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Abstract 

The accurate estimation of ruin probability is a fundamental challenge in non-life insurance, 

impacting financial stability, risk management strategies, and operational decisions. This study aims 

to propose an approach for estimating ruin probability using claim simulation enhanced by the 

Wang-PH transform to fit various loss distributions, including Gamma, Weibull, Lognormal, Log-

logistic, Inverse Weibull, and Inverse Gaussian, to actual claim data. Methods involve the 

transformation of loss distributions via the Wang-PH transform and rigorous evaluation to select the 
optimal distribution model that best reflects actual claim characteristics. This model serves as the 

foundation for estimating finite-time ruin probability through claim simulation, employing the 

acceptance-rejection technique to generate random samples. Additionally, a regression-based 
methodology estimates the minimum capital reserve required to safeguard against financial risk. 

Findings indicate the proposed method's computational efficiency, making it a valuable tool for 

insurers and risk analysts in assessing and mitigating financial risks in the non-life insurance sector. 
The novelty of this study lies in the integration of the Wang-PH transform with empirical data fitting 

and simulation techniques, applied to estimating ruin probability and determining capital reserves. 
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1- Introduction 

The challenge of maintaining an adequate capital reserve is currently a prominent issue faced by non-life insurance 

companies in Thailand. The complexities associated with capital calculations have become a central point of concern. 

These companies need to allocate a sufficient initial capital amount to ensure that the potential financial loss from risks 

does not exceed an acceptable threshold. In the contemporary landscape of non-life insurance, ensuring a sufficient and 

well-managed capital fund is paramount. It serves as a financial buffer against unexpected claim events and market 

fluctuations, safeguarding the insurer's ability to meet its obligations to policyholders and stakeholders alike. The 

determination of an appropriate capital fund involves a comprehensive assessment of various risk factors, market 

conditions, regulatory requirements, and the company's own risk appetite. 

Actuaries, being experts in assessing and managing risk, play a pivotal role in addressing the capital reserve problem. 

Their analytical expertise allows them to navigate the complex landscape of risk evaluation, enabling them to quantify 

the potential financial impact of various scenarios on an insurer's capital reserves. By accurately estimating the capital 

required to support the insurer's operations and fulfill obligations, actuaries contribute to enhancing the company's 

financial stability and resilience. At its core, loss distributions represent the patterns and magnitudes of financial losses 

incurred by an insurance company due to claim events. These distributions capture the variability and uncertainty 

inherent in the insurance business, serving as a foundation for quantifying potential financial risks. The choice of an 
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appropriate loss distribution model is fundamental as it directly affects the accuracy of risk assessments. Klugman et al. 

[1] discussed loss distribution and its modeling, emphasizing its importance as a method for estimating risk measures. 

McNeil et al. [2] and Dhaene et al. [3] described risk measures and their classification. One of the risk measures we 

consider for insurance pricing in this study is the premium calculation principle. 

Numerous authors have discussed the premium calculation principle for both financial and insurance risks, with Wang 

being particularly notable for establishing the premium calculation principle. Noteworthy works include those by Wang 

[4-7]. Wang [4] proposed proportional hazards (PH) transform principle for calculating premiums. The calculation is in 

the form: 𝐻(𝑋) = ∫ [𝑆𝑋(𝑡)]𝑐∞

0
𝑑𝑡 for some 0 < 𝑐 < 1, where 𝑆𝑋(𝑡) = Pr(𝑋 > 𝑡) = 1 − 𝐹𝑋(𝑡). Wang [8] presented a 

pricing method based on the transformation as follows: 𝐹∗(𝑥) = Φ[Φ−1(𝐹(𝑥)) + 𝜃]. Here, Φ represents the standard 

normal cumulative distribution function (cdf), 𝐹(𝑥) is the cdf of the distribution of interest, and 𝜃 is a constant. This 

transformation, known as the Wang transform, is widely recognized among financial engineers and risk managers. Given 

the challenge of fitting loss distributions to actual claims data, these transformations provide essential tools for pricing 

insurance premiums based on transformed functions. 

Recent studies have advanced premium calculation methods by addressing asymmetric risks and sector-specific 

variables. Calderín-Ojeda et al. [9] developed a premium calculation framework based on Conditional Tail Expectation 

(CTE) and asymmetric loss functions, enhancing traditional risk measures. Psarrakos [10] introduced a novel approach 

using the mode of unimodal weighted distributions as a premium principle, offering an alternative to traditional methods. 

These developments suggest that integrating such methodologies could significantly improve risk assessments and 

capital reserve adequacy in the non-life insurance market. 

Ruin probability, a critical metric in insurance risk assessment, quantifies the likelihood that an insurance company's 

capital reserve will be exhausted due to large and unexpected claim events. Accurate estimation of ruin probability 

hinges on a comprehensive understanding of loss distributions and the adequacy of the capital reserve. By integrating 

these components, insurers can gauge the vulnerability of their financial position and make informed decisions to manage 

risk effectively. The development of risk assessment in the field of insurance has been a significant endeavor. This 

evolution began in the early 1900s when a Swedish actuary named Filip Lundberg was credited with establishing the 

foundation for risk theory. Among Lundberg's contributions is the creation of a basic model for non-life insurance. The 

central focus of any insurance firm is the timing and size of claims, both of which impact the company's capital. Insurers 

are obligated to safeguard their stakeholders from unexpected losses and risks. The insurer's stability is gauged by its 

capital reserves, the severity of claims, and its premium income. Lundberg's model makes three assumptions. 

 Time instances of claim occurrences are denoted as 𝑇𝑖 , where 𝑖 = 0, 1, 2, …. The sequence of these times,                       

𝑇0 ≤ 𝑇1 ≤ 𝑇2 ≤ ⋯, is referred to as the claim occurrence process. 

 Claim sizes at time 𝑇𝑖  are represented as 𝑌𝑖. These claim sizes are independent and identically distributed, forming 

the claim size process. 

 The claim occurrence and claim size processes are independent of each other. 

In addition to the three aforementioned assumptions, the number of claims within a time interval [0, 𝑡] was defined 

by the equation: 𝑁(𝑡) = max{𝑖 ≥ 1: 𝑇𝑖 ≤ 𝑡}, with 𝑁(𝑡) termed as the claim count process. 

Furthermore, insurance companies examine the total claim size, denoted as 𝑆(𝑡) = ∑ 𝑌𝑖
𝑁(𝑡)
𝑖=1 ,  𝑡 ≥ 0, for a specified 

time interval [0, 𝑡].  

In the 1930s, the renowned Swedish statistician Harald Cramer [11] significantly advanced collective risk theory by 

integrating the total claim size process, 𝑆(𝑡), with claim arrival times, 𝑇𝑖 , generated by a Poisson process. When the 

claim number process is defined as a homogeneous Poisson process, the resulting model that merges claim sizes and 

claim arrival times is referred to as the Cramer-Lundberg model. In the Cramer-Lundberg model, let 𝑝(𝑡) represent the 

premium income in the time interval [0, 𝑡]. It is assumed that 𝑝(⋅) is a deterministic linear function, meaning 𝑝(𝑡)  =  𝑐𝑡, 

for 𝑡 ≥ 0, where 𝑐 > 0 is a constant known as the premium rate. Given the total claim amount 𝑆(𝑡) for 𝑡 ≥ 0, 𝑈(𝑡) =

𝑢 + 𝑝(𝑡) − 𝑆(𝑡) = 𝑢 + 𝑐𝑡 − ∑ 𝑌𝑖
𝑁(𝑡)
𝑖=1 . The {𝑈(𝑡), 𝑡 ≥ 0} process is referred to as the risk process, or surplus process, of 

the model, where 𝑢 > 0 represents the capital reserve. 

