorous application of the Routh-Hurwitz criteria and Lyapunov function analysis, has provided deep 

insights into the stability properties of coexistence equilibrium points within the system. Through visually compelling 

graphical representations, we have elucidated the significant influence of key parameters, such as intrinsic growth rates, 

cannibalism intensity and predation rates, on the overall dynamics of the system. Our integration of artificial neural 

networks into the analytical framework has further enriched our ability to gain profound insights and enhance predictive 

capabilities. One of the central contributions of our research lies in highlighting the critical aspects of conditional linear 

stability and global asymptotic stability concerning coexistence equilibrium points. Our findings underscore how 

variations in parameter values can induce complex oscillatory patterns in the temporal evolution of solutions, thus 

emphasizing the system's susceptibility to parameter perturbations and the potential emergence of dynamic complexities 

in real-world scenarios. Through the systematic flow of our methodology, as illustrated in the provided flowchart, we 

have navigated through the conceptualization, modeling, analysis, and visualization stages with precision and clarity. 

The complex relationship between species interactions and human harvesting techniques in ecological systems has been 

better understood with each step. Moving forward, our research enriches not only theoretical knowledge in the field of 

ecological modeling but also offers practical implications for effective ecosystem management strategies. By shedding 

light on the complex dynamics of tri-trophic food chains, our findings pave the way for informed decision-making aimed 

at promoting ecological stability and resilience in the face of environmental challenges. 

Real-world food chains and ecosystems can be better understood and managed with the help of our study's findings. 

Ecological research and the creation of sustainable management strategies for resilient ecosystems are both improved by 

our use of mathematical modeling in conjunction with empirical data and sophisticated analytical methods. 
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