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Abstract 

Accurate cooling consumption forecasts are crucial for optimizing energy management, storage, and 

overall efficiency in interconnected HVAC systems. Weather conditions, building characteristics, 
and operational parameters significantly impact prediction accuracy. Since meteorological 

conditions highly influence cooling demand, leveraging external air data and user metrics offers a 

promising approach to estimate a building's hourly cooling energy usage. This study addresses the 
gap in existing research by comprehensively analyzing the performance of various machine learning 

algorithms, including ensemble learning and deep learning models, to improve prediction accuracy. 

By leveraging weather conditions, building characteristics, and operational parameters, we aim to 
predict cooling consumption across multiple systems (Cooling Ceiling, Ventilation, Free Cooling, 

and Total Cooling). Data from four weather stations, encompassing diverse features relevant to the 

European Central Bank (ECB) building's cooling consumption in Frankfurt, were employed. Our 
methodology includes the use of K-Nearest Neighbor, Decision Tree, Support Vector Regression, 

Linear Regression, Random Forest, Gradient Boosting, XGBoost, Adaboost, Long-Short-Term 

Memory, and Gated Recurrent Unit. Models. The results consistently demonstrate the superiority of 
the Random Forest model across different weather stations and feature sets. This model achieved a 

Mean Squared Error of approximately 0.002-0.003, Mean Absolute Error of around 0.031-0.034, 

and Root Mean Squared Error of about 0.052-0.069. These findings contribute to improved building 
cooling load management, promoting insights into optimal energy utilization and sustainable 

building practices. 
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1- Introduction 

Rising energy demands pose a significant threat to environmental sustainability [1, 2]. The building sector is a 

significant energy consumer, accounting for 30% of final energy consumption and 26% of CO2 emissions globally [3], 

[4]. In the European Union (EU), buildings are responsible for 40% of energy use and 36% of GHG emissions, with 

75% of the building stock considered energy-inefficient [5]. To address this challenge, the EU has implemented policies 

like the Energy Performance of Buildings Directive (EPBD) to promote energy efficiency and renewable energy use. 

This aligns with the REPowerEU plan, which aims to reduce reliance on fossil fuels and strengthen energy security [5]. 

Globally, initiatives like the Paris Agreement highlight the urgency of combating climate change [6]. The building 

industry plays a crucial role by adopting sustainable practices, such as energy-efficient lighting, heating, ventilation, and 

air conditioning (HVAC) systems, and intelligent building technologies [7–9]. While these measures may involve 

upfront costs and technological challenges, they are essential for reducing energy consumption and achieving 

sustainability goals.  
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Proper management of cooling systems is critical for building energy efficiency and accurate prediction and control 

of cooling loads are essential for optimizing energy use [10]. Machine learning (ML) offers a promising approach to 

improving cooling forecasts by identifying complex relationships between weather conditions, building characteristics, 

and occupant behavior [11]. By analyzing historical data from building sensors and weather stations, ML models can 

learn patterns and trends to predict future cooling needs more accurately. 

Integrating ML algorithms into building management systems enables real-time monitoring and control of cooling 

systems. These systems can adjust cooling parameters based on predicted loads, occupancy patterns, and weather 

forecasts [12]. Additionally, ML models can identify opportunities for energy-saving measures such as predictive 

maintenance to reduce equipment failures and strategic scheduling to avoid peak energy use periods [13]. These 

intelligent systems improve energy control, reduce energy consumption, and enhance occupant comfort. 

The application of ML and deep learning (DL) for cooling prediction extends beyond single buildings to large-scale 

utility management. By collecting data from multiple buildings within a campus or urban area, ML models can identify 

system-wide patterns and optimize resource allocation for efficient cooling across entire districts [14]. This approach 

ensures efficient energy utilization without compromising the sustainability of urban environments. 

Recent studies have introduced innovative methods and models to improve accuracy and applicability in institutional 

and commercial buildings. Shin & Do [15] proposed enthalpy-based cooling degree days that consider both latent and 

sensible heat, offering an alternative to temperature-based methods. Zhao et al. [16] introduced a Backpropagation 

Artificial Neural Network (BP-ANN) for predicting district cooling system (DCS) energy consumption using readily 

available weather data. Similarly, Dong et al. [17] proposed a novel hybrid model called Decoupling Weight Decay 

Adaptive Moment Estimation (DwdAdam)-ILSTM for predicting cooling loads in commercial buildings, with potential 

applications in daily energy management. 

Several cooling systems exist, each addressing specific needs and environmental conditions. Cooling Ceiling (CC) 

systems utilize convection to cool indoor spaces using chilled water or refrigerant circulated through panels [18]. Cooling 

Ventilation (CV) systems employ fresh air circulation to remove heat and regulate indoor temperature, often 

incorporating fans and ducts for optimal air distribution [19]. Free Cooling (FC) systems leverage cool outdoor air to 

reduce indoor temperatures without mechanical refrigeration, often relying on air or water-side economizers [16]. 

Finally, Total Cooling (TC) systems combine CC and CV strategies for comprehensive climate control. 

This study investigates the application of machine learning, ensemble learning, and deep learning algorithms to 

predict the energy consumption of various cooling systems—CC, CV, FC, and TC—within the European Central Bank 

(ECB) office building in Frankfurt. Utilizing data from four weather stations and diverse feature sets identified through 

correlation analysis, the research advances the current state of knowledge by addressing gaps in existing methods. Unlike 

previous studies that focused on limited model types or specific features, this study offers a comprehensive analysis of 

a broad spectrum of algorithms, including Random Forest (RF), Gradient Boosting (GB), XGBoost, Adaboost, Long-

Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). These models are chosen based on their proven 

effectiveness in handling complex, non-linear relationships and their ability to handle diverse datasets for predicting 

cooling consumption. Criteria for selection included the models' ability to integrate various feature sets, their 

performance in previous applications of energy prediction [20-22], and their capacity to leverage ensemble and deep 

learning techniques for enhanced accuracy. This research offers the following key contributions: 

i. Integration of Machine Learning Techniques: We present a novel approach that combines machine learning, 

ensemble learning, and deep learning algorithms for predicting energy consumption in cooling systems. This 

approach can potentially optimize indoor temperature regulation and improve building energy efficiency. 

ii. Enhanced Model Robustness and Adaptability: By utilizing data from four distinct weather stations and diverse 

feature sets, we aim to develop robust and adaptable predictive models that provide accurate and reliable energy 

consumption forecasts across varying environmental conditions. 

iii. Improved Sustainability Efforts: By gaining comprehensive insights into CC, CV, FC, and TC systems, this work 

aims to contribute to sustainability efforts by enabling more efficient resource allocation and energy management 

strategies within buildings. 

The rest of the paper is structured as follows: Section 2 reviews related work, highlighting the strengths and limitations 

of existing studies. Section 4 outlines the methodology used in this study. Section 5 presents the results and discusses 

the outcomes of different models. Finally, Section 6 concludes the study. 

2- Literature Review 

 Predicting cooling loads in buildings has been a longstanding research focus due to its crucial role in assessing 

building energy requirements [15]. Traditional methods, often based on static models and physical principles, struggle 

to adapt to dynamic changes caused by weather variations, occupant behavior, and temporal factors [17]. Recent research 
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has explored machine learning (ML) and data-driven approaches to address these limitations for developing more 

accurate and flexible prediction models. Techniques such as Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs), and Recurrent Neural Networks (RNNs) have shown promise in identifying non-linear relationships 

within building energy consumption patterns. Additionally, integrating optimization algorithms with deep learning 

architectures has demonstrated the potential to improve the accuracy and stability of existing value forecasts.  

Several studies highlight the effectiveness of ML and DL techniques for enhancing cooling load and energy 

consumption prediction in office buildings. For instance, Fan et al. [23] demonstrated that unsupervised deep learning 

outperforms traditional supervised learning approaches for predicting daily cooling load profiles. Li et al. [24] 

incorporated attention mechanisms into RNNs for cooling load prediction, achieving improved accuracy and 

interpretability through declarative principles. Lopes & Lamberts [25] designed a compact ANN model specifically for 

application in Brazilian office buildings. Amasyali & El-Gohary [26] proposed a machine learning method focused on 

occupant behavior to assess the performance of different algorithms for energy use prediction. 

Beyond office buildings, more sophisticated techniques like hybrid simulations and advanced ML models have been 

employed to determine cooling energy consumption across diverse building types and regions—for example, Mui et al. 