In the classical risk process, the claim severity 𝑌𝑛 occurs at time 𝑇𝑛 such that 0 ≤ 𝑇1 ≤ 𝑇2 ≤ ⋯. In this process, the 

probability of insolvency (ruin) only arises at claim time 𝑇𝑛, where 𝑛 ∈ ℕ. The discrete-time risk process is defined as 

follows: 𝑈𝑛(𝑢) = 𝑢 + 𝑐𝑇𝑛 − ∑ 𝑌𝑘
𝑛
𝑘=1 , where 𝑈0(𝑢) = 𝑢 ≥ 0 is the initial capital reserve, 𝑐 > 0 is the premium rate for 

one unit of time, computed by the expected value principle as: 𝑐 = (1 + 𝜃)𝐸[𝑌], where 𝑌 is a random variable of claim 

severity and 𝜃 ≥ 0 represents the safety loading of the insurer. Chan & Zhang [12] extended this concept by considering 

the discrete-time risk process under the assumption 𝑇𝑛 = 𝑛, where the risk process is defined as: 𝑈𝑛(𝑢) = 𝑢 + 𝑐𝑛 −
∑ 𝑌𝑘

𝑛
𝑘=1 , where 𝑛 ∈ ℕ. Here, 𝑈0(𝑢) = 𝑢 ≥ 0 represents the initial capital, 𝑐 > 0 is the premium rate for one unit of time, 

and the process {𝑌𝑛: 𝑛 ∈ ℕ} consists of a sequence of independent and identically distributed claim random variables at 

the claim arrival time 𝑇𝑛 = 𝑛. 
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Furthermore, the probability of ruin over a unit of time can be defined as: Φ𝑛(𝑢) = Pr(𝑈𝑘(𝑢) < 0 for some                

𝑘 = 1, 2, … , 𝑛 | 𝑈0(𝑢) = 𝑢. From this equation, if 𝑈𝑛(𝑢) < 0, it indicates that the insurance company doesn't have 

sufficient surplus to cover the obligations specified in the insurance contracts. This situation might lead to financial 

instability, potentially resulting in the suspension or regulation of business operations by the regulatory authority. The 

concept of surplus is crucial for insurance companies. Maintaining an appropriate surplus ensures financial stability and 

the ability to meet insurance claims promptly. However, an excessively large surplus might lead to reduced probabilities 

of ruin. Conversely, a lower surplus might restrict the company's ability to invest in other profitable ventures, such as 

stocks or real estate. 

The analysis of these models aims to compute the probability of ruin, which represents the likelihood of financial 

distress for the insurance company. This is a complex mathematical problem and requires advanced techniques to 

evaluate. Sattayatham et al. [13] further extended this analysis by introducing definitions for the minimum initial capital 

that corresponds to acceptable levels of risk. Several studies [14-19] explore ruin probability in the discrete-time surplus 

process. Recent studies have deepened our understanding of ruin probability by exploring various complex scenarios. 

Yıldırım Külekci et al. [20] examined the impact of dependent extreme losses using a GARCH-EVT-Copula model, 

revealing the importance of considering loss dependence in risk assessments. Liu et al. [21] addressed delayed claims in 

renewal risk models, providing uniform asymptotic formulas for tail probabilities. Denisov et al. [22] explored the effects 

of level-dependent premium rates, showing how near-critical premium rates can produce heavy-tailed ruin probabilities. 

Li et al. [23] developed asymptotic formulas for finite-time ruin probabilities in multi-line risk models with stochastic 

returns, while Xu et al. [24] applied similar techniques to non-stationary claim-number processes. These studies 

collectively enhance the tools available for insurers to evaluate and mitigate financial risks effectively. 

Despite the extensive research, the literature still lacks studies on the application of advanced statistical transforms, 

such as the Wang-PH transform, in modeling loss distributions for accurate ruin probability estimation. Additionally, 

there is a need for more empirical studies that validate these theoretical models using real-world data from various 

insurance sectors, particularly in emerging markets like Thailand. Another gap is the limited exploration of the interplay 

between different risk factors, such as claim frequency and severity, in determining ruin probabilities. 

To address these gaps, our study focuses on the discrete-time surplus process of a company operating within a limited 

timeframe. The company aims to reserve sufficient capital to keep the probability of ruin below a specified risk level. 

We analyze the interplay between ruin probability, safety loading, and capital reserve. To transform the loss distribution 

data, we employ the Wang-PH transform, followed by fitting the resulting distributions to actual claim data. After 

thorough evaluation, we identify the optimal distribution that best represents the characteristics of the actual claim data. 

This model serves as the basis for estimating the finite-time ruin probability through claim simulation. We utilize the 

acceptance-rejection technique to generate random samples for simulation. Additionally, we apply a regression-based 

methodology to estimate the minimum capital reserve needed to mitigate financial risk. 

The structure of the article is as follows: Section 2 begins with an examination of right-skewed loss distributions such 

as Gamma, Weibull, Lognormal, Log-logistic, Inverse Weibull, and Inverse Gaussian, known for their heavy tails and 

fitted to actual claim data sets. Section 3 utilizes the Wang-PH transform to enhance traditional loss distributions, 

addressing the diverse nature of claims distributions. Section 4 covers parameter estimation, which is conducted using 

maximum likelihood estimation (MLE) and the local minimum Kolmogorov-Smirnov estimator (LMKSE) with the 

random neighborhood search (RNS) technique, implemented via Scilab programming. Section 5 assesses the goodness 

of fit (GOF) test to evaluate the compatibility between theoretical probability distributions and observed data. Section 6 

discusses the calculation of the net premium based on the expected value of losses, using relevant loss distributions, in 

Thai Baht (THB). This is followed by a simulation of ruin probability through claim simulation and analysis of the 

results in Section 8. Finally, the conclusions in Section 9 summarize the findings and their implications for the non-life 

insurance sector. 

2- Loss Distributions 

The loss distributions examined in this study display a right-skewness or skewed right distribution. Claim severity 

loss distributions are often characterized by heavy tails or fat tails. Gamma, Weibull, Lognormal, Log-logistic, Inverse 

Weibull, and Inverse Gaussian distributions are of particular interest as they are used to fit the actual claim data sets. 

2-1- Gamma Distribution 

Assume that 𝑋 follows a Gamma distribution with shape parameter 𝛼 and scale parameter 𝛽, denoted as 

𝑋 ~ Gam(𝛼, 𝛽). The probability density function (pdf) and cumulative distribution function (cdf) of 𝑋 ~ Gam(𝛼, 𝛽) are 

given by Equations 1 and 2, respectively. 

𝑓(𝑥; 𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼 
𝑥𝛼−1𝑒

−
𝑥

𝛽,               𝛼 > 0, 𝛽 > 0, 𝑥 > 0  (1) 

𝐹(𝑥; 𝛼, 𝛽) =
1

𝛽𝛼𝛤(𝛼)
∫ 𝑡𝛼−1𝑒

−
𝑡

𝛽𝑑𝑡, 𝛼 > 0, 𝛽 > 0, 𝑥 > 0
𝑥

0
  (2) 

The expected value of 𝑋~Gam(𝛼, 𝛽) is 𝐸[𝑋] = 𝛼𝛽. 
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2-2- Weibull Distribution 

Assume that 𝑋 follows a Weibull distribution with scale parameter 𝜆 and shape parameter 𝜂, denoted as 

𝑋 ~ Weib(𝜆, 𝜂). The pdf and cdf of 𝑋 ~ Weib(𝜆, 𝜂) are given by Equations 3 and 4, respectively. 

𝑓(𝑥; 𝜆, 𝜂) =
𝜂

𝜆
(

𝑥

𝜆
)

𝜂−1

𝑒−(
𝑥

𝜆
)

𝜂

,          𝜆 > 0, 𝜂 > 0, 𝑥 ≥ 0  (3) 

𝐹(𝑥; 𝜆, 𝜂) = 1 − 𝑒−(
𝑥

𝜆
)

𝜂

,                  𝜆 > 0, 𝜂 > 0, 𝑥 ≥ 0  (4) 

The expected value of 𝑋~Weib(𝜆, 𝜂) is 𝐸[𝑋] = 𝜆Γ (
𝜂+1

𝜂
), where Γ(⋅) is the gamma function. 

2-3- Lognormal Distribution 

Let's assume that 𝑋 follows a Lognormal distribution with location parameter 𝜇 and scale parameter 𝜎, denoted as 

𝑋 ~ LN(𝜇, 𝜎). The pdf and cdf of 𝑋 ~ LN(𝜇, 𝜎) are given by Equations 5 and 6, respectively. 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒

−(𝑙𝑛 𝑥−𝜇)2

2𝜎2 ,        𝜇 ∈ ℝ, 𝜎 > 0, 𝑥 > 0  (5) 

𝐹(𝑥; 𝜇, 𝜎) = 𝛷 (
𝑙𝑛 𝑥−𝜇

𝜎
) ,                 𝜇 ∈ ℝ, 𝜎 > 0, 𝑥 > 0  (6) 

where Φ(⋅) is the cdf of the standard normal distribution. The expected value of 𝑋~LN(𝜇, 𝜎) is 𝐸[𝑋] = 𝑒𝜇+
𝜎2

2 . 

