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Abstract 

This study focuses on the problem of diagnosing electromechanical equipment and aims to prevent 

its failures by timely detecting hidden signs of defects in diagnostic signals. This paper considers 
the possibility of improving systems whose equipment monitoring relies on measuring and analyzing 

the diagnostic signal of vibration or motor current. Fourier series decomposition for processing 

complex signals is not always effective because the contribution of harmonics reflecting the specific 
effect of the defect is less than that of non-specific harmonics and is comparable to the influence of 

noise. It has been proposed to apply the singular spectral analysis method for visualizing and 

analyzing the regularities of defect manifestations. It is reasonable to supplement the classical 
algorithm of this method by comparing the analyzed eigenvalue spectrum corresponding to the 

operating condition. Detection of hidden defects for the first time involves analyzing initial data 

projections in the directions of the singular basis that reflect deviations under the defect influence. 
Numerical and field experiments confirm the possibility of analyzing comparatively weak 

generations essential for equipment condition identification. The experiments demonstrate the 

opportunity for timely defect detection due to preprocessing when the probability of defect detection 
using the frequency method is close to zero. Thus, the approach to timely detection of equipment 

defects and making adequate decisions to manage its condition is justified. 
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1- Introduction 

Detection of defects in electromechanical equipment ensures the efficiency and safety of industrial production [1]. 

The quality and cost of production depend on the failure-free operation of the pumps, fans, and control valves. Equipment 

monitoring usually relies on measuring the diagnostic signals of vibration or motor current during the operation of objects 

[2]. The problem of equipment diagnostics using portable systems is that full diagnostics is possible only during 

scheduled repair. The results of periodic diagnostics establish the possibility of failure-free equipment operation during 

the period between repairs. Modern diagnostic systems do not consider the experience of previous diagnostics at the 

system level. However, the results obtained over a long period are stored in the database and can serve to improve the 

quality of diagnostics [3]. Visualization of diagnostic results is of great importance. The reliability of the technical 

condition assessment of objects depends on the informativeness of the diagnostic information. However, noise 

distortions of diagnostic information drastically reduce the probability of defect detection [4]. Increasing the sensitivity 

and visualization of diagnostic methods to incipient defects is an urgent task due to the economic need to increase the 

inter-repair period and reduce repair time. Timely detection of defects in electromechanical equipment is especially 

essential in critical industries, such as nuclear power plants, where unprevented equipment failures can affect the 
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environmental and energy safety of the region [3, 5]. Electromechanical equipment is challenging to diagnose because 

the applied analysis methods do not consider the nature of vibration or motor current signals, which can be 

nondeterministic and chaotic [5]. 

2- Literature Review 

The interpretation of diagnostic information usually uses statistical parameters and frequency methods. The statistical 

approach typically involves calculating the signal root-mean-square (RMS) value and its comparison with a threshold 

value (ISO 10816. Mechanical vibration. Evaluation of machine vibration by measuring non-rotating parts). The 

diagnostic technique for motor-operated valves uses a statistical approach [5]. Its application makes it possible to 

estimate the risks of diagnostic errors (defect skipping, fault signaling) [6]. However, this approach does not localize the 

defect in a particular functioning node. Frequency methods [7] theoretically provide localization of the defect down to 

the individual part by visual or automatic comparison of the operating frequency of this part with the frequency 

distribution of the diagnostic signal amplitudes. Many modern systems of amplitude-frequency distribution apply Fourier 

transforms, which are not always effective because the contribution of harmonics reflecting the specific influence of the 

defect may be less than that of non-specific harmonics and is comparable to the influence of noise [8]. Spectral analysis, 

including its advanced interpretations, such as Fourier fuzzy analysis [9, 10], can be much more effective and illustrative 

because of the selection of relatively weak but essential equipment condition generations in the initial diagnostic 

information. The applied analysis methods do not consider the mathematical nature of signals [11, 12], which can be 

nondeterministic and chaotic. This disadvantage can be compensated by approximating the most valuable diagnostic 

information using a reference basis [13] by methods invariant to nondeterminism and the chaotic nature of processed 

time series [3]. 