[27] proposed a Bayesian regularization integrated simulation model for predicting annual cooling energy demand in 

subtropical buildings, while Moon et al. [28] designed an ANN model to predict energy use during setback periods in 

residential buildings. In contrast, Borowski & Zwolińska [29] utilized ANNs and SVMs to forecast cooling energy 

consumption in a historic hotel building located in southern Poland. 

Lu et al. [30] proposes an AutoML-based framework for predicting heating and cooling loads in residential buildings, 

enhancing prediction accuracy and reducing manual intervention. The framework excels over recent ML models and 

offers explainable insights into energy load relationships. Also, Liu et al. [31] present a deep learning model using multi-

task learning (MTL) for hourly electricity load prediction in commercial buildings. By incorporating temperature 

prediction as an auxiliary task, the model improves accuracy, reduces overfitting, and benefits from an ensemble 

technique, showing superior performance and generalization across multiple datasets. Moreover, Zhang et al. [32] 

introduces an AutoML-based method that develops accurate building energy load prediction models with minimal 

human input. Evaluating six AutoML frameworks, the method outperforms manual modeling with accuracy 

improvements of 1.10%–18.66%. AutoGluon and FLAML achieve high accuracy with shorter training times, while 

AutoKeras underperforms. Similarly, Pavlatos et al. [33] details a Python-coded framework for forecasting electrical 

load using a recurrent neural network with two simpleRNN layers and a dense layer. Optimized with Adam and tanh 

loss, the model achieves a root mean square error of 0.033, demonstrating high accuracy and outperforming more 

complex neural networks. Furthermore, Tsalikidis et al. [34] develops and compares predictive algorithms for one-step-

ahead energy load forecasting using historical data from a near Zero Energy Building. The study evaluates various ML 

algorithms and a hybrid model with ensemble methods, achieving a mean absolute percentage error of 5.39%, surpassing 

base algorithms and other ensemble approaches.  While these studies showcase advancements in modeling techniques, 

the literature also emphasizes the need for further calibration and efforts to generalize the applicability and accuracy of 

models across various building types and settings. 

Despite advancements in building cooling load identification and prediction, several challenges persist, as 

summarized in Table 1. These challenges include: 

(a) Generalizability: Many existing models are limited in their applicability because they are tailored to specific 

building types or climates. 

(b) Cooling Load Estimation Accuracy: Traditional and some advanced methods often struggle to predict TC loads 

accurately. This is likely due to their inability to effectively capture the interplay between various cooling 

strategies (CC, CV, FC). 

These limitations highlight the need for developing more comprehensive and generalizable models. Such models 

should be capable of accurately predicting cooling loads across diverse building types and climates while considering 

all cooling system types (CC, CV, FC). 

Also, to address the theoretical approach of this research, we focus on integrating machine learning (ML) and deep 

learning (DL) methodologies for predicting building cooling loads. Traditional models based on static principles fall 

short of capturing the dynamic nature of energy consumption influenced by weather, occupant behavior, and time. Our 

study employs a theoretical framework that utilizes various ML algorithms, including RF, LSTM, GRU, and ensemble 

techniques. This approach hypothesizes combining diverse models and contextual data will improve accuracy and 

adaptability. 
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Table 1. Summary and Comparison of Existing Techniques 

Ref. Year Location Technique Strength Limitation 

Fan et al. [23]  2017 Office buildings 
MLR, DNN, SVR, 

GBM 

Enhances prediction performance by 

uncovering complex patterns in data 

Requires further validation with diverse data 

sources for broader applicability 

Li et al. [24] 2021 Office buildings Attention RNN 
Improves model interpretability and 

prediction accuracy 

Advanced model complexity may hinder 

widespread adoption by building 

professionals 

Lopes & 

Lamberts [25] 
2018 Office buildings ANN 

A new climate indicator provides a more 

precise prediction of cooling energy 

consumption. 

Limited to chilled water HVAC systems. 

Amasyali & El-

Gohary [26] 
2021 Office building 

CART, EBT, ANN, 

DNN 

Considers occupant behavior, 

significantly improving prediction 

accuracy 

It needs real-life data validation to capture the 

complexity of occupant behavior accurately. 

Mui et al. [27] 2022 
Residential buildings, 

Healthcare buildings 
Hybrid EP-ANN 

Effectively predicts energy consumption 

and identifies energy-saving strategies. 

Requires further validation for diverse 

building types and inclusion of cost analysis 

Moon et al. [28] 2015 Residential buildings ANN 
Identifies the most energy-efficient 

setback temperature with high 

prediction accuracy. 

Requires further validation in actual buildings 

to ensure stability and address overfitting. 

Borowski & 

Zwolińska [29] 
2020 Residential buildings ANN, SVM 

Neural networks demonstrated higher 

prediction accuracy compared to SVM. 

Limited modernization options in historical 

buildings may hinder the implementation of 

energy management systems. 

Shin & Do [15] 2016 Institutional buildings CDD 
Provides more accurate predictions for 

cooling energy consumption by 

considering latent heat 

Effectiveness varies based on data periods 

and building energy use patterns. 

Zhao et al. [16] 2023 

Office buildings, 

district comprising 

multiple buildings 

BP-ANN 
It offers a simple and convenient method 

for predicting energy consumption with 

high accuracy. 

Prediction performance is influenced by 

building thermophysical properties and 

varying weather parameters. 

Dong et al. [17] 2022 
Large commercial 

building 
DwdAdam-ILSTM 

Improved prediction accuracy and 

stability compared to the traditional 

LSTM model 

Other ML-based models are not utilized to 

compare the performance of the proposed 

model. 

Lu et al. [30] 2023 Residential buildings 

Liner Regression, 

XGboost, Naïve 

Bayes, DNN, GBM 

Achieves high prediction accuracy with 

minimal manual intervention 

Requires some level of expert knowledge for 

implementation 

Liu et al. [31] 2023 Commercial buildings 

Multi-task learning 

(MTL) with deep 

learning 

It prevents overfitting and significantly 

outperforms comparison methods 
Requires validation on more diverse datasets 

Zhang et al. 

[32] 
2023 Office buildings 

RF, DNN, Stacking, 

Decision Tree 

Increases accuracy by 1.10%–18.66% 

compared to manual modeling. 

Some frameworks require longer training 

times to achieve high accuracy. 

Pavlatos et al. 

[33] 
2023 General RNN 

Achieves high accuracy with a root mean 

square error of 0.033 

May not handle extensive datasets or very 

long-term forecasts as effectively 

Tsalikidis et al. 

[34] 
2023 

Near Zero Energy 

building 

Hybrid model using 

ensemble methods 

Achieves a mean absolute percentage 

error of 5.39%, improving upon base 

algorithms. 

Performance evaluation is limited to 

historical data and specific to one-step-ahead 

forecasting. 

3- Dataset 

This study utilizes data from the cooling systems of the ECB building in Frankfurt, Germany. The ECB building is a 

new, efficiently designed structure equipped with an advanced Building Control System and a network of sensors for 

comprehensive data collection (see Figure 1). 

 

Figure 1. Locations of Weather Stations 
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The dataset contains various features related to the building's cooling consumption. Additionally, weather data was 
collected from multiple nearby weather stations and from a station located on top of the building itself. This 
comprehensive dataset offers valuable insights into the complex interplay between environmental factors and cooling 

requirements. Currently, this data is primarily used for historical analysis to understand past cooling demands and make 
general predictions about future needs. However, by leveraging ML techniques, we aim to improve the efficiency and 
accuracy of these forecasts significantly. ML algorithms can identify complex relationships within the data that might 
be missed by traditional analysis methods, ultimately leading to more reliable cooling consumption predictions. 

3-1- Cooling Consumption Data 

The cooling consumption data encompasses various features categorized as meteorological, environmental, and 

operational factors, which are crucial for predicting energy usage in HVAC systems. 

i. Meteorological Features: These include air temperature, relative humidity, wind speed and direction, precipitation 
frequency and intensity, and air pressure. They are extracted from weather stations and directly impact cooling 
energy demand. Higher temperatures and humidity levels generally lead to increased cooling needs. Wind speed 
and direction significantly affect the effectiveness of CV systems by influencing air movement and cooling rates 

within buildings. Air pressure variations may also impact HVAC system performance, particularly regarding 

airflow and distribution. 

ii. Environmental Features: Include observed weather, cloud cover, and visibility. They provide context for 
interpreting meteorological data and understanding cooling system operations. Observed weather conditions offer 

insights into prevailing atmospheric conditions that can influence cooling system behavior and energy 
consumption patterns. Cloud cover data helps determine the level of solar radiation reaching the building on sunny 
days, thus affecting heat gain. Visibility data can be helpful in inferring potential impacts of air pollution on cooling 

system efficiency and indoor air quality. 

iii. Operational Features: These features include hour, day, weekday, and month. They provide information on 
cooling consumption patterns at different times. These features allow for identifying seasonal trends, daily usage 
patterns, and variations in cooling demand across weekdays. This information is valuable for developing predictive 

models that support efficient energy management in interconnected HVAC systems. 