2-4- Log-logistic Distribution 

Let's assume that 𝑋 follows a Log-logistic distribution with location parameter 𝜇 and scale parameter 𝜎, denoted as 

𝑋 ~ Loglo(𝜇, 𝜎). The pdf and cdf of 𝑋 ~ Loglo(𝜇, 𝜎) are given by Equations 7 and 8, respectively. 

𝑓(𝑥; 𝜇, 𝜎) =
𝑒

(
𝑙𝑛 𝑥−𝜇

𝜎 )

𝜎𝑥(1+𝑒
(

𝑙𝑛 𝑥−𝜇
𝜎 )

)

2 ,                   𝜇 > 0, 𝜎 > 0, 𝑥 > 0  
(7) 

𝐹(𝑥; 𝜇, 𝜎) = ∫
𝑒

(
𝑙𝑛 𝑡−𝜇

𝜎 )

𝜎𝑡(1+𝑒
(

𝑙𝑛 𝑡−𝜇
𝜎 )

)

2

𝑥

0
𝑑𝑡 ,         𝜇 > 0, 𝜎 > 0, 𝑥 > 0  (8) 

The expected value of 𝑋~Loglo(𝜇, 𝜎) is 𝐸[𝑋] =
𝑒𝜇(𝜋𝜎)

sin(𝜋𝜎) 
, if 0 < 𝜎 < 1, else undefined. 

2-5- Inverse Weibull Distribution 

Let's assume that 𝑋 follows an inverse Weibull distribution with shape parameter 𝛼 and scale parameter 𝛽, denoted 

as 𝑋 ~ IW(𝛼, 𝛽). The pdf and cdf of 𝑋 ~ IW(𝛼, 𝛽) are given by Equations 9 and 10, respectively. 

𝑓(𝑥; 𝛼, 𝛽) =
𝛼

𝑥
(

𝛽

𝑥
)

𝛼

𝑒−(
𝛽

𝑥
)

𝛼

,                     𝛼 > 0, 𝛽 > 0, 𝑥 > 0  (9) 

𝐹(𝑥; 𝛼, 𝛽) = 1 − 𝑒−(
𝛽

𝑥
)

𝛼

 ,                         𝛼 > 0, 𝛽 > 0, 𝑥 > 0  (10) 

The expected value of 𝑋~IW(𝛼, 𝛽) is 𝐸[𝑋] = 𝛽Γ (1 −
1

𝛼
), for 𝛼 > 1, 𝛼 ≤ 1, undefined, where Γ(⋅) is the gamma 

function. 

2-6- Inverse Gaussian Distribution 

Let's assume that 𝑋 follows an Inverse Gaussian distribution with mean parameter 𝜇 and shape parameter 𝜆, denoted 

as 𝑋 ~ IG(𝜇, 𝜆). The pdf and cdf of 𝑋 ~ IG(𝜇, 𝜆) are given by Equations 11 and 12, respectively. 

𝑓(𝑥; 𝜇, 𝜆) = √
𝜆

2𝜋𝑥3  𝑒𝑥𝑝 [−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
] ,                                                               𝜇 > 0, 𝜆 > 0, 𝑥 > 0  (11) 

 𝐹(𝑥; 𝜇, 𝜆) = 𝛷 (√
𝜆

𝑥
(

𝑥

𝜇
− 1)) + 𝑒𝑥𝑝 (

2𝜆

𝜇
) 𝛷 (−√

𝜆

𝑥
(

𝑥

𝜇
+ 1))  ,               𝜇 > 0, 𝜆 > 0, 𝑥 > 0  (12) 

where Φ(⋅) is the standard normal distribution cdf. The expected value of 𝑋~IG(𝜇, 𝜆) is 𝐸[𝑋] = 𝜇. 
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3- Wang-PH Transform 

Traditional models or loss distributions may not adequately fit claims data, leading to the utilization of mixture models 

to represent the diverse nature of claims distributions. One approach to modeling such mixture data includes transforming 

conventional loss distributions into new models using specific transformation functions. In this study, the Wang-PH 

transform is applied to several right-skewed loss distributions known for their heavy tails, including the Gamma, 

Weibull, Lognormal, Log-logistic, Inverse Weibull, and Inverse Gaussian distributions. The loss distributions selected 

for this study were chosen for their ability to capture the right-skewness and heavy tails characteristic of actual claim 

data. These distributions are commonly used in actuarial science for their flexibility in modeling claim severity, 

particularly in scenarios involving significant variation and the possibility of extreme losses. 

In this analysis, individual claim policies are considered, with the claim amount 𝑋𝑖 representing the payment for the 

𝑖th policy. The following assumptions are specified: 

 Assumption 1: (Policy independence): For 𝑛 distinct policies, the response variable 𝑋𝑖 for the 𝑖th policy is assumed 

to be independent of 𝑋1, 𝑋2, … , 𝑋𝑛. 

 Assumption 2: Severity losses are categorized as non-catastrophic losses. 

 Assumption 3: The loss distributions exhibit a right-skewed pattern. 

The transformed models in this study involve the conversion from a loss distribution or non-transformed model 𝐹(𝑥) 

to a transformed model 𝐹∗(𝑥).  

When considering any random variable 𝑋 with its survival function denoted as 𝑆𝑋(𝑥), the Equation 13: 

𝑆𝑌(𝑥) = [𝑆𝑋(𝑥)]𝑐,  where 𝑐 > 0 (13) 

defines a different random variable 𝑌 with its survival function represented as 𝑆𝑌(𝑥). This transformation from 𝑋 to 𝑌 

is known as the proportional hazards (PH) transform. In this context, we can express it as: 

𝑆∗(𝑥) = [𝑆(𝑥)]𝑐  (14) 

1 − 𝐹∗(𝑥) = [1 − 𝐹(𝑥)]𝑐  (15) 

𝐹∗(𝑥) = 1 − [1 − 𝐹(𝑥)]𝑐  (16) 

here, 𝐹(𝑥) represents the cdf of the loss distribution, and 𝑐 is a positive constant. It's clear that 𝐹∗(𝑥) also qualifies as 

the cdf. 

Let Φ represent the cdf of the standard normal distribution, defined as Φ(𝑥) = ∫
1

√2𝜋
𝑒−

1

2
𝑠2

𝑑𝑠
𝑥

−∞
. Additionally, 

consider 𝜃 as a real-valued parameter. The Wang transform converts a cdf, denoted as 𝐹(𝑥), into a new function, 𝐹∗(𝑥), 

using the formula: 

𝐹∗(𝑥) = Φ[Φ−1(𝐹(𝑥)) + 𝜃]  (17) 

The proposed transformation method used in this study is the Wang-PH transform, which can be expressed as follows: 

𝐹∗(𝑥) = Φ{Φ−1[1 − (1 − 𝐹(𝑥))
𝑐
] + 𝜃}  (18) 

here, Φ represents the cdf of the standard normal distribution, 𝐹(𝑥) is the cdf of the original loss distributions, and 𝜃 

and 𝑐 are constants. 

The objective is to derive the pdf of the Wang-PH transform by differentiating its cdf. This involves applying the 

chain rule and the general form of the Leibniz integral rule. Consequently, the pdf of the Wang-PH transform can be 

expressed as follows: 

𝑓∗(𝑥) = 𝑐𝑓(𝑥)[1 − 𝐹(𝑥)]𝑐−1 exp {−𝜃Φ−1[1 − (1 − 𝐹(𝑥))
𝑐
] −

𝜃2

2
} (19) 

In the Equation 19, 𝐹(𝑥) denotes the cdf of the original (non-transformed) models, 𝑓(𝑥) represents the pdf of the 

original models, and 𝜃, 𝑐 ∈  ℝ represent the parameters associated with the Wang transform and the PH transform, 

respectively. The Wang-PH transform is a statistical tool used to adjust loss distributions in risk models, making them 

more aligned with the actual risk profile. It is particularly valuable in insurance risk modeling, where accurately capturing 

the tail behavior of loss distributions is crucial for estimating ruin probabilities and determining appropriate capital 

reserves. The likelihood function of the Wang-PH transform can be defined as: 
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𝐿 = ∏ 𝑓∗(𝑥𝑖)

𝑛

𝑖=1

 (20) 

To simplify calculations, the log-likelihood function is obtained as: 

ln(𝐿) = ln ∏ 𝑓∗(𝑥𝑖)𝑛
𝑖=1 = ∑ ln [𝑐𝑓(𝑥𝑖)[1 − 𝐹(𝑥𝑖)]𝑐−1 exp (−𝜃Φ−1(1 − [1 − 𝐹(𝑥𝑖)]𝑐) −

𝜃2

2
)]𝑛

𝑖=1 =

𝑛 ln 𝑐 −
𝜃2𝑛

2
+ ∑ ln 𝑓(𝑥𝑖)

𝑛
𝑖=1 + (𝑐 − 1) ∑ ln(1 − 𝐹(𝑥𝑖))𝑛

𝑖=1 − 𝜃 ∑ Φ−1(1 − [1 − 𝐹(𝑥𝑖)]𝑐)𝑛
𝑖=1   

(21) 

4- Parameter Estimation 

The maximum likelihood estimation (MLE) is utilized to estimate the parameters of the loss distributions. For the 

transformed models, the parameters are estimated using the local minimum Kolmogorov-Smirnov estimator (LMKSE), 

with the implementation of the random neighborhood search (RNS) technique. The parameter estimation process is 

carried out using Scilab programming in this study. 