3- Research Methods 

3-1- Description of the Diagnostic Signals 

According to the literature devoted to the description of vibration signals of electromechanical equipment [14] and 

directly from the analysis of diagnostic information, a typical signal of serviceable equipment can be modeled as follows: 

𝑋𝑛(𝑡) = (∑ 𝐴𝑛𝑖
sin 2𝜋 ∙𝐾

𝑖=1 𝑓𝑖𝑡) + 𝛿𝑛(𝑡)  (1) 

where 𝑖 – counting index, 𝑓𝑖 – fundamental, supreme frequencies, and sub-frequencies of mains harmonic and harmonics 

of rotor rotation, 𝐴𝑛𝑖
 – amplitudes of the corresponding harmonics, 𝐾 – number of harmonics, 𝛿𝑛(𝑡) – chaotic component 

distributed near 0. 

In the presence of abnormalities in the operation of equipment parts, the signal corresponds to the following 

description: 

𝑋(𝑡) = (∑ A𝑖sin 2𝜋 ∙𝑃
𝑖=1 𝑓𝑖𝑡) + (∑ A𝑠𝑗

sin 2𝜋 ∙𝑄
𝑗=𝑃+1 𝑓𝑠𝑗

𝑡) + 𝛿(𝑡)  (2) 

where 𝑗 – counting index, 𝑓𝑖 – fundamental, supreme frequencies, and sub-frequencies of mains harmonic and harmonics 

of rotor rotation, 𝐴𝑖 – amplitudes of these harmonics (the number of harmonics and amplitude values differ from those 

observed in the operating condition), 𝑓𝑠 – frequencies corresponding to the harmonics of the rotation of defective parts, 

A𝑠 – their amplitudes (which may be less than 𝐴𝑖), 𝑃,𝑄 – number of corresponding harmonics, 𝛿(𝑡) – chaotic component 

(whose contribution increases in the presence of a defect). 

Equations 1 and 2 may include a slowly changing component (e.g., one of the frequencies 𝑓𝑖 = 0.1). It is assumed 

that signal generation occurs at a sampling rate of 0.001 s (as in many actual systems). 

Thus, in expression 2, the first component describes deterministic but invaluable defect localization information. The 

second component with certain reservations is a deterministic (quasi-periodic) component important for defect 

localization. The third component, on the one hand, is noise interference, and, on the other hand, its contribution can be 

an unambiguous sign of the defect. Because the contribution of harmonics reflecting the specific influence of the defect 

is less than that of non-specific harmonics and comparable to the noise influence, there are difficulties in identifying the 

defect by frequency methods, especially in the initial stage of development. 

Singular spectral analysis (SSA) is used to solve noise reduction problems in the field of communication [15], 

identifying weak and strong trends for forecasting in the fields of economy [16] and energy consumption. 
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3-2- SSA Application to Diagnostic Signals: Theory 

SSA is a method where matrix [A] of rang L can be decomposed into the product of three matrices [U] (orthogonal 

matrix), [S] (diagonal matrix) and [V]T (transpose of orthogonal matrix [V]). In other words, the matrix can take the 

following view: 

[𝐴]𝑚×𝑛 = [𝑈]𝑚×𝑛[𝑆]𝑚×𝑛[𝑉]𝑚×𝑛
𝑇   (3) 

where 𝑚, 𝑛 – number of rows and columns of the matrix, UTU = 1 and VTV = 1 ; 𝑆 is diagonal matrix, containing 

square roots from eigenvalues ATA, which can be expressed as 𝑆 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … 𝜎𝐿), where data 𝜎𝑖(𝑖 = 1, 2, 𝐿) are 

singular values of matrix [A], 𝐿 = 𝑚𝑖𝑛(𝑚, 𝑛). 