3-2- Weather Variables from Building Weather Station (BWS) 

This study incorporates a comprehensive dataset of meteorological values encompassing temperature, humidity, wind 
speed, and other parameters for assessing current atmospheric conditions. These factors significantly impact building 

cooling operations and energy consumption. The data is acquired directly from a weather station positioned atop the 
ECB skyscraper, providing highly localized and up-to-date weather information specific to the building's immediate 
environment. The station's elevated location ensures accurate data collection that closely reflects the atmospheric 
conditions relevant to the building. Building Automation System (BAS) integration further enhances data accessibility 
and usability. This integration seamlessly transfers and stores weather station data within a centralized system. This 
configuration allows BAS control rooms to provide building managers and operators with real-time weather data, thus 

enabling informed decision-making based on current conditions. Additionally, the BAS offers historical data analysis 
capabilities, allowing users to identify trends and patterns in weather data over time. Accumulating and storing weather 
data over time facilitates more granular analysis, enabling stakeholders to establish connections between various weather 
parameters and corresponding cooling system metrics. 

3-3- Local Weather Stations 

To complement the localized weather data acquired from the station atop the ECB building, this study incorporates 
data from three additional weather stations: Frankfurt Airport (station 1420), Frankfurt am Main-Westend (station 1424), 

and Offenbach Weather Park (station 7341). These stations are strategically located at varying distances from the ECB 
building, enabling the investigation of how broader weather patterns influence cooling and energy demands within the 
building. The data is obtained from the Deutscher Wetterdienst (DWD), the German National Meteorological Service, 
and the PIK Potsdam Institute for Climate Impact Research (PIK) – affiliated with the World Data Centre for Climate 
(WDCC). The DWD and the WDCC are recognized as leading authorities for providing comprehensive and reliable 
historical weather data. Their extensive network of weather stations allows for capturing a more holistic view of regional 

weather patterns and trends. 

3-4- Data Analysis 

Figure 2 illustrates the variations in average hourly outdoor air temperatures across the four weather stations (1420, 
1424, 7341, and BWS) throughout 2020, 2021, and 2022, revealing distinct seasonal patterns. This study's weather 
stations and feature sets provide a comprehensive and representative framework for capturing the variability in cooling 
demand for the ECB building in Frankfurt. By integrating data from the on-site weather station and three strategically 
positioned local stations, the study captures various environmental factors, including temperature, humidity, wind speed, 

and precipitation. This robust approach ensures a thorough representation of both localized and broader meteorological 
conditions. At the same time, the inclusion of operational features like time-of-day and seasonal patterns further enhances 
the model's ability to reflect real-world variability in cooling demand. During spring and autumn, temperatures vary 
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slightly across the stations. Station 1424 consistently records the highest average temperatures in both seasons, while 
7341 tends to be slightly cooler compared to the other stations. BWS and 1420 show intermediate values, with minimal 
differences between them. In summer, the temperatures are quite consistent, with station 1424 recording the highest 

average temperature (around 20.91°C) and BWS the lowest (around 20.10°C). Conversely, winter brings a noticeable 
drop in temperature across all stations. BWS records the lowest average winter temperature (around 3.89°C), while the 
other stations—1420, 1424, and 7341—range between 4.26°C and 4.79°C. 

 

Figure 2. Average air temperature of each weather station across different seasons 

 Similar to the observed temperature variations, CC exhibits distinct seasonal patterns (Figure 3). Here, CC represents 
the average cooling demand of the building's system, normalized for factors like building size and occupancy. Summer 

experiences consistently high average CC, with a significant peak between noon and 7 PM. This coincides with the daily 
high-temperature period and aligns with a typical occupancy profile in office buildings, where peak occupancy occurs 
during these afternoon hours. This suggests the cooling system must operate at a higher capacity during this timeframe 
to maintain comfortable indoor temperatures. 

In contrast, spring and autumn exhibit moderate CC values with peaks in the afternoon and early evening. This 
indicates a lower overall cooling demand compared to summer. Winter has the lowest CC values throughout the day, 

reflecting minimal cooling needs during this season. 

 

Figure 3. Average of Scaled CC for each Season by Hour 
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Similar to CC, CV exhibits distinct seasonal patterns (Figure 4). Here, CV represents the average ventilation demand 

of the building's system, normalized to account for factors influencing ventilation needs. Summer experiences the highest 

average CV, mainly between noon and 6 PM, reaching a value close to 0.26. This indicates a significant requirement for 

CV during this period. Autumn and spring exhibit lower ventilation rates, with the highest values (between 0.08 and 

0.12) occurring in the afternoon. In contrast, winter has the lowest CV values throughout the day, consistently remaining 

below 0.04, reflecting minimal ventilation needs during this season. 

 

Figure 4. Average of Scaled CV for each Season Hour 

 The average availability of FC exhibits distinct seasonal patterns throughout the day (Figure 5). Winter offers the 

highest average FC, with a notable peak between noon and 6 PM. This coincides with lower winter ambient temperatures, 

making FC more effective. In contrast, summer has the lowest FC availability due to higher ambient temperatures that 

limit its cooling potential. Autumn and spring show moderate FC levels, with increases observed during midday and 

early afternoon hours. 

 

Figure 5. The average of Scaled FC for each season is broken down by hour 
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3-5- Features 

The cooling consumption dataset contains key meteorological variables essential for analyzing and predicting 
building cooling energy use. These variables are obtained from multiple weather stations surrounding the building of 
interest. Typically, these variables include air temperature, relative humidity, wind speed, and precipitation levels. 

While all stations measure these core variables, slight discrepancies may arise due to variations in station location 
and microclimates. For instance, a station near a body of water or within a built-up area might record higher wind speed 
or humidity than others. Despite these potential variations, including these essential variables from multiple stations 
strengthens the overall dataset. This comprehensive data collection enhances the reliability and detail of the information 
available for cooling consumption analysis and prediction. 

3-5-1- Features Division 

This study aims to predict a building's cooling needs, encompassing CC, CV, FC, and TC requirements. We will 

leverage data from various weather stations and analyze it using three feature groups (3, 7, and all features) based on 
their correlation with cooling needs (refer to Table 2 for detailed results). 

Table 2 illustrates the correlations between weather station data and CC consumption. These correlations highlight 
key factors influencing cooling needs. At the BWS station, air temperature exhibits the strongest correlation 
(0.797781), indicating its primary influence on CC consumption, followed by relative humidity (0.590161) and global 
radiation (0.440239). In contrast, for stations 7341, 1420, and 1424, the hour of the day displays a consistently strong 

correlation (0.223645), suggesting its importance as a temporal factor for CC. Additionally, relative humidity exhibits 
notable correlations across all stations, ranging from 0.111117 to 0.127720, underlining its consistent influence on 
cooling needs. 

Like cooling consumption, we analyze weather data to identify critical factors influencing FC. Table 3 details the 
correlations between weather station data and FC availability. 

The analysis reveals that the month of the year exhibits the strongest correlation across all stations (0.178541), 

suggesting a significant influence of seasonal changes on FC opportunities. At the BWS station, air temperature shows 
the highest correlation (0.628743), indicating its primary influence on FC potential. Additionally, relative humidity 
displays notable correlations across all stations, with a robust correlation at BWS (0.301435), highlighting its impact on 
FC efficiency. Finally, the season exhibits a consistent influence, especially at stations 7341 (0.113830) and 1424 
(0.113830), underlining the importance of seasonal variations in FC prediction. 