Consider a vector 𝑋 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)′ as an independent observation, where each 𝑥𝑖 represents the amount paid for 

the 𝑖𝑡ℎ contract. The loss distributions are fitted to the dataset using MLE. To find the most likely value of the parameter 

vector Θ of the loss distributions that best explains the outcomes in 𝑋, the likelihood function 𝐿 is maximized. The 

likelihood function is defined as: 

𝐿(Θ) = ∏ 𝑓(𝑥𝑖; Θ)

𝑛

𝑖=1

 (22) 

where 𝑓(𝑥𝑖 ; Θ) represents the pdf of the loss distributions. 

To simplify calculations, the log-likelihood function is used, given by: 

ln 𝐿(Θ) = ∑ ln[𝑓(𝑥𝑖; Θ)]

𝑛

𝑖=1

 (23) 

To estimate the parameters (Θ), the maximum of the log-likelihood function is found by taking the partial derivative 

with respect to Θ𝑗 and setting it equal to zero: 

𝜕

𝜕Θ𝑗

ln 𝐿(Θ) = 0 (24) 

Solving the Equation 24 provides the estimated parameters Θ̂ through the partial derivative method described above. 

The randomized neighborhood search (RNS) technique is a numerical optimization method designed for objective 

functions that may be discontinuous and non-differentiable. RNS iteratively moves from an initial solution to a better 

solution while adhering to specified constraints. It is particularly well-suited for optimizing functions that are difficult 

to differentiate, making it useful for many global optimization problems. RNS ensures optimality by efficiently finding 

good solutions. In this study, we will employ the RNS technique to estimate parameters using statistical tests. The local 

minimum Kolmogorov-Smirnov estimator (LMKSE) is a method used for parameter estimation by minimizing the 

statistical value 𝐷 of the Kolmogorov-Smirnov (K-S) test. The K-S test statistic is defined as: 

𝐷 = max |𝐹𝑛(𝑥) − 𝐹(𝑥)| (25) 

where 𝐹(𝑥) represents the theoretical cdf of the non-transformed models, and 𝐹𝑛(𝑥) is defined as: 

𝐹𝑛(𝑥) =
1

𝑛
[number of observations ≤ 𝑥] (26) 

with 𝑛 representing the sample size. 

The procedure for minimizing the statistical value in parameter estimation with LMKSE, using the RNS technique, 

is described as follows: 

 Step 1: Set the parameter range for 𝑐 as [0,5] and for 𝜃 as [−0.5,0.5], and determine the parameters of the loss 

distributions using the MLE method, denoted as Θ. 

 Step 2: Begin with the initial iteration 𝑖 =  0 and let the initial parameter vector (𝑐, 𝜃, Θ) be denoted as 𝑍0. 

Calculate the statistical value, 𝛿0, according to Equation 25. 

 Step 3: Generate a new parameter vector 𝑍𝑖
∗ by randomly perturbing the current parameter vector 𝑍𝑖. This can 

be achieved by selecting a uniform random variable 𝑟 from the interval [0,1], and updating 𝑍𝑖
∗ as                    

𝑍𝑖
∗ = 𝑍𝑖 + 𝑟 𝑍𝑖, where 𝑟 ∈ [−0.5, 0.5]. 
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 Step 4: Compute the statistical value 𝛿𝑖 using the parameter vector 𝑍𝑖
∗. 

 Step 5: Compare the statistical values 𝛿𝑖−1 for the (𝑖 − 1)th iteration and 𝛿𝑖 for the 𝑖th iteration. If 𝛿𝑖 < 𝛿𝑖−1, 

update 𝑍𝑖 as 𝑍𝑖
∗ = 𝑍𝑖 and proceed to Step 6. Otherwise, return to Step 3. 

 Step 6: If |𝛿𝑖 − 𝛿𝑖−1| ≤ 10−5, consider the process complete. Otherwise, return to Step 3. 

This iterative process continues until the difference in statistical values falls below a predefined threshold, indicating 

convergence and completion of the parameter estimation process. This parameter estimation method is implemented 

using Scilab programming. 

The parameter estimation process for the different loss distributions is a multi-step approach that begins with initial 

estimation using MLE, followed by an optimization phase using the Wang-PH transform. This involves minimizing the 

K-S statistic through the LMKSE method, supported by RNS to ensure a robust fit to the actual claim data. The entire 

process is computationally intensive and implemented in Scilab, resulting in parameters that optimize the fit between 

the transformed models and the empirical data, thereby enhancing the accuracy of the subsequent risk assessments. 

5- Goodness of Fit Test 

The goodness of fit (GOF) test assesses the compatibility between a theoretical probability distribution function and 

a given set of observations, measuring how well the distribution fits the random sample. The K-S test statistic 𝐷 

quantifies the discrepancy between the empirical cumulative distribution function 𝐹𝑛(𝑥) and the cumulative distribution 

function 𝐹(𝑥) of the non-transformed and transformed models. The D-value in the K-S test is calculated as the maximum 

absolute difference between the cumulative distributions: 

𝐷 =  max|𝐹𝑛(𝑥) − 𝐹(𝑥)| (27) 

The K-S test statistic measures the largest vertical distance between the empirical distribution and the theoretical 

distribution. A smaller value of 𝐷 indicates a better fit between the models and the observed data. The Akaike 

Information Criterion (AIC) is utilized as a criterion for selecting the most suitable model. Among all the models 

considered, the one with the lowest AIC value is deemed the best fit. The AIC is calculated using the following estimation 

equation: 

AIC = −2 ln(𝐿) + 2𝑚 (28) 

where ln(𝐿) represents the natural logarithm of the likelihood function value of the model, and 𝑚 represents the number 

of estimated parameters in the model [25]. 

6- Insurance Premium Calculation 

The net premium principle holds significant importance within the insurance industry as it aids in determining 

appropriate premium amounts for insurance policies. This principle relies on evaluating the expected value of losses to 

establish the net premium. The net premium signifies the anticipated number or average of claims policyholders are 

expected to file. The current study primarily focuses on the application of the net premium principle, which serves as a 

foundational concept stating that premiums should correspond to the expected value of losses. Specifically, this study 

calculates the insurance premium, denoted as 𝐻[𝑋], in Thai Baht (THB) by considering the relevant loss distributions. 

The net premium principle involves calculating the expected value or mean of claim amounts without considering 

any risk factors or risk loading. This expected value is denoted as 𝐸[𝑋]. As a result, the net premium for the loss variable 

𝑋, represented by 𝐻[𝑋], is defined as follows: 𝐻[𝑋] = 𝐸[𝑋]. The expected value of the loss variable 𝑋 can be calculated 

using the integral expressions: 

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

0
  or 𝐸[𝑋] = ∫ [1 − 𝐹(𝑥)]𝑑𝑥 

∞

0
 (29) 

here, 𝑓(𝑥) represents the pdf of the loss distributions and 𝐹(𝑥) represents the cdf of the loss distributions. These integral 

formulas provide a way to calculate the expected value of the loss 𝑋 based on its probability distribution. 

The expected value, 𝐸[𝑋], for non-transformed models can be determined based on the respective distributions, where 

the parameters are estimated using the MLE method. 