The diagnostic signals 𝑋𝑛(𝑡) and 𝑋(𝑡) described by Equations 1 and 2 are time series rather than matrices. Therefore, 

the discrete diagnostic signal xi (i=1, 2, ..., N) is transformed into a Hankel matrix. The Hankel matrix is obtained by 

moving a window of length m along the time series and can take the following form: 

[𝐴] = (

𝑥1 ⋯ 𝑥𝑛

⋮ ⋱ ⋮
𝑥𝑚 ⋯ 𝑥𝑁

)  (4) 

where 𝑚 + 𝑛 − 1 = 𝑁. Matrix [𝐴], also as signals 𝑋𝑛(𝑡) and 𝑋(𝑡), contains deterministic and chaotic components. 

The SSA method states that the matrix [𝐴̅]𝑚×𝑛 of rank 𝐿 < 𝑙, which minimizes the sum of squares of the error between 

the elements of matrix [A] and the corresponding elements of matrix [𝐴̅], can be generated as 

[𝐴̅] = [𝑈𝑙][𝑆𝑙][𝑉𝑙]
𝑇  (5) 

where [𝐴̅] is a reconstructed matrix using only the number l of singular values. 

𝜎𝑖 > 𝜀1, 𝑖 = 1, … 𝑙  (6) 

where 𝜀1 is a threshold value that separates deterministic components from chaotic ones. The remaining singular values 

are replaced by zero. Thus, the matrix [𝐴̅] concentrates the deterministic components contained in the initial signal. 

Remember that according to Equation 2, the deterministic component of the failed equipment signal includes both 

harmonics directly indicating the defect and harmonics inherent to the signals of the operating and failed equipment. 

Thus, the application of SSA involves the problem of choosing singular numbers 𝑖 = 𝑝, … 𝑙, by which the most valuable 

information can be recovered to identify the condition of the unit under test. A successful solution to this problem 

provides matrix reconstruction: 

[𝐴̂] = [𝑈𝑙−𝑝+1][𝑆𝑙−𝑝+1][𝑉𝑙−𝑝+1]
𝑇
  (7) 

where [𝐴̂] is a reconstructed matrix using 𝑙 − 𝑝 of singular values. 

𝜀1 < 𝜎𝑖 ≤ 𝜀2, 𝑖 = 𝑙 − 𝑝, … 𝑙, 

where 𝜀2 is a threshold value component directly indicating a defect. 

Matrix [𝐴̌] characterizing the components that make the statistically most significant contribution to the original 

signal formation can also be reconstructed, if necessary: 

[𝐴̌] = [𝑈𝑝−1][𝑆𝑝−1][𝑉𝑝−1]
𝑇
  (8) 

where [𝐴̌] is a reconstructed matrix using 𝑙 − 𝑝 of singular values. 

𝜎𝑖 > 𝜀2, 𝑖 = 1, … 𝑝 − 1  

Solving some research problems [17] may require the reconstruction of a matrix [Δ] containing non-deterministic, 

chaotic components: 

[𝛥] = [𝑈𝐿−𝑙−1][𝑆𝐿−𝑙−1][𝑉𝐿−𝑙+1]𝑇  (9) 

After obtaining matrix [𝐴̂] related to 𝑙 − 𝑝 singular values, it must be transformed into a time series reflecting the 

specific defect influence. The reconstruction involves arithmetic averaging over the antidiagonals of the matrix [𝐴̂], 

which is the diagonal averaging method [18] that can take the following form: 
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𝑥̂𝑖 =
1

𝛽−𝛼+1
∑ 𝐴̂𝑖−𝑗+1,𝑗

𝛽
𝑗=𝛼   (10) 

where 𝛼 = max (1, 𝑖 − 𝑚 + 1) and 𝛽 = min (𝑛, 𝑖). Similarly, it is possible to reconstruct exceptionally deterministic 

and chaotic signals by matrices [𝐴̌] and [Δ].  

The successful application of SSA is related to the choice of l and p numbers depending on the threshold values of 𝜀1 

and 𝜀2. Guns & Rousseau [19] justifies the choice of numbers l and p by the shape of the value graph commonly referred 

to as the eigenvalue spectrum (ES). The ES is a decreasing graph representing the dispersion contribution of each 

component along each component of the decomposition. The ES obtained by singular value decomposition provides a 

visualization of defect manifestations: as the defect progresses, the spectrum plot becomes gentler, showing the 

contribution of harmonics associated with the defect influence and increased randomness. Value 𝜎𝑖, at which the decrease 

of eigenvalues maximally slows down [20], can be taken as the threshold 𝜀1, above which the decomposition components 

of the matrices described by expression 4 reflect the influence of the chaotic components of the initial data. 