Table 2. Correlation of CC Consumptions Features 

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

7341 1420 BWS 1424 

Hour 0.223645 Hour 0.223645 Air Temperature 0.797781 Hour 0.223645 

Relative Humidity 0.127720 Relative Humidity 0.115350 Relative Humidity 0.590161 Relative Humidity 0.111117 

Month 0.085430 Sunshine Duration 0.094734 Global Radiation 0.440239 Month 0.085430 

Highest Wind Peak 0.084294 Month 0.085430 Brightness Highest Value 0.397482 Year 0.076389 

Visibility 0.081090 Year 0.076389 Hour 0.223645 Air Pressure 0.059030 

Year 0.076389 Wind Speed 0.070061 Wind Speed 0.212208 Air Temperature 0.058339 

Air Temperature 0.068770 Dew Point 0.067123 Month 0.085430 Wet Bulb 0.028411 

Wind Speed 0.064732 Air Temperature 0.065112 Year 0.076389 Absolute Humidity 0.023573 

Humidity Temperature 0.036879 Visibility 0.062663 Wind Direction 0.067432 Day 0.023194 

Wind Direction 0.028841 Wind Direction 0.055273 Precipitation (Yes/No) 0.050850 Weekday 0.022532 

Observed Weather 0.024922 Humidity Temperature 0.034361 Amount of Precipitation 0.028002 Vapor Pressure 0.018746 

Day 0.023194 Absolute Humidity 0.026353 Day 0.023194 Dew Point 0.013562 

Cloud Coverage 0.022879 Air Pressure 0.023387 Weekday 0.022532 Season 0.010300 

Weekday 0.022532 Day 0.023194 Air Pressure 0.012489 Precipitation (Yes/No) 0.007889 

Absolute Humidity 0.017155 Weekday 0.022532 Season 0.010300 Precipitation 0.006165 

Precipitation (Yes/No) 0.014584 Vapor Pressure 0.021025 Precipitation 0.001209  

Air Pressure 0.012452 Season 0.010300 

 

Vapor Pressure 0.012168 Observed Weather 0.003400 

Season 0.010300 Precipitation (Yes/No) 0.000205 

Dew Point 0.005185 Precipitation 0.000126 

Precipitation Height 0.000050  
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Table 3. Correlation of FC Consumptions Features 

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

7341 1420 BWS 1424 

Month 0.178541 Month 0.178541 Air Temperature 0.628743 Month 0.178541 

Season 0.113830 Season 0.113830 Relative Humidity 0.301435 Season 0.113830 

Year 0.109299 Year 0.109299 Month 0.178541 Year 0.109299 

Relative Humidity 0.097668 Sunshine Duration 0.108008 Wind Speed 0.130151 Relative Humidity 0.086421 

Air Temperature 0.082186 Relative Humidity 0.094551 Global Radiation 0.115437 Air Pressure 0.083411 

Wind Speed 0.055798 Air Temperature 0.080636 Season 0.113830 Air Temperature 0.077192 

Highest Wind Peak 0.053361 Dew Point 0.078443 Year 0.109299 Wet Bulb 0.054578 

Humidity Temperature 0.051801 Humidity Temperature 0.058192 Brightness Highest Value 0.078309 Hour 0.041579 

Hour 0.041579 Wind Speed 0.046073 Hour 0.041579 Day 0.028216 

Visibility 0.031385 Hour 0.041579 Day 0.028216 Vapor Pressure 0.027312 

Day 0.028216 Day 0.028216 Wind Direction 0.026914 Dew Point 0.025530 

Vapor Pressure 0.024235 Wind Direction 0.028169 Air Pressure 0.023500 Absolute Humidity 0.023315 

Observed Weather 0.023241 Observed Weather 0.026265 Weekday 0.017090 Weekday 0.017090 

Dew Point 0.021579 Vapor Pressure 0.023900 Precipitation 0.008962 Precipitation 0.007501 

Absolute Humidity 0.019922 Absolute Humidity 0.019538 Precipitation (Yes/No) 0.005564 Precipitation (Yes/No) 0.004595 

Cloud Coverage 0.017990 Weekday 0.017090 Amount of Precipitation 0.000293  

Weekday 0.017090 Precipitation 0.009951 

 

Wind Direction 0.013439 Visibility 0.009411 

Precipitation (Yes/No) 0.010599 Precipitation (Yes/No) 0.002358 

Precipitation Height 0.001926 Air Pressure 0.001280 

Air Pressure 0.001543  

Table 4 presents the correlations between weather station data and CV requirements. The analysis identifies Global 
Radiation and Air Temperature as the two most significant variables influencing CV. 

Global radiation exhibits a strong positive correlation (0.438349) with CV, suggesting a direct relationship between 
solar energy and CV needs. Higher levels of solar radiation lead to increased interior temperature, consequently driving 

up CV requirements. Similarly, air temperature displays a significant positive correlation (0.043090) with CV. Warmer 
ambient temperatures necessitate extensive cooling efforts to maintain comfortable indoor conditions, resulting in higher 
CV requirements. 

Table 4. Correlation of CV Consumptions Features 

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

7341 1420 BWS 1424 

Hour 0.147195 Sunshine Duration 0.134351 Global Radiation 0.438349 Relative Humidity 0.120758 

Highest Wind Peak 0.116541 Relative Humidity 0.131388 Relative Humidity 0.390939 Month 0.094191 

Wind Speed 0.105239 Month 0.094191 Brightness Highest Value 0.370621 Year 0.083054 

Month 0.094191 Wind Speed 0.093683 Wind Speed 0.153121 Absolute Humidity 0.049671 

Year 0.083054 Year 0.083054 Hour 0.147195 Air Pressure 0.045492 

Visibility 0.077518 Dew Point 0.056454 Month 0.094191 Vapor Pressure 0.043962 

Air Temperature 0.058446 Air Temperature 0.053507 Year 0.083054 Air Temperature 0.043090 

Absolute Humidity 0.042722 Wind Direction 0.053047 Precipitation Yes/No 0.029594 Dew Point 0.040656 

Vapor Pressure 0.036438 Absolute Humidity 0.052098 Season 0.025401 Season 0.025401 

Wind Direction 0.033666 Vapor Pressure 0.045722 Weekday 0.019418 Weekday 0.019418 

Dew Point 0.030622 Visibility 0.045410 Wind Direction 0.015905 Day 0.012612 

Season 0.025401 Season 0.025401 Day 0.012612 Precipitation Yes/No 0.009450 

Observed Weather 0.022366 Weekday 0.019418 Air Pressure 0.010185 Wet Bulb 0.007731 

Precipitation Yes/No 0.021265 Precipitation 0.014825 Precipitation 0.010014 Precipitation 0.004275 

Humidity Temperature 0.020933 Humidity Temperature 0.014793 Amount Precipitation 0.001973  

Weekday 0.019418 Air Pressure 0.013387   

Air Pressure 0.013098 Day 0.012612 

 
Day 0.012612 Precipitation Yes/No 0.010181 

Coverage Clouds 0.011996 Observed Weather 0.001528 

Precipitation Height 0.004373  
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Finally, similar to CC, FC, and CV, we examine weather data to identify critical factors influencing TC needs. Table 

5 details the correlations between weather station data and TC consumption. 

The analysis reveals that the hour of the day is a consistently important factor across most stations, exhibiting the 

strongest correlation (0.208693) at stations 7341, 1420, and 1424. This highlights the temporal influence on TC 

requirements. At the BWS station, air temperature has the strongest correlation (0.774650), indicating its primary 

influence on TC needs. The relative humidity is also a critical variable, with significant correlations observed at BWS 

(0.550218) and station 7341 (0.144503), underlining its impact on overall cooling consumption. Furthermore, solar-

related factors play a role, as evidenced by the correlations with sunshine duration (0.116026 at 1420) and global 

radiation (0.469275 at BWS). 

4- Research Methodology 

This study leverages a comprehensive methodology that emphasizes the importance of localized weather data in 

improving the accuracy of cooling consumption prediction models (Figure 6). We adopt a systematic approach, 

incorporating various ML models, including K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector 

Regression (SVR), and Linear Regression (LR). Ensemble learning models such as RF, GB, XGBoost, and Adaboost 

are employed. Additionally, DL models including LSTM and GRU are explored. The performance of these models is 

evaluated using a suite of metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2). 

4-1- Pre-Processing 

The data preprocessing stage starts by separating numeric columns from non-numeric ones. Columns representing 

'Year', 'Month', and 'Hour' are excluded during this process. Missing value imputation follows a hierarchical approach, 

prioritizing group means based on increasingly finer categories: first by 'Year,' 'Month,' and 'Hour'; then by 'Year' and 

'Month'; and finally by 'Year' and 'Season.' Any remaining missing values are imputed using the annual average. Lastly, 

label encoding converts categorical variables such as 'Season' and 'Weekday' into numerical features. 