Gamma: 𝐸[𝑋] = 𝛼̂𝛽̂   (30) 

Weibull: 𝐸[𝑋] = 𝜆̂Γ (
𝜂̂+1

𝜂̂
)   (31) 

Lognormal: 𝐸[𝑋] = 𝑒𝜇̂+
𝜎̂2

2   (32) 

Log-logistic: 𝐸[𝑋] =
𝑒𝜇̂(𝜋𝜎̂)

sin(𝜋𝜎̂) 
  (33) 

Inverse Weibull: 𝐸[𝑋] = 𝛽̂Γ (1 −
1

𝛼̂
)  (34) 
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Inverse Gaussian: 𝐸[𝑋] = 𝜇̂ (35) 

The net premium of loss 𝑋 in the transformed models, denoted as 𝐻[𝑋], is defined using the following formula: 

𝐻[𝑋] = 𝐸∗[𝑋] = ∫ [1 − 𝐹∗(𝑥)]𝑑𝑥
∞

0
  (36) 

where 𝐸∗[𝑋] is the expected value obtained via the Wang-PH transform. In the Equation 36, 𝐹∗(𝑥) represents the Wang-

PH transform given by: 

𝐹∗(𝑥) = Φ{Φ−1[1 − (1 − 𝐹(𝑥))
𝑐
] + 𝜃} (37) 

here, Φ denotes the cdf of the standard normal distribution, 𝐹(𝑥) represents the cdf of the original loss distributions, and 

𝜃 and 𝑐 are constants used in the Wang-PH transform. 

7- Simulation 

Ruin probability is a critical concept in risk theory and insurance, representing the likelihood of a financial entity 

facing insolvency or bankruptcy. In the context of insurance, it assesses the probability that the cumulative losses 

incurred by the insurer exceed the available surplus, leading to financial ruin. 

The focus of this study is on the discrete-time risk process or surplus process, which operates under the condition that 

insolvency, or ruin probability, can exclusively happen at claim arrival times denoted as 𝑇𝑛 = 𝑛, with 𝑛 belonging to the 

set {1,2,3, … }. To account for this, a value of 𝑍𝑛 = 1 is assigned when 𝑛 is an element of the set {1,2,3, … }. As a result, 

the surplus process can be adjusted using the following formulation: 

 𝑈𝑛(𝑢) = 𝑢 + 𝜌 ∑ 𝑍𝑘
𝑛
𝑘=1 − ∑ 𝑋𝑘

𝑛
𝑘=1 == 𝑢 + 𝜌𝑛 − ∑ 𝑋𝑘

𝑛
𝑘=1 , 𝑛 ∈ ℕ, = 𝑈𝑛−1(𝑢) + 𝜌 − 𝑋𝑛,      𝑛 ∈ ℕ.  (38) 

Here, 𝑈0(𝑢) = 𝑢 ≥ 0 represents the initial capital reserve, and 𝜌 > 0 denotes the premium rate for a single unit of 

time. The sequence {𝑋𝑛: 𝑛 ∈ ℕ} refers to a series of independent and identically distributed (i.i.d.) claim random 

variables at the claim arrival 𝑇𝑛 = 𝑛, where 𝑛 ∈ ℕ. The premium rate 𝜌 is calculated according to the expected value 

principle, i.e., 

𝜌 = (1 + 𝜗)𝐻[𝑋] (39) 

In Equation 39, 𝜗 takes on values of 0, 0.05, 0.10, 0.15, and 0.20, representing the safety loading of an insurer. 𝐻[𝑋] 
represents the expected value of claim severity, calculated using Equation 36. Mathematically, ruin probability is often 

denoted by the symbol 𝜑𝑛(𝑢), where 𝑢 represents the initial surplus or capital of the insurer. The function 𝜑𝑛(𝑢) 

quantifies the probability that the surplus falls below zero as a result of accumulating insurance claims. Consequently, 

the ruin probability at one of the times 𝑘 = 1,2, … , 𝑛 is defined by: 

𝜑𝑛(𝑢) = Pr (𝑈𝑘(𝑢) < 0 for some   𝑘 = 1,2, … , 𝑛 |  𝑈0(𝑢) = 𝑢) (40) 

The research conducted by Sattayatham et al. [13] introduced the definition of the minimum initial capital as follows: 

Consider the surplus process {𝑈𝑛(𝑢), 𝑛 ∈ ℕ}, which is influenced by the claim process {𝑋𝑛 , 𝑛 ∈ ℕ}, and let 𝜌 > 0 be 

a premium rate. Given 𝛼 ∈ (0,1) and 𝑛 ∈ ℕ, an initial capital 𝑢 ≥ 0, is deemed an acceptable capital reserve 

corresponding to (𝛼, 𝑛, 𝜌, {𝑋𝑛, 𝑛 ∈ ℕ}) if 𝜑𝑛(𝑢) ≤ 𝛼. Specifically, if there exists: 

𝑢∗ = min{𝑢|𝜑𝑛(𝑢) ≤ 𝛼} (41) 

It is referred to as the minimum initial capital corresponding to (𝛼, 𝑛, 𝜌, {𝑋𝑛 , 𝑛 ∈ ℕ}), denoted as: 

𝑢∗ ≔ MIC ((𝛼, 𝑛, 𝜌, {𝑋𝑛, 𝑛 ∈ ℕ})) (42) 

The acceptance-rejection technique is a traditional sampling technique used to generate samples from a distribution 

that is challenging or impossible to simulate using inverse transformation, as described by Gamerman & Lopes [26]. 

The acceptance-rejection technique is utilized in this study to generate a random variable 𝑋 that conforms to the desired 

continuous density 𝑓(𝑥). The procedure involves generating a random number 𝑌 from a distribution 𝑔(𝑦) and accepting 

this value with a probability proportional to the ratio 
𝑓(𝑌)

𝑔(𝑌)
. This allows us to effectively sample from the desired 

distribution and overcome the limitations of direct simulation. 

If we let 𝑚 be a constant satisfying the condition 𝑚 ≥
𝑓(𝑦)

𝑔(𝑦)
 for all 𝑦, The desired variates can be generated by 

following the outlined procedure below. The constant 𝑚 is necessary to ensure that the height of 𝑔(𝑦) can be adjusted 

if needed to surpass 𝑓(𝑦). Points are generated from 𝑚 ⋅ 𝑔(𝑦), and those falling within the curve of 𝑓(𝑦) are accepted 

as samples from the desired density, while those outsides are rejected. The procedure is outlined as follows: 
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 Step 1: Choose a density 𝑔(𝑦) that is easy to sample from. 

 Step 2: Determine a constant 𝑚 such that 𝑚 = sup
𝑦

𝑓(𝑦)

𝑔(𝑦)
. 

 Step 3: Generate a random number 𝑌 from the density 𝑔(𝑦). 

 Step 4: Generate a uniform random number 𝑈. 

 Step 5: If 𝑈 ≤
𝑓(𝑌)

𝑚⋅𝑔(𝑌)
, accept 𝑋: = 𝑌 as a sample from the desired density. If not, return to step 3 and repeat the 

process until the desired number of samples is obtained. 

The acceptance-rejection technique faced challenges, particularly in ensuring efficiency when the scaling constant 𝑚 
was large, leading to low acceptance rates and slower simulations. This was mitigated by carefully selecting a proposal 
distribution 𝑔(𝑦) that closely matched the target distribution, minimizing 𝑚 and improving efficiency. Additionally, 

validating the generated samples was crucial for accurate simulation results, achieved through goodness-of-fit tests and 
P-P plots that compared the empirical samples to the theoretical distribution. These strategies ensured the generation of 
valid samples, contributing to the reliability of the simulation of ruin probabilities in the study.  

The flowchart in Figure 1 represents a comprehensive method for simulating ruin probability over a set number of 
iterations, using a statistical approach with the Wang-PH transform to generate samples and evaluate risk over time. 

 

Figure 1. The flowchart of algorithm of simulation 

Ruin Probability = count / 10000 

Stop 

𝑘 = 𝑘 + 1 

𝑈(𝑘) = 𝑈(𝑘 − 1) + 𝜌 − 𝑥 

count=count+1 

𝑘 < 𝑑𝑎𝑦𝑠 

START 

Set 𝑁 = 0, 𝑈(0) = 𝑢, count = 0, 𝑑𝑎𝑦𝑠 

𝜗 = 0, 0.05, 0.10, 0,15, 0.20 

𝑘 = 0 

𝑁 = 𝑁 + 1 

Generate samples 𝑥 from the acceptance-rejection method using the 

optimal distribution via the Wang-PH transform and compute 𝜌 =

(1 + 𝜗)𝐻[𝑋], where 𝐻(𝑋) is calculated from Equation 36. 

No 

Yes 

Yes 

𝑁 ≤ 10,000 

𝑈(𝑘) < 0 
No 

No 

Yes 
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8- Results and Discussion 

The application of both non-transformed and transformed models is conducted on actual motor insurance claims. The 

dataset used for analysis is provided by a non-life insurance company in Thailand and consists of policy claims for the 

year 2009. The specific type of coverage in the dataset is 2+ under a voluntary plan. A total of 1,296 policy claims were 

observed for analysis, and Figure 2 displays the histogram of claim severity data on a log scale. 