Since this work, in addition to the separation of the chaotic and deterministic components in the signal, sets the task 

of selecting the component, reflecting the influence of the equipment condition on the signal formation, it is proposed to 

choose 𝜀2 based on the comparison of ES signals of operating and failed equipment. Numerical and field experiments 

justify the choice approach. 

In previous studies by González et al. [4], for visualizing and analyzing defect manifestations in electromechanical 

equipment, the SSA method was used together with high-pass filters, which reduced the performance of diagnostic 

systems. In this study, the SSA method provides signal denoising and does not require additional processing. The SSA 

method identifies defect features in the reconstructed signal that are not detected by frequency domain analysis in the 

original complex signal. Thus, the SSA method applies in conjunction with Fourier series decomposition and other 

classical analysis methods 

4- Testing the SSA on the Results of Computational Experiments 

To test the ES method as applied to diagnostic signals, a time series similar to the vibration signal of failed equipment 

was generated, corresponding to the following equation: 

𝑋(𝑡) = (∑ 𝐴𝑖sin 2𝜋 ∙5
𝑖=1 𝑓𝑖𝑡) + 𝛿(𝑡)  (11) 

where 𝑓1 = 75, 𝑓2 = 87, 𝑓3 = 41, 𝑓4 =56, 𝑓5 =0.1 Hz, 𝐴1=𝐴2=0.4, 𝐴3=𝐴4=0.05, 𝐴5=0.1, 𝛿(𝑡) is a random component 

distributed according to the normal law with a standard deviation of 0.1. 

The spectrum of the initially generated signal correlates with Equation 11. It reflects the presence of a trend (frequency 

0.1 Hz), "strong" harmonics (with frequencies 75 and 87 Hz), "weak" (with frequencies 41 and 56 Hz), and random 

components. As Figure 1 shows, the "weak" but informative harmonics are complicated to identify. For comparison, the 

spectrum of the signal was generated, which differs from the first one by the absence of harmonics at the frequencies of 

41 and 56 Hz (Figure 1-b). 

  

(a) (b) 

Figure 1. Frequency spectra of the initially generated vibration speed signals: a) with harmonics at frequencies of 41, 56, 75, 

and 87 Hz and noise, b) without harmonics at frequencies of 41 and 56 

Transformations 3 and 4 were applied to the signal generated according to Equation 11 and to the second signal 

(without harmonics at 41 and 56 Hz), obtaining orthogonal matrices and ESs. Figure 2 shows that these ESs are almost 

identical. However, the decrease in eigenvalues maximally slows down in the ES of the signal without additional 

harmonics starting from No. 5 and in the ES with additional harmonics starting from No. 9 
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Figure 2. Eigenvalue spectrum of the generated signals 

There is a difference in the values of nos. 5-8, a sign that mismatched harmonics (with frequencies of 75 and 87 Hz) 

manifest themselves in the projections of the singular basis to the directions with these numbers. It is reasonable to accept 

the threshold values 𝑙 = 8 and 𝑝 = 5 for data recovery according to Equation 7. A gentler shape of the graph visualizes 

the manifestation of the defect in components nos. 5-8. 

Indeed, the frequency spectrum of the series reconstructed by projections with nos. 5-8 (Figure 3-a), according to 

(10), demonstrates the presence of harmonics with frequencies of 41 and 56 Hz more clearly than the spectrum of the 

initial signal (Figure 1-a). The spectrum of the signal without additional harmonics, reconstructed by projections with 

numbers nos. 5-8 (Figure 3-b), demonstrates only the presence of harmonics at frequencies of 75 and 87 Hz. 