Table 5. Correlation of TC Consumptions Features  

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

7341 1420 BWS 1424 

Hour 0.208693 Hour 0.208693 Air Temperature 0.774650 Hour 0.208693 

Relative Humidity 0.144503 Relative Humidity 0.129246 Relative Humidity 0.550218 Relative Humidity 0.122153 

Highest Wind Peak 0.103823 Sunshine Duration 0.116026 Global Radiation 0.469275 Month 0.095327 

Month 0.095327 Month 0.095327 Brightness Highest Value 0.414061 Year 0.083389 

Wind Speed 0.086205 Wind Speed 0.085344 Hour 0.208693 Air Pressure 0.057925 

Visibility 0.085585 Year 0.083389 Wind Speed 0.203818 Air Temperature 0.054612 

Year 0.083389 Dew Point 0.065850 Month 0.095327 Absolute Humidity 0.037467 

Air Temperature 0.067838 Air Temperature 0.063372 Year 0.083389 Vapor Pressure 0.032004 

Wind Direction 0.033614 Wind Direction 0.059498 Wind Direction 0.051911 Dew Point 0.027041 

Humidity Temperature 0.031442 Visibility 0.059413 Precipitation (Yes/No) 0.045673 Weekday 0.023102 

Absolute Humidity 0.030313 Absolute Humidity 0.040382 Weekday 0.023102 Wet Bulb 0.020378 

Observed Weather 0.025067 Vapor Pressure 0.034323 Day 0.020063 Day 0.020063 

Vapor Pressure 0.024512 Humidity Temperature 0.027176 Amount of Precipitation 0.017516 Precipitation (Yes/No) 0.008838 

Weekday 0.023102 Weekday 0.023102 Air Pressure 0.011698 Precipitation 0.005629 

Cloud Coverage 0.021020 Air Pressure 0.020776 Precipitation 0.003429 Season 0.003266 

Day 0.020063 Day 0.020063 Season 0.003266  

Precipitation (Yes/No) 0.018822 Precipitation 0.006065 

 

Dew Point 0.017346 Precipitation (Yes/No) 0.004509 

Air Pressure 0.013444 Season 0.003266 

Season 0.003266 Observed Weather 0.002234 

Precipitation Height 0.001645  
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Figure 6. Proposed Methodology 

4-2- Modeling 

The study evaluates various models, including KNN, SVR, DT, LR, RF, GB, AdaBoost, LSTM, and GRU, to 

determine the impact of localized weather data on the accuracy of predictive models for cooling consumption. Details 

of these models are listed in Table 6. 

Table 6. Details of Models 

Model Working Mechanism Advantage(s) Limitation(s) Scalability 

Machine Learning 

KNN [35] Non-parametric, instance-based 
Utilizes localized weather data for 

accurate predictions 
Sensitive to noisy or irrelevant features 

Limited scalability, as it requires storing all 

training data 

SVR [36] 
It uses support vectors to define 

a hyperplane 

Effective with complex data and 

high-dimensional spaces 

Computationally intensive and sensitive 

to kernel choice 

Moderate scalability may become slow with 

large datasets 

DT [37] 
Makes decisions based on 

feature values 
Interpretable and easy to visualize 

Prone to overfitting, especially with 

complex data 

Moderate scalability can manage large 

datasets but prone to overfitting 

LR [38] 
Models’ linear relationship 

between variables 
Simple and easy to implement 

Assumes a linear relationship between 

variables 
Highly scalable, efficient for large datasets 

Ensemble Learning 

XGBoost 

[39] 

Sequentially adding DT to 

correct errors made by previous 

trees 

exhibits high predictive accuracy 

and efficiency 

susceptibility to overfitting, especially 

when dealing with noisy data or shallow 

trees. 

Capable of handling large datasets efficiently 

due to its parallel and distributed computing 

capabilities 

RF [40] Ensemble of DT 
Oversees high-dimensional data 

well and is resistant to overfitting 

Complexity increases with the number of 

trees 

Moderate scalability, can manage large 

datasets but slower training with many trees. 

GB [41] 
Sequentially builds multiple 

weak learners 
Provides high predictive accuracy 

Prone to overfitting and can be 

computationally expensive 

Moderate scalability, slower than RF due to 

sequential training 

AdaBoost 

[42] 
Ensemble method using a series 

of weak classifiers 

Robust against overfitting and 

performs well with diverse data 
Sensitive to noisy data and outliers 

Moderate scalability, can handle large datasets 

but slower training with many weak learners. 

DL 

LSTM [43] 
Recurrent neural network for 

sequence prediction 

Effective for modeling time-series 

data 

Computationally intensive and may 

suffer from vanishing gradients 

Limited scalability, slow training, and 

inference with large sequences 

GRU [44] 
A simplified version of LSTM, 

efficient for training 

Balances model complexity and 

performance 

It may not capture long-term 

dependencies as effectively as LSTM 

Moderate scalability, faster training, and 

inference compared to LSTM 

4-3- Evaluation Metrics 

The study employs MSE, MAE, RMSE and R² to evaluate model performance, standard metrics for assessing 

predictive accuracy. Additionally, incorporating these metrics to evaluate model stability and sensitivity, such as 
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prediction interval coverage probability or calibration plots, could enhance understanding of the model's reliability and 

its ability to generalize across different conditions. The summary of these metrics is represented in Table 7.  

Table 7. Details of Evaluation Metrics 

Metric Description Equation Criteria 

Mean Squared Error 
(MSE) [45] 

Measures the average squared difference between predicted 
and actual values 

𝑀𝑆𝐸: 
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑛

𝑖=1
 

Lower values indicate better model 
performance 

Mean Absolute Error 

(MAE) [46] 

Measures the average absolute difference between predicted 

and actual values 
𝑀𝐴𝐸: 

1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

2
𝑛

𝑖=1
 

lower values indicating better 

model performance. 

Root Mean Squared 

Error (RMSE) [47] 

Measures the square root of the average squared difference 

between predicted and actual values 𝑅𝑀𝑆𝐸: √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑛

𝑖=1
 

Lower values indicate better model 

performance 

R-squared (R²) [48] 
Measures the proportion of the variance in the dependent 

variable that is predictable from the independent variables 
𝑅2 = 1 −

1
𝑛

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

1
𝑛

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
Higher values (close to 1) indicate 

better model performance 

4-4- Experimental Setup 

In this research, popular Python libraries were used throughout various stages. Pandas facilitates data manipulation 

and analysis, while NumPy underpins numerical computations and array operations. Scikit-learn provides a 

comprehensive suite of ML algorithms for model training, evaluation, and preprocessing tasks. DL models are 

implemented using TensorFlow or PyTorch, offering high-level APIs for building and optimizing neural networks. 

Data visualization is performed using Matplotlib to gain insights into dataset characteristics and monitor model 

performance. 

To ensure reproducibility, experiments employ consistent random seed values. The dataset is split into an 80% 

training set and a 20% testing set for model evaluation. K-fold cross-validation with K=5 is utilized during training to 

mitigate overfitting and assess model generalizability. Various experiments are conducted, exploring different feature 

sets, as detailed in Table 8. 

Table 8. Summary of Experimentation  

Features CC FC TC CV 

1420 

3-Features 
Hour, Relative Humidity, Sunshine 

Duration 
Month, Season, Year 

Hour, Relative Humidity, Sunshine 

Duration 

Sunshine Duration, Relative 

Humidity Month 

7-Features 
Hour, Relative Humidity, Sunshine 

Duration, Month, Year, Wind Speed, 

Dew Point 

Month, Season, Year, Sunshine 

Duration, Relative Humidity, Air 

Temperature, Dew Point 

Hour, Relative Humidity, Sunshine 

Duration, Month, Wind Speed, Year, 

Dew Point 

Sunshine Duration, Relative 

Humidity, Month, Wind Speed, 

Year, Dew Point, Air Temperature 

All All the features included in Table 2 All the features included in Table 3 All the features included in Table 4 Included in Table 5 

1424 

3-Features 
Air Temperature, Relative Humidity, 

Global Radiation 
Month, Season, Year Hour, Relative Humidity, Month, Relative Humidity, Month, Year 

7-Features 
Hour, Relative Humidity, Month, 

Year, Air Pressure, Air Temperature, 

Wet Bulb 

Month, Season, Year, Relative 

Humidity, Air Pressure, Air 

Temperature, Wet Bulb 

Hour, Relative Humidity, Month, Year, 

Air Pressure, Air Temperature, Wet 

Bulb 

Relative Humidity, Month, Year, 

Absolute Humidity, Air Pressure, 

Vapor Pressure, Air Temperature 

All All the features included in Table 2 All the features included in Table 3 All the features included in Table 4 Included in Table 5 

7341 

3-Features Hour, Relative Humidity, Month Month, Season, Year 
Hour, Relative Humidity, Highest 