 

Figure 2. Histogram (log scale) of claim data 

Table 1 displays the estimated parameters, statistical values, and premiums for the non-transformed models and 

the Wang-PH transform in relation to each loss distribution. With a significance level of 0.05, the critical value for 

the K-S test is 0.037778. Upon examination, it is evident that all D-values exceed the critical value for all loss 

distributions. Hence, it can be concluded that the non-transformed models do not provide a suitable fit for the actual 

data set. 

Considering the inability of the loss distributions or non-transformed models to be fitted to any actual data sets, the 

alternative approach involves applying the transformed models of loss distributions, specifically the Wang-PH transform. 

By varying the values of 𝜃, 𝑐, and re-parameterization, the new estimated parameters result in a reduction of the D-value 

for each model. Among the transformed models, the Lognormal distribution stands out as the most favorable fit. It 

consistently exhibits the lowest values in all statistical tests, followed by the Inverse Gaussian, Log-logistic, Inverse 

Weibull, Weibull, and Gamma distributions, respectively. Notably, all loss distributions based on the transformed models 

provide a better fit to the data set compared to the non-transformed models. 

Figure 3 illustrates a P-P plot, showcasing the comparison of loss distributions. The plot provides a visual 

representation of how well the empirical cumulative distribution aligns with the theoretical cumulative distribution. 

Figure 4 presents a P-P plot specifically for loss distributions obtained through the Wang-PH transform. It is evident that 

all loss distributions based on the transformed models provide a better fit to the dataset compared to the non-transformed 

models. In Figure 5, a P-P plot focuses on the Lognormal distribution when processed through the Wang-PH transform. 

This figure is presented separately to enhance clarity, allowing for a more detailed examination of the graph. Notably, it 

demonstrates the Lognormal distribution as the best fit to the actual claim data. 
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Table 1. Summary of model fitting and insurance premiums (THB) 

Loss 

distributions 
Items 

Non-

transform 

Wang-PH 

transform 

 

Loss 

distributions 
Items 

Non-

transform 

Wang-PH 

transform 

Gamma 

𝛼 0.7528 1.1256 

Log-logistic 

𝜇 8.9244 8.5702 

𝛽 23,053.21 17,409.36 𝜎 0.6654 0.5397 

𝜃 - 0.1610 𝜃 - 0.1371 

𝑐 - 1.4408 𝑐 - 0.5843 

D-value 0.1453 0.0668 D-value 0.0380 0.0258 

p-value <0.01 0.0058 p-value <0.01 0.7639 

AIC 27,821.09 28,549.12 AIC 27,354.32 27,344.31 

Premium 17,353.90 12,085.91 Premium 18,092.53 36,402.81 

Weibull 

𝜆 14,398.56 12,911.34 

Inverse Weibull 

𝛼 0.9057 0.9827 

𝜂 0.7840 1.0640 𝛽 4429.28 6010.16 

𝜃 - 0.0550 𝜃 - 0.0803 

𝑐 - 1.0218 𝑐 - 0.7226 

D-value 0.1126 0.0646 D-value 0.0554 0.0334 

p-value <0.01 0.0086 p-value <0.01 0.4439 

AIC 27,704.45 28,035.66 AIC 27,434.59 27,270.16 

Premium 16,557.37 11,774.07 Premium - - 

Lognormal 

𝜇 8.9667 7.8413 

Inverse Gaussian 

𝜇 17,353.90 14,881.19 

𝜎 1.1787 0.6850 𝜆 5,523.65 6,929.40 

𝜃 - 0.0289 𝜃 - 0.1119 

𝑐 - 0.2451 𝑐 - 0.9056 

D-value 0.0463 0.0216 D-value 0.0436 0.0237 

p-value <0.01 0.9228 p-value <0.01 0.8523 

AIC 27,349.89 27,344.81 AIC 27,377.19 27,414.66 

Premium 15,700.31 14,732.85 Premium 17,353.90 15,057.84 

 

Figure 3. P-P plot of loss distributions 
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Figure 4. P-P plot of loss distributions via Wang-PH transform 

 

Figure 5. P-P plot of Lognormal via Wang-PH transform 

The application of the Wang-PH transform resulted in a significantly improved model fit across all examined 

distributions. This improvement is particularly evident in the Lognormal distribution, where the D-value decreased 

substantially, indicating a much better alignment between the transformed model and the actual claim data. This finding 

suggests that the Wang-PH transform is highly effective in capturing the nuances of the loss distribution, especially in 

cases where the data exhibit heavy tails or significant skewness. The Wang-PH transform’s ability to adjust the tail 

behavior of loss distributions is critical in insurance modeling. In practice, claim data often display tail behaviors that 

standard distributions cannot adequately capture, leading to underestimation or overestimation of risk. The 

transformation modifies the original distribution to better reflect real-world data, thus providing more accurate risk 

assessments and premium calculations. 

However, when claim data shows low variability or is more symmetric, traditional models like Gamma or Weibull 

distributions are sufficient without requiring transformation. The Wang-PH transform does not notably enhance accuracy 
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in these cases, making traditional models more efficient and user-friendly. While Wang-PH transformed models excel 

in handling extreme tail risks and skewed distributions common in insurance claims, they add computational complexity. 

Traditional models, though less precise in capturing tail risks, are faster and more efficient, fitting scenarios with 

symmetric or low-variability data. 

The Wang-PH transform appears to reduce the premium compared to the non-transformed approach for the Gamma, 

Weibull, Lognormal and Inverse Gaussian distributions. However, it is worth noting that for the Log-logistic distribution, 

the Wang-PH transform increases the premium compared to the non-transformed approach. This result suggests that the 

transform may not be appropriate for this distribution in the context of premium calculations. The impact of the Wang-

PH transform on premium calculations varies across different loss distributions. In some cases, it leads to lower 

premiums (Gamma, Weibull, Lognormal, and Inverse Gaussian), indicating a potential increase in risk tolerance. This 

reduction can be interpreted as a reflection of a more accurate assessment of risk, where the transformation accounts for 

the actual distribution of claim severity. In practical terms, this allows insurers to price their policies more competitively 

without compromising on the adequacy of their risk reserves. Conversely, for the Log-logistic distribution, it leads to 

higher premiums, suggesting a more conservative approach to risk assessment. Actuaries and risk analysts should 

carefully assess the appropriateness of the chosen transformation method in the context of the specific insurance 

application and the underlying data characteristics. 

Considering a dataset for claim size from a non-life insurance company in Thailand in 2009, Table 1 reveals that the 

Lognormal distribution, transformed by the Wang-PH transform, demonstrates the best fit for the claim severity data. 

Therefore, the assumption is made that 𝑋𝑛 follows the Lognormal distribution transformed by the Wang-PH transform 

for all 𝑛. We present the capital reserves 𝑢 as 0, 150000, 300000, 450000, 600000, 750000, 900000 and 1000000 Thai 

Baht (THB). Let's consider different values for the safety loading, 𝜗, of a company, specifically 0, 0.05, 0.10, 0.15, and 

0.20. We will also explore three different durations: one year (𝑛 =  1), three years (𝑛 =  3), and five years (𝑛 =  5). In 

this study, the discrete-time risk process is studied by the equation: 

𝑈𝑛(𝑢) = 𝑈𝑛−1(𝑢) + 𝜌 − 𝑋𝑛, 𝑛 ∈ ℕ. (43) 

here, 𝑈0(𝑢) = 𝑢 ≥ 0 represents the initial capital reserve. The variable 𝑋𝑛 follows the Lognormal distribution 

transformed by the Wang-PH transform for all 𝑛. Additionally, 𝜌 >  0 represents the premium rate for one day, 

calculated as: 

𝜌 = (1 + 𝜗)𝐻[𝑋] (44) 

where 𝜗 is the safety loading and 𝐻[𝑋] denotes the expected value of claim severity calculated by Equation 36 over 𝑛 

days. The focus is on the surplus process, assuming that the possibility of insolvency (ruin) only arises at claim arrival 

𝑇𝑛 = 𝑛, where 𝑛 ∈ ℕ. Therefore, the ruin probability at any given time 𝑘, where 𝑘 = 1,2,3, . . . , 𝑛, can be calculated as:  

𝜑𝑛(𝑢) = 𝑃𝑟(𝑈𝑘(𝑢) < 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 = 1,2, … , 𝑛|𝑈0 = 𝑢) (45) 

For obtaining simulation results of the surplus process, 10000 paths are employed. 