  
(a) (b) 

Figure 3. Frequency spectra of the reconstructed generated vibration speed signals: a) with harmonics at frequencies of 41, 

56, 75, and 87 Hz and noise, b) without harmonics at frequencies of 41 and 56 

Projections on different directions of the singular basis, being in a sense the result of filtering, make it possible to 

distinguish deterministic and chaotic components in the signal. Figure 4 shows components with nos. 1, 4, and 450 

(columns with the corresponding numbers of matrix V obtained from decomposition (3)). The first component 

corresponds to the "strongest" periodic component, the fourth component (whose contribution is "weaker") corresponds 

to the trend, and the highest component shows chaotic behavior. The form of the chaotic component changes at different 

realizations of 𝛿(𝑡), while the other two components remain almost unchanged. 

Thus, the SSA method can be used to visualize the regularities of defect manifestations. The processing of time series 

simulating the generation of diagnostic signals demonstrates the possibility of analyzing relatively weak generations in 

the diagnostic signal and revealing hidden defects. 
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Figure 4. Components of signal singular value decomposition 

Figure 5 shows the sequence of transformations required to implement the author’s methodology. 

 

Figure 5. Processing of diagnostic signals 

Note that not only frequency but also statistical methods can be applied to the data after recovery, and their efficiency 

increases because of pre-processing [21]. 

5- Results and Discussion 

5-1- Application of SSA to the Results of Field Experiments 

The experiment involved accelerated abrasive wear of ball bearings using a test setup (Figure 6) to verify the proposed 

method of analyzing the regularities of manifestations, nucleation, and development of defects in electromechanical 

equipment. 
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Figure 6. Test setup. Bearing support, view along the shaft axis 

The vibration speed level was measured before the failure, at the start of the failure, and 80 min after the failure. RMS 

values were calculated using the measured signals (similar to industrial diagnostic systems) and presented as probability 

distribution density functions [6], as shown in Figure 7. 

 

Figure 7. Density functions of the RMS probability distribution of the vibration speed experimental signals 

A comparison with the threshold values given in normative documents classifies failed conditions in industrial 

diagnostic systems. According to GOST10816-1, considering the low motor power of the test setup, the threshold of 1.8 

mm/s (border of zones B/C) should be the threshold above which long-term operation of this equipment is inexpedient. 

Given that approximately half of the values corresponding to failure (first 10 minutes from the start of wear) and wear 

(80 minutes) are below the threshold, the probability of defect absence is approximately 50 %. 

Signal spectra in Figure 8 demonstrate the presence of higher and subharmonic components of the supply current 

harmonic (
𝑘∙50

2𝑛 ≈ 25, 37,52, 75, 87, 112, 125, 137 𝐻𝑧 k=1,2,3,4 at n=0,1,2), which are not specific signs of the defect 

[17]. After the initial failure (Figure 8-b), the subharmonic components slightly increase, and the noise component 

increases. As wear progresses, the manifestation of deterministic components decreases and that of chaotic components 

increases (Figure 8-c). 

Particular signs of the bearing defect are the excitation of harmonics at the frequencies of the separator rotation, 

rolling elements, and their rolling around the outer and inner rings [22]. Assuming that the specified harmonics are 

"weak" and "sink" in the noise, it is possible to identify them using the proposed algorithm based on the SSA method. 

5-2- Discussion of the Results of the Field Experiments 

Transformations 3 and 4 were applied to the experimental signals. As Figure 9 shows, the operating condition 

corresponds to the most significant difference in the contribution of the first and higher components: nos. 1-6 

contribute more than 10 dB; subsequent components insignificantly contribute and demonstrate a "slowing down" 

starting from No. 8. Initial failure is accompanied by a sharp increase in the first component, a relative increase in 

components nos. 8-700, and a "slowing down" starting from No. 15. Subsequent wear has the gentlest ES and the most 

significant contribution of components nos. 2-700. The projections on components nos. 8-15 can be the most 

informative because their contribution is more than 10 dB and differs from the contribution of the signal components 

before the failure. 
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(a) (b) 

 

(c) 

Figure 8. Frequency spectra of the initial experimental signals of vibration speed: (a) before failure, (b) initial failure, and 

(c) wear and tear after 80 min 

 