Wind Peak 

Hour, Highest Wind Peak, Wind 

Speed 

7-Features 
Hour, Relative Humidity Month, 

Highest Wind Peak, Visibility, Year, 

Air Temperature 

Month, Season, Year, Relative 

Humidity, Air Temperature, Wind 

Speed, Highest Wind Peak 

Hour, Relative Humidity, Highest 

Wind Peak, Month Wind Speed, 

Visibility, Year 

Hour, Highest Wind Peak, Wind 

Speed, Month, Year, Visibility, Air 

Temperature 

All All the features included in Table 2 All the features included in Table 3 All the features included in Table 4 All the features included in Table 5 

BWS 

3-Features 
Air Temperature, Relative Humidity, 

Global Radiation 

Air Temperature, Relative 

Humidity, Month 

Air Temperature, Relative Humidity, 

Global Radiation 

Global Radiation, Relative 

Humidity, Brightness Highest 

Value 

7-Features 
Air Temperature, Relative Humidity, 

Global Radiation, Brightness Highest 

Value, Hour, Wind Speed, Month 

Air Temperature, Relative 

Humidity, Month, Wind Speed, 

Global Radiation, Season, Year 

Air Temperature, Relative Humidity, 

Global Radiation, Brightness Highest 

Value, Hour, Wind Speed, Month 

Hour, Highest Wind Peak, Wind 

Speed, Month, Year, Visibility, Air 

Temperature 

All All the features included in Table 2 All the features included in Table 3 All the features included in Table 4 All the features included in Table 5 



Emerging Science Journal | Vol. 8, No. 6 

Page | 2132 

5- Results and Discussion 

The results section analyzes the performance of various ML, ensemble learning, and DL models in predicting CC, 
TC, FC, and CV for weather stations 1420, 1424, 7341, and BWS. The analysis considers different feature sets to assess 
model generalizability. Model performance is evaluated using a suite of metrics, including MSE, MAE, RMSE, and R2. 

These metrics provide insights into the models' accuracy and predictive power across diverse datasets and feature 
combinations. 

5-1- Cooling Ceiling 

This section explores the performance of various models across different weather stations and feature sets. 

Concerning Station 1420, KNN emerged as the strongest performer among the considered ML models, particularly 

with all features included (MSE: 0.013, MAE: 0.064, RMSE: 0.114, R²: 0.763). Notably, performance improved with 
an increase in features. In the ensemble learning category, RF achieved the top performance (MSE: 0.005, MAE: 0.035, 
RMSE: 0.067, R²: 0.917), indicating high accuracy and reliability. This strong performance by RF was consistent for 
station 1424 as well (MSE: 0.004, MAE: 0.033, RMSE: 0.065, R²: 0.924). LSTM networks, representing the deep 
learning category, achieved moderate results with 3 features (MSE: 0.050, MAE: 0.183, RMSE: 0.224, R²: 0.078). 
However, the performance showed a slight decline when using all features (MSE: 0.026, MAE: 0.108, RMSE: 0.160, 

R²: 0.528). Station 1424 also decreased performance with LSTMs using all features (MSE: 0.024, MAE: 0.105, RMSE: 
0.156, R²: 0.553), suggesting a need for further optimization (refer to Table 9 for detailed results). 

Concerning Station 7341, the best-performing ML model was DT with all features included (MSE: 0.010, MAE: 
0.045, RMSE: 0.099, R²: 0.820) (refer to Table 10 for details). Like station 1420, RF excelled in the ensemble learning 
category (MSE: 0.005, MAE: 0.036, RMSE: 0.069, R²: 0.912). LSTM networks in the deep learning category delivered 
satisfactory results with 3 features (MSE: 0.019, MAE: 0.089, RMSE: 0.137, R²: 0.655). However, performance dropped 
when using all features. 

At station BWS, KNN performed well among the ML models (MSE: 0.008, MAE: 0.046, RMSE: 0.088, R²: 0.857). 
GB achieved the best results in the ensemble learning category (MSE: 0.007, MAE: 0.050, RMSE: 0.085, R²: 0.868). 
However, RF also exhibited strong performance (MSE: 0.004, MAE: 0.034, RMSE: 0.064, R²: 0.926). LSTM networks, 

representing deep learning, delivered notable results with 5 features (MSE: 0.011, MAE: 0.064, RMSE: 0.106, R²: 
0.794). 

It is evident from the results of CC prediction that KNN excelled at Station 1420 due to its ability to effectively 
capture local data patterns, which improved with an increase in features. RF consistently outperformed others in the 
ensemble learning category because of its robustness in managing high-dimensional data and mitigating overfitting 
through averaging multiple DTs, which enhanced accuracy and reliability. For instance, at Station 7341, RF's capability 
to aggregate diverse decision boundaries allowed it to adapt to complex data structures better than individual models 
like DT. In contrast, LSTM networks, designed to capture temporal dependencies, showed moderate results, indicating 

that while they can model sequential data, they may require further optimization to handle the intricacies of cooling load 
prediction with all features included. 

Table 9. Evaluation of Models on 1420 and 1424 Weather Station Dataset in CC Prediction 

1420 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.058 0.183 0.241 -0.067 0.014 0.069 0.117 0.747 0.013 0.064 0.114 0.763 

SVR 0.056 0.174 0.237 -0.030 0.018 0.097 0.132 0.678 0.013 0.085 0.114 0.763 

DT 0.075 0.192 0.274 -0.379 0.022 0.075 0.148 0.598 0.009 0.042 0.093 0.842 

LR 0.051 0.182 0.227 0.057 0.051 0.180 0.225 0.068 0.051 0.180 0.225 0.071 

Ensemble Learning 

XGBoost 0.051 0.174 0.226 0.062 0.013 0.071 0.113 0.767 0.006 0.049 0.077 0.892 

RF 0.057 0.179 0.239 -0.048 0.011 0.060 0.105 0.799 0.005 0.035 0.067 0.917 

GB 0.049 0.177 0.222 0.095 0.016 0.081 0.125 0.714 0.013 0.078 0.115 0.755 

AdaBoost 0.055 0.197 0.234 -0.007 0.022 0.117 0.149 0.595 0.024 0.125 0.156 0.551 

DL 

LSTM 0.050 0.183 0.224 0.078 0.018 0.088 0.133 0.673 0.026 0.108 0.160 0.528 

GRU 0.051 0.179 0.226 0.065 0.018 0.090 0.133 0.675 0.016 0.079 0.126 0.710 
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1424 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.021 0.086 0.146 0.610 0.012 0.063 0.111 0.773 0.009 0.050 0.095 0.833 

SVR 0.020 0.101 0.142 0.629 0.017 0.096 0.132 0.682 0.013 0.082 0.113 0.766 

DT 0.031 0.101 0.177 0.424 0.019 0.068 0.137 0.656 0.008 0.040 0.091 0.849 

LR 0.051 0.181 0.226 0.060 0.051 0.181 0.225 0.067 0.051 0.181 0.225 0.067 

Ensemble Learning 

XGBoost 0.019 0.085 0.138 0.648 0.012 0.068 0.108 0.786 0.006 0.047 0.075 0.895 

RF 0.024 0.091 0.154 0.563 0.010 0.055 0.100 0.818 0.004 0.033 0.065 0.924 

GB 0.018 0.085 0.134 0.670 0.016 0.081 0.125 0.714 0.013 0.078 0.115 0.759 

AdaBoost 0.021 0.097 0.146 0.609 0.020 0.101 0.141 0.637 0.021 0.108 0.145 0.613 

DL 

LSTM 0.019 0.087 0.138 0.652 0.018 0.086 0.133 0.675 0.024 0.105 0.156 0.553 

GRU 0.020 0.091 0.141 0.635 0.017 0.087 0.130 0.687 0.014 0.079 0.120 0.736 

Table 10. Evaluation of Models on 7341 and BWS Weather Station dataset in CC Prediction 

7341 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.020 0.085 0.143 0.625 0.015 0.071 0.122 0.727 0.015 0.071 0.121 0.730 

SVR 0.020 0.101 0.142 0.629 0.018 0.097 0.133 0.675 0.014 0.088 0.118 0.745 

DT 0.031 0.101 0.176 0.430 0.021 0.071 0.143 0.623 0.010 0.045 0.099 0.820 

LR 0.051 0.180 0.226 0.061 0.051 0.181 0.226 0.066 0.051 0.180 0.225 0.069 

Ensemble Learning 

XGBoost 0.018 0.083 0.136 0.662 0.012 0.071 0.111 0.774 0.006 0.051 0.079 0.886 

RF 0.023 0.090 0.151 0.580 0.010 0.057 0.101 0.812 0.005 0.036 0.069 0.912 

GB 0.018 0.085 0.134 0.670 0.016 0.082 0.126 0.710 0.013 0.078 0.115 0.756 

AdaBoost 0.021 0.095 0.144 0.618 0.020 0.101 0.141 0.633 0.022 0.113 0.148 0.595 

DL 

LSTM 0.019 0.089 0.137 0.655 0.018 0.088 0.133 0.676 0.029 0.122 0.171 0.463 

GRU 0.019 0.089 0.139 0.644 0.018 0.089 0.134 0.668 0.016 0.080 0.125 0.712 

BWS 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.014 0.063 0.116 0.751 0.011 0.054 0.104 0.803 0.008 0.046 0.088 0.857 