Tables 2 to 4 present the results of approximating the finite-time ruin probability for 𝑛 = 1 year, 3 years, and 5 years, 

as depicted in Figures 6 to 8, respectively. It is observed that as the safety loading (𝜗) increases, the finite-time ruin 

probability generally decreases. This is intuitive because higher safety loading implies more capital reserves are set aside 

to cover potential losses, reducing the risk of financial ruin. As the initial capital reserves (𝑢) increase, the finite-time 

ruin probability also decreases. More substantial capital reserves act as a buffer against unexpected losses, reducing the 

likelihood of financial ruin. Increasing safety loading makes the firm safer, but it also ties up more capital that could 

potentially be used for investments or other purposes. These calculations are critical for risk assessment. They help 

organizations determine the adequacy of their capital reserves and the level of risk they are willing to tolerate. Depending 

on their risk appetite and regulatory requirements, organizations can use this data to make informed decisions about 

capital allocation, risk mitigation, and financial stability. As the time horizon (𝑛) increases, the ruin probabilities 

generally increase. This suggests that over longer time periods, there is a higher risk of the institution experiencing 

financial ruin if capital reserves remain unchanged. 
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Table 2. Approximating the finite-time ruin probability of the surplus process via simulation for 𝑛 = 1 year 

Safety 

loading (𝝑) 

Initial capital reserves (𝒖) 

0 150,000 300,000 450,000 600,000 750,000 900,000 1,000,000 

0.00 0.8947 0.5226 0.2933 0.1532 0.0755 0.0347 0.0165 0.0084 

0.05 0.8324 0.3835 0.1698 0.0754 0.0306 0.0125 0.0044 0.0023 

0.10 0.7657 0.2749 0.0982 0.0340 0.0116 0.0038 0.0012 0.0006 

0.15 0.7059 0.2018 0.0580 0.0158 0.0042 0.0014 0.0006 0.0005 

0.20 0.6555 0.1509 0.0364 0.0077 0.0021 0.0006 0.0003 0.0001 

Table 3. Approximating the finite-time ruin probability of the surplus process via simulation for 𝑛 = 3 years 

Safety 

loading (𝝑) 

Initial capital reserves (𝒖) 

0 150,000 300,000 450,000 600,000 750,000 900,000 1,000,000 

0.00 0.9246 0.6254 0.4332 0.2984 0.2042 0.1450 0.1042 0.0854 

0.05 0.8552 0.4284 0.2394 0.1396 0.0880 0.0626 0.0494 0.0438 

0.10 0.7880 0.3058 0.1384 0.0752 0.0472 0.0350 0.0278 0.0234 

0.15 0.7280 0.2218 0.0892 0.0424 0.0248 0.0150 0.0118 0.0098 

0.20 0.6720 0.1676 0.0552 0.0234 0.0098 0.0056 0.0036 0.0024 

Table 4. Approximating the finite-time ruin probability of the surplus process via simulation for 𝑛 = 5 years 

Safety 

loading (𝝑) 

Initial capital reserves (𝒖) 

0 150,000 300,000 450,000 600,000 750,000 900,000 1,000,000 

0.00 0.9493 0.7282 0.5675 0.4407 0.3375 0.2562 0.1937 0.1576 

0.05 0.8751 0.4960 0.2930 0.1739 0.1035 0.0624 0.0378 0.0278 

0.10 0.8042 0.3352 0.1496 0.0664 0.0307 0.0141 0.0069 0.0045 

0.15 0.7419 0.2361 0.0808 0.0289 0.0097 0.0036 0.0018 0.0008 

0.20 0.6870 0.1752 0.0470 0.0133 0.0037 0.0014 0.0004 0.0002 

 

Figure 6. The relation between ruin probabilities and initial capital reserves for 𝑛 = 1 year 
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Figure 7. The relation between ruin probabilities and initial capital reserves for 𝑛 = 3 years 

 

Figure 8. The relation between ruin probabilities and initial capital reserves for 𝑛 = 5 years 

In practical terms, these results provide valuable insights into how safety loading and initial capital reserves impact 

the financial risk profile of an organization. They can be used to inform risk management strategies and financial 

planning decisions to ensure the organization remains solvent and resilient in the face of unexpected events. 

Figures 6 to 8 reveal a relationship between the ruin probability and the capital reserve, which can be described by an 

exponential function: 

𝜑𝑛(𝑢) = 𝛾𝑒𝛿𝑢  (46) 

In this study, we employ data transformation to estimate the parameters and establish the relationship between 𝜑 and 

𝑢 in the exponential equation: 

φ = 𝛾𝑒𝛿𝑢  (47) 

Taking the natural logarithm of both sides, the equation becomes: 

ln φ = ln 𝛾 + 𝛿𝑢 (48) 
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Let's define 𝑧 = ln φ , 𝑎0 = ln 𝛾, and 𝑎1 = 𝛿. Therefore,  

𝑧 = 𝑎0 + 𝑎1𝑢  (49) 

The parameters (𝑎0, 𝑎1) are estimated using linear regression analysis in Equation 49 and the least squares method. 

The parameter estimations are computed using the following formulas: 

𝑎1 =
𝑛 ∑ 𝑢𝑖𝑧𝑖

𝑛
𝑖=1 −∑ 𝑢𝑖

𝑛
𝑖=1 ∑ 𝑧𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑢𝑖
2𝑛

𝑖=1 −(∑ 𝑢𝑖
𝑛
𝑖=1 )

2   and 𝑎0 = 𝑧̅ − 𝑎1𝑢̅ (50) 

Once 𝑎0 and 𝑎1 are determined, the original constants of the model φ = 𝛾𝑒𝛿𝑢 can be obtained, where 𝛿 = 𝑎1 and 

𝛾 = 𝑒𝑎0. Thus, 

𝛿 =
𝑛 ∑ 𝑢𝑖𝑧𝑖

𝑛
𝑖=1 −∑ 𝑢𝑖

𝑛
𝑖=1 ∑ 𝑧𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑢𝑖
2𝑛

𝑖=1 −(∑ 𝑢𝑖
𝑛
𝑖=1 )

2    and  𝛾 = 𝑒 𝑧̅−𝑎1𝑢 (51) 

where 𝑢𝑖 represents the capital reserve values, and 𝜑𝑖 corresponds to the ruin probabilities obtained from simulation for 

each capital reserve value 𝑢𝑖 (𝑖 = 1, 2, 3, ..., 21). Since 𝑢𝑖 starts at 0 and increases by 150,000 up to 1000000, we have 

𝑛 = 21. Note that the values shown in the Tables 2 to 4 are the results for selected values of 𝑢. Tables 5 to 7 show the 

R-squared values and parameters of exponential regression for the respective 1-year, 3-year, and 5-year periods, 

respectively (also, Figures 9 to 11). 

Table 5. Exponential regression parameters and R-squared for a 1-year simulation 

Safety 

loading (𝝑) 

Parameters 

𝑹𝟐 
𝜸 𝜹 

0.00 1.0847703 - 0.0000046 0.9571569 

0.05 0.9531300 - 0.0000059 0.9771554 

0.10 0.8028419 - 0.0000071 0.9958134 

0.15 0.5919356 - 0.0000078 0.9759606 

0.20 0.5034191 - 0.0000088 0.9493077 

Table 6. Exponential regression parameters and R-squared for a 3-year simulation 

Safety 

loading (𝝑) 

Parameters 

𝑹𝟐 
𝜸 𝜹 

0.00 0.8878975 -0.0000024 0.9985196 

0.05 0.6332186 -0.0000030 0.9307327 

0.10 0.4637410 -0.0000034 0.8261559 

0.15 0.3865585 -0.0000042 0.7814896 

0.20 0.3526579 -0.0000055 0.7811460 

Table 7. Exponential regression parameters and R-squared for a 5-year simulation 

Safety 

loading (𝝑) 

Parameters 

𝑹𝟐 
𝜸 𝜹 

0.00 0.9608174 - 0.0000018 0.9989916 

0.05 0.8303421 - 0.0000034 0.9981847 

0.10 0.7191637 - 0.0000052 0.9915185 

0.15 0.6173419 - 0.0000067 0.9767126 

0.20 0.5519538 - 0.0000081 0.9664280 
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Figure 9. Ruin probabilities and capital reserves relation via exponential regression lines for 𝑛 = 1 year 

 

Figure 10. Ruin probabilities and capital reserves relation via exponential regression lines for 𝑛 = 3 years 

 

Figure 11. Ruin probabilities and capital reserves relation via exponential regression lines for 𝑛 = 5 years 
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The results show that the R-squared values are relatively high for all levels of safety loading. This indicates that the 

exponential regression model is a good fit for the data and provides valuable insights into the relationship between safety 

loading, capital reserve, and finite-time ruin probability. These regression parameters can be used to model and predict 

the finite-time ruin probability for various levels of safety loading within the studied range. This information is valuable 

for decision-makers in risk management, as it helps them understand how different levels of safety loading affect 

financial stability and risk exposure 

The maximum acceptable risk, denoted by 𝛼, is established. Consequently, the ruin probability under the regulation 

must not exceed 𝛼. In other words: 

𝜑(𝑢) ≤ 𝛼 (52) 

Additionally, the capital reserve must satisfy the following inequality: 

𝛾𝑒𝛿𝑢 ≤ 𝛼 (53) 

Therefore, we can derive the condition for the capital reserve as: 

𝑢 ≥
1

𝛿
ln (

𝛼

𝛾
) (54) 

For a non-dangerous portfolio or when the premium rate is sufficiently high, the capital reserve 𝑢 might be negative. 