Figure 9. Eigenvalue spectrum of the experimental signals 

The decomposed experimental signals were reconstructed using nos. 1-7, 8-15, 600-700. As expected, components 

Nos. 1-7 in Figure 10-a characterize the contribution of "strong" deterministic (but low-informative) components. The 

higher component nos. 600-700 in Figure 10-b characterize the contribution of chaotic components (whose very presence 

indicates the defect development). The reconstruction using components Nos. 8-15 (Figure 10-c) is of the most interest 

because the time series contains harmonics that can be associated with the rotation of the separator (9 Hz) and rolling 

elements (41 Hz). 
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(a) (b) 

 
(c) 

Figure 10. Frequency spectra of the reconstructed vibration speed signals: a) nos. 1-7, b) nos. 600-700, c) nos. 8-15 

It is possible to recover the most valuable information for identifying the object condition by ES and comparing the 

analyzed spectrum with that corresponding to the operating condition. The last figure demonstrates that applying the 

SSA method to the initial diagnostic information increases the efficiency of frequency analysis methods. The proposed 

method incorporates the experience of previous diagnostics and thus contributes to the development of diagnostic 

systems. In contrast to conventional systems that only archive data, the previous results improve the quality of 

diagnostics at the system level. 

Note that the SSA method eliminates the limitations of existing methods that do not consider the non-deterministic 

and chaotic nature of the processed signals. Detection of hidden defects in noise-distorted diagnostic signals is achieved 

by approximating the most valuable diagnostic information using a reference basis. Note that not only frequency-based 

methods but also other methods apply to the data after recovery; their efficiency increases because of preprocessing. The 

more efficiency, the longer the length of the signal implementation. However, the existing computational power limits 

the amount of processed information. 

The results of numerical and field experiments show that the spectrum of eigenvalues obtained as a result of the 

singular decomposition of diagnostic signals provides visualization of defect manifestations when other methods are 

ineffective. As the defect develops, the spectrum graph becomes gentler, demonstrating the contribution of harmonics 

associated with the influence of the defect and increasing randomness. 

6- Conclusion 

This paper considers the problem of detecting the signs of defects in electromechanical equipment using a diagnostic 

signal containing informative components and noise. The insufficient efficiency of known methods is because the 

contribution of harmonics reflecting the specific influence of the defect is less than that of non-specific harmonics and 

is comparable to the influence of noise. This study solves the applied scientific problem of searching for weak but 

informative generations in the diagnostic signal using the SSA method adapted for solving this problem. A valuable 

observation is that if a defect develops, the spectrum graph becomes gentler, demonstrating the contribution of harmonics 

associated with the influence of the defect and increasing randomness. As shown, ES singular value decomposition 

provides visualization of defect manifestations when other methods are ineffective.  
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The proposed method differs from the known SSA implementation aimed at noise filtering by selecting the metric 

with the best (in terms of information about the object condition) computation of data approximation. For the first time, 

the choice of metric is to compare the ESs corresponding to the signals of the working and failed equipment. Using ES, 

it is possible to select areas where eigenvalues for the failed condition characterize a significant contribution, whereas 

for the operating condition, the contribution along the directions with these numbers is insignificant. Thus, the directions 

of the singular basis that reflect the deviations under the defect influence are selected.  

The possibility of analyzing relatively weak generations but essential ones for identifying the equipment condition, 

confirmed by numerical and field experiments, is of great practical significance. The study results are suitable for 

improving the performance of technical diagnostics systems for equipment of potentially hazardous industries, 

contributing to the prevention of failures due to the timely detection of hidden defect signs in the diagnostic signal. 

For further research, it is promising to adapt the method for its consistent application to dynamically updated 

equipment diagnostic data and make timely decisions on its condition management. 

The sensitivity of the diagnostic method to incipient equipment defects may be in demand at critical production 

facilities, such as nuclear power plants. In addition to electromechanical equipment, the improved SSA method is 

applicable to the diagnostics of stepping electromagnetic drives, for example, drives of control and protection systems 

of the SHEM-3 reactor plant. 
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