SVR 0.014 0.086 0.117 0.750 0.011 0.069 0.103 0.806 0.008 0.063 0.090 0.852 

DT 0.018 0.102 0.135 0.665 0.016 0.062 0.127 0.706 0.008 0.042 0.090 0.852 

LR 0.022 0.079 0.149 0.593 0.018 0.099 0.132 0.678 0.016 0.094 0.127 0.703 

Ensemble Learning 

XGBoost 0.012 0.061 0.111 0.774 0.008 0.047 0.091 0.847 0.004 0.032 0.063 0.926 

RF 0.013 0.062 0.113 0.765 0.009 0.051 0.096 0.831 0.004 0.034 0.064 0.926 

GB 0.011 0.058 0.106 0.794 0.009 0.053 0.097 0.827 0.007 0.050 0.085 0.868 

AdaBoost 0.015 0.078 0.123 0.723 0.021 0.125 0.146 0.611 0.014 0.079 0.117 0.749 

DL 

LSTM 0.013 0.066 0.112 0.770 0.011 0.064 0.106 0.794 0.012 0.072 0.111 0.775 

GRU 0.013 0.068 0.113 0.765 0.011 0.064 0.104 0.802 0.013 0.078 0.113 0.767 
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5-2- Total Cooling 

XGBoost excelled at predicting TC loads across all weather stations (1420, 1424, 7341, and BWS) and feature sets, 

demonstrating its robustness and reliability (refer to Tables 11 and 12 for detailed results). 

Concerning Station 1420 and 1424, XGBoost consistently achieved top performance, particularly with all features 

included. For example, station 1424 achieved an MSE of 0.009, MAE of 0.056, RMSE of 0.096, and an R2 of 0.925, 

showcasing exceptional accuracy. Focusing on Station 7341 and similar to other stations, XGBoost dominated, achieving 

high accuracy with all features (MSE: 0.011, MAE: 0.060, RMSE: 0.104, R²: 0.911). RF also performed well, 

particularly with all features (MSE: 0.013, MAE: 0.073, RMSE: 0.113, R²: 0.894). Moving to Station BWS, XGBoost 

maintained its dominance, achieving remarkable accuracy with all features (MSE: 0.007, MAE: 0.051, RMSE: 0.085, 

R²: 0.941). RF again exhibited competitive performance across various feature sets. 

XGBoost's exceptional performance in predicting TC loads across all weather stations can be attributed to its ability 

to handle high-dimensional data and model complex relationships through GB techniques. Its robustness and reliability 

stem from its iterative approach of combining weak learners to form a robust predictive model, effectively reducing bias 

and variance. Additionally, XGBoost's capability to select features and handle missing data ensures high accuracy, as 

seen in its consistently top performance metrics. In contrast, while RF also performed well due to its ensemble nature, it 

was slightly less effective than XGBoost in capturing intricate data patterns. DL models like LSTM and GRU, although 

promising with fewer features, struggled with the complexity of all features, indicating their need for more sophisticated 

optimization and feature selection strategies to achieve similar levels of accuracy. 

Table 11. Evaluation of Models on 1420 and 1424 Weather Station dataset in TC Prediction 

1420 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.116 0.253 0.340 0.053 0.032 0.104 0.180 0.735 0.020 0.074 0.141 0.836 

SVR 0.128 0.231 0.357 -0.046 0.044 0.135 0.209 0.643 0.029 0.098 0.170 0.764 

DT 0.129 0.257 0.359 -0.054 0.048 0.114 0.219 0.607 0.032 0.118 0.178 0.739 

LR 0.170 0.272 0.413 -0.395 0.113 0.250 0.337 0.070 0.113 0.250 0.336 0.075 

Ensemble Learning 

XGBoost 0.110 0.245 0.331 0.101 0.026 0.094 0.162 0.785 0.010 0.058 0.098 0.922 

RF 0.114 0.243 0.338 0.063 0.031 0.108 0.175 0.749 0.012 0.072 0.110 0.901 

GB 0.129 0.253 0.359 -0.055 0.038 0.121 0.195 0.689 0.032 0.116 0.178 0.740 

AdaBoost 0.133 0.291 0.364 -0.087 0.048 0.154 0.220 0.603 0.058 0.187 0.240 0.526 

DL 

LSTM 0.110 0.249 0.332 0.095 0.041 0.126 0.203 0.662 0.062 0.156 0.248 0.495 

GRU 0.110 0.247 0.332 0.096 0.041 0.123 0.203 0.661 0.033 0.115 0.183 0.726 

1424 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.047 0.136 0.216 0.617 0.029 0.096 0.170 0.764 0.019 0.078 0.139 0.841 

SVR 0.050 0.130 0.224 0.590 0.042 0.134 0.205 0.654 0.031 0.115 0.175 0.749 

DT 0.075 0.153 0.273 0.388 0.043 0.107 0.207 0.648 0.019 0.072 0.137 0.845 

LR 0.115 0.251 0.339 0.057 0.114 0.251 0.338 0.066 0.114 0.250 0.337 0.069 

Ensemble Learning 

XGBoost 0.043 0.126 0.207 0.650 0.024 0.088 0.155 0.802 0.009 0.056 0.096 0.925 

RF 0.045 0.127 0.213 0.627 0.028 0.103 0.167 0.772 0.011 0.069 0.107 0.906 

GB 0.055 0.157 0.235 0.549 0.038 0.122 0.194 0.692 0.032 0.116 0.178 0.741 

AdaBoost 0.056 0.136 0.236 0.545 0.047 0.153 0.218 0.611 0.047 0.152 0.217 0.613 

DL 

LSTM 0.044 0.130 0.211 0.635 0.040 0.125 0.200 0.673 0.064 0.167 0.253 0.474 

GRU 0.045 0.132 0.211 0.634 0.038 0.126 0.195 0.689 0.028 0.111 0.167 0.772 
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5-3- Cooling Ventilation 

The analysis of machine learning models for predicting CV reveals several vital findings (refer to Table 13 for detailed 

results). KNN performed well across datasets (1420 and 1424) and feature sets (3, 5, all features), achieving competitive 

MSE and RMSE values. Notably, it exhibited relatively high R-squared values in dataset 1420, suggesting a good fit to 

the data. Among ensemble learning methods, RF emerged as the top performer. It consistently achieved the lowest MSE 

and RMSE values across datasets and feature sets. This strong performance is further supported by high R-squared 

values, indicating both predictive solid power and an excellent fit for the data. RF's ability to handle complex data 

relationships likely contributes to its superior performance. LSTM and GRU models showed promising results. These 

models performed consistently well across datasets and feature sets, with competitive MSE and RMSE values. 

Additionally, both models achieved relatively high R-squared values, indicating their capability to capture underlying 

patterns in the data and make accurate predictions. 