In such cases, having a capital reserve is not necessary. Consequently, the minimum capital reserve (MCR) is determined 

as: 

MCR = max {0,
ln 𝛼 − ln 𝛾

𝛿
} (55) 

The MCR is estimated using an exponential regression model, which models the relationship between ruin probability 

𝜑(𝑢) and capital reserve 𝑢 as 𝜑(𝑢) = 𝛾𝑒𝛿𝑢. Parameters 𝛾 and 𝛿 are estimated via linear regression on the log-

transformed ruin probability data. The minimum capital reserve 𝑢∗ is then derived by solving 𝜙(𝑢∗) = 𝛼, leading to 

𝑢∗ =
1

𝛿
ln (

𝛼

𝛾
). This approach assumes constant risk parameters, independence of claim arrivals and severities, and 

homogeneity of claims. The model's accuracy is sensitive to the stability of these assumptions, particularly the constancy 

of 𝛾 and 𝛿, the independence of claims, and the log-linear relationship between capital and ruin probability. In practice, 

it is essential to validate these assumptions regularly, especially in dynamic risk environments, to ensure that the 

estimated capital reserves remain reliable and accurate. 

Tables 8 to 10 provide the minimum capital reserve for different acceptable risks 𝛼 across various time horizons: one 

year, three years, and five years. Meanwhile, Figures 12 to 14 illustrate the relationship between safety loading and the 

minimum capital reserve for ruin probabilities (0.01, 0.05, and 0.10), representing 1-year, 3-year, and 5-year durations. 

These findings highlight the importance of insurance companies maintaining a minimum capital reserve to ensure that 

the ruin probability does not exceed the acceptable risks 𝛼=0.01, 0.05, and 0.10. 

Table 8. The link between minimum capital reserve (MCR), safety loading, and acceptable risk over a 1-year period 

𝜶 = 𝟎. 𝟎𝟏  𝜶 = 𝟎. 𝟎𝟓  𝜶 = 𝟎. 𝟏𝟎 

𝝑 MCR  𝝑 MCR  𝝑 MCR 

0.00 1,018,162.11  0.00 668,507.72  0.00 517,919.78 

0.05 775,963.71  0.05 501,919.41  0.05 383,894.96 

0.10 617,385.93  0.10 390,814.76  0.10 293,235.87 

0.15 520,128.06  0.15 314,993.97  0.15 226,647.52 

0.20 443,360.30  0.20 261,275.49  0.20 182,855.83 

Table 9. The link between minimum capital reserve (MCR), safety loading, and acceptable risk over a 3-year period 

𝜶 = 𝟎. 𝟎𝟏  𝜶 = 𝟎. 𝟎𝟓  𝜶 = 𝟎. 𝟏𝟎 

𝝑 MCR  𝝑 MCR  𝝑 MCR 

0.00 1,873,025.41  0.00 1,201,082.51  0.00 911,692.46 

0.05 1,387,107.37  0.05 848,934.98  0.05 617,156.74 

0.10 1,131,690.67  0.10 656,968.56  0.10 452,516.88 

0.15 878,050.04  0.15 491,378.69  0.15 324,848.40 

0.20 653,412.19  0.20 358,253.07  0.20 231,134.95 
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Table 10. The link between minimum capital reserve (MCR), safety loading, and acceptable risk over a 5-year period 

𝜶 = 𝟎. 𝟎𝟏  𝜶 = 𝟎. 𝟎𝟓  𝜶 = 𝟎. 𝟏𝟎 

𝝑 MCR  𝝑 MCR  𝝑 MCR 

0.00 2,577,678.02  0.00 1,668,930.67  0.00 1,277,554.49 

0.05 1,283,999.32  0.05 816,382.43  0.05 614,990.80 

0.10 823,037.68  0.10 513,219.68  0.10 379,788.33 

0.15 617,197.50  0.15 376,261.27  0.15 272,495.68 

0.20 496,739.87  0.20 297,414.01  0.20 211,569.03 

 

Figure 12. The MCR with the link between safety loading and ruin probabilities (α = 0.01, 0.05, 0.10) in 1 year 

 

Figure 13. The MCR with the link between safety loading and ruin probabilities (α = 0.01, 0.05, 0.10) in 3 years 
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Figure 14. The MCR with the link between safety loading and ruin probabilities (α = 0.01, 0.05, 0.10) in 5 years 

As safety loading (𝜗) increases, the minimum capital reserve (MCR) tends to decrease. This suggests that higher 
safety loading allows for a lower level of capital reserves while maintaining the desired level of confidence in avoiding 
financial ruin. 

Different acceptable risk levels (𝛼) have a significant impact on the required minimum capital reserves. As 𝛼 becomes 
more stringent (e.g., 𝛼 = 0.01), the MCR increases, indicating that a higher level of capital is necessary to maintain a 
very low risk of financial ruin. Conversely, at a higher 𝛼 (e.g., 𝛼 = 0.10), the MCR is lower, allowing for a more moderate 
risk tolerance. 

These findings have significant implications for risk management decisions. Organizations can use this information 
to determine the minimum capital reserves needed to meet their risk tolerance and regulatory requirements, aiding in 
optimizing capital allocation to strike a balance between risk mitigation and capital efficiency. The analysis of the 
minimum capital reserve required to maintain ruin probability within acceptable limits (𝛼 levels) provides practical 
guidelines for insurers. The results show that higher safety loading allows for lower MCR, which means that insurers 
can maintain solvency with less capital if they adjust their premium rates appropriately. This finding is significant for 
insurers aiming to optimize their capital usage. It suggests that by carefully calibrating safety loading, insurers can free 
up capital for other investments or reduce the overall cost of maintaining solvency, while still adhering to regulatory and 
risk management requirements. 

Insurers can leverage insights from this study to enhance strategic capital management. By understanding the link 
between safety loading and MCR, they can better balance risk and return, possibly increasing safety loading to free up 
capital for growth opportunities. This is particularly relevant in emerging markets like Thailand, where claim data may 
be more variable. Applying the Wang-PH transform in such contexts can lead to more accurate pricing and reserve 
setting, essential for maintaining solvency in volatile markets. The study underscores the role of advanced statistical 
techniques in bolstering financial stability and competitiveness. 

9- Conclusion 

This study demonstrates the limitations of non-transformed models in fitting an actual claim dataset, reinforcing the 
importance of using transformed models, particularly the Wang-PH transform, in insurance risk modeling. Among the 
transformations applied, the Lognormal distribution consistently provided the best fit, followed by the Inverse Gaussian, 
Log-logistic, Inverse Weibull, Weibull, and Gamma distributions. These findings indicate that transformed models offer 
a more accurate representation of claim data, which is critical for precise risk assessment and decision-making in the 

insurance industry. 

The study also reveals valuable insights into the relationship between safety loading, minimum capital reserves, and 

finite-time ruin probabilities. As safety loading and initial capital reserves increase, the probability of ruin decreases, 
thereby enhancing the financial stability of insurance companies. The high R-squared values observed in the exponential 
regression model confirm its effectiveness in predicting ruin probabilities across varying levels of safety loading. This 
relationship between safety loading and capital reserves is instrumental in optimizing risk management strategies and 
capital allocation. Furthermore, the results highlight the critical role of maintaining an adequate minimum capital reserve, 
showing how adjustments in safety loading can impact reserve requirements under different risk tolerances and time 

horizons. These insights enable organizations to make informed decisions, ensuring compliance with regulatory 
requirements and promoting financial stability while efficiently utilizing their capital resources. 
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