Table 12. Evaluation of Models on 7341 and BWS Weather Station dataset in TC Prediction 

7341.000 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.131 0.259 0.362 -0.073 0.042 0.120 0.204 0.658 0.033 0.108 0.182 0.727 

SVR 0.127 0.231 0.356 -0.041 0.048 0.141 0.218 0.610 0.034 0.122 0.184 0.722 

DT 0.217 0.307 0.466 -0.780 0.055 0.126 0.235 0.547 0.023 0.078 0.151 0.813 

LR 0.115 0.253 0.340 0.053 0.114 0.251 0.337 0.067 0.113 0.251 0.336 0.073 

Ensemble Learning 

XGBoost 0.130 0.262 0.361 -0.066 0.030 0.101 0.173 0.754 0.011 0.060 0.104 0.911 

RF 0.118 0.251 0.344 0.033 0.033 0.112 0.181 0.731 0.013 0.073 0.113 0.894 

GB 0.110 0.247 0.331 0.099 0.038 0.122 0.195 0.687 0.032 0.117 0.179 0.737 

AdaBoost 0.130 0.288 0.361 -0.069 0.049 0.159 0.222 0.597 0.056 0.187 0.236 0.542 

DL 

LSTM 0.111 0.244 0.333 0.094 0.048 0.143 0.218 0.609 0.057 0.158 0.238 0.536 

GRU 0.111 0.244 0.334 0.088 0.041 0.122 0.203 0.663 0.034 0.114 0.184 0.723 

BWS 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.029 0.093 0.170 0.764 0.025 0.085 0.159 0.793 0.016 0.072 0.128 0.865 

SVR 0.028 0.114 0.167 0.770 0.024 0.096 0.154 0.805 0.015 0.081 0.124 0.874 

DT 0.045 0.153 0.211 0.634 0.039 0.099 0.198 0.678 0.017 0.069 0.131 0.859 

LR 0.049 0.118 0.221 0.601 0.043 0.149 0.208 0.647 0.039 0.141 0.199 0.677 

Ensemble Learning 

XGBoost 0.025 0.089 0.158 0.796 0.020 0.076 0.141 0.838 0.007 0.051 0.085 0.941 

RF 0.027 0.091 0.164 0.780 0.021 0.078 0.147 0.824 0.008 0.050 0.088 0.936 

GB 0.029 0.092 0.169 0.765 0.022 0.082 0.149 0.817 0.013 0.070 0.116 0.890 

AdaBoost 0.030 0.110 0.173 0.753 0.033 0.136 0.183 0.726 0.037 0.168 0.193 0.693 

DL 

LSTM 0.028 0.095 0.169 0.767 0.025 0.093 0.158 0.795 0.023 0.096 0.151 0.814 

GRU 0.027 0.097 0.164 0.778 0.024 0.091 0.156 0.801 0.026 0.115 0.161 0.817 
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Table 13. Evaluation of Models on 1420 and 1424 Weather Station dataset in CV Prediction 

1420 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2 

Machine Learning 

KNN 0.021 0.088 0.147 -0.063 0.009 0.049 0.092 0.579 0.007 0.047 0.086 0.633 

SVR 0.021 0.105 0.146 -0.050 0.011 0.070 0.107 0.434 0.009 0.066 0.095 0.556 

DT 0.030 0.096 0.173 -0.474 0.014 0.055 0.116 0.330 0.008 0.043 0.087 0.627 

LR 0.019 0.085 0.140 0.036 0.019 0.084 0.138 0.058 0.019 0.084 0.137 0.066 

Ensemble Learning 

XGBoost 0.020 0.085 0.140 0.029 0.008 0.051 0.092 0.584 0.004 0.039 0.064 0.797 

RF 0.022 0.089 0.149 -0.098 0.007 0.046 0.085 0.641 0.004 0.034 0.061 0.818 

GB 0.018 0.083 0.135 0.095 0.010 0.054 0.099 0.511 0.009 0.054 0.095 0.558 

AdaBoost 0.028 0.123 0.166 -0.366 0.014 0.080 0.118 0.306 0.017 0.101 0.131 0.151 

Deep Learning 

LSTM 0.018 0.082 0.135 0.093 0.011 0.061 0.107 0.437 0.014 0.068 0.117 0.323 

GRU 0.037 0.115 0.191 -0.108 0.010 0.057 0.101 0.493 0.012 0.067 0.108 0.421 

1424 

Algorithm MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2 

Machine Learning 

KNN 0.012 0.057 0.110 0.402 0.008 0.045 0.087 0.625 0.006 0.041 0.076 0.712 

SVR 0.013 0.075 0.113 0.364 0.011 0.067 0.105 0.451 0.009 0.064 0.094 0.560 

DT 0.017 0.065 0.131 0.148 0.013 0.053 0.112 0.376 0.007 0.041 0.083 0.660 

LR 0.019 0.085 0.140 0.036 0.019 0.085 0.139 0.048 0.019 0.084 0.138 0.056 

Ensemble Learning 

XGBoost 0.011 0.056 0.106 0.449 0.008 0.050 0.089 0.611 0.004 0.038 0.065 0.793 

RF 0.013 0.059 0.116 0.339 0.007 0.044 0.083 0.662 0.003 0.033 0.058 0.832 

GB 0.010 0.055 0.102 0.481 0.010 0.054 0.099 0.513 0.009 0.053 0.093 0.568 

AdaBoost 0.013 0.068 0.113 0.372 0.018 0.102 0.135 0.102 0.014 0.087 0.119 0.294 

Deep Learning 

LSTM 0.011 0.055 0.105 0.457 0.010 0.057 0.100 0.500 0.013 0.070 0.115 0.349 

GRU 0.011 0.058 0.105 0.453 0.010 0.057 0.099 0.512 0.010 0.055 0.102 0.490 

Focusing on weather stations 7341 and BWS (see to Table 14), the analysis of ensemble learning methods for CV 

prediction reveals the following: SVR emerged as the top performer across all feature sets for both stations. Consistent 

MSE, RMSE, and high R2 values indicate its effectiveness in predicting CV, demonstrating robust predictive power with 

a good fit to the data. The DT algorithm also performed well, particularly in station 7341. Here, it showed promising 

results with lower MSE and RMSE values compared to other models. RF emerged as the best performing model with 

consistently lowest MSE, RMSE, and high R2 values. This suggests superior prediction capabilities and good pattern 

recognition for CV across both stations.  GB exhibited competitive performance, particularly in station 7341, with 

relatively low MSE and RMSE values. 

Finally, the analysis of deep learning models for CV prediction in stations 7341 and BWS yielded promising results: 

both LSTM and GRU models demonstrated promising results. They consistently achieved low MSE and RMSE values 

across datasets, indicating their effectiveness in predicting CV. Furthermore, high R2 values suggest their capability to 

capture complex patterns in the data and make accurate predictions. 

The superior performance of RF in predicting CV can be attributed to its ensemble learning approach, which combines 

multiple decision trees to enhance predictive accuracy and handle complex data relationships effectively. RF's ability to 

manage high-dimensional datasets and mitigate overfitting through averaging the results of various trees contributes to 

its consistently low MSE and RMSE values, alongside high R² values, indicating a strong fit to the data. This robustness 

allows RF to capture intricate patterns and variability within the datasets, making it the top performer across multiple 

weather stations and feature sets. Its flexibility and strength in feature importance ranking also provide valuable insights, 

further solidifying its dominance in predictive modeling for CV. 
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5-4- Free Cooling 

This section analysis the performance of the considered models for predicting FC loads across weather stations (1420, 

1424, 7341, and BWS) and feature sets (refer to Table 15 and 16 for detailed results). 

KNN emerged as the top performer among ML models for all stations when using all features. It achieved consistent 

performance with MSE around 0.002, MAE around 0.02, RMSE around 0.04, and R2 around 0.6-0.7. XGBoost 

dominated the ensemble learning category across all stations and feature sets. It achieved superior performance with the 

lowest MSE (around 0.001), MAE (around 0.015), RMSE (around 0.028), and the highest R2 (around 0.8) values, 

indicating strong accuracy and reliability in predicting FC loads. Finally, focusing on DL models, LSTM networks 

showed some promise, particularly with a moderate number of features (3 for stations 1424 and 7341, 5 for BWS). 

However, their performance generally declined when using all features, suggesting limitations in handling highly 

complex datasets. This highlights the need for further optimization techniques for LSTM models for FC prediction. 

XGBoost's dominance in predicting FC loads across all weather stations and feature sets can be attributed to its robust 

ensemble learning mechanism, which combines the predictions of multiple weak learners to achieve high accuracy and 

reliability. Its ability to handle complex data relationships and prevent overfitting through regularization techniques 

contributes to its superior performance metrics, such as the lowest MSE, MAE, and RMSE values and the highest R² 

values. Additionally, XGBoost's efficiency in handling large datasets and feature interactions ensures strong predictive 

power, making it the most effective model for FC load prediction in this study. 

Table 14. Evaluation of Models on 1420 and 1424 Weather Station dataset in CV Prediction 

7341 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2 

Machine Learning 

KNN 0.020 0.085 0.143 0.625 0.010 0.053 0.100 0.501 0.008 0.050 0.092 0.581 

SVR 0.020 0.101 0.142 0.629 0.012 0.070 0.109 0.409 0.010 0.068 0.098 0.528 

DT 0.031 0.101 0.176 0.430 0.014 0.057 0.117 0.324 0.007 0.043 0.085 0.643 

LR 0.051 0.180 0.226 0.061 0.019 0.085 0.138 0.053 0.019 0.084 0.138 0.063 

Ensemble Learning 

XGBoost 0.020 0.086 0.141 0.018 0.009 0.054 0.095 0.557 0.004 0.040 0.067 0.778 

RF 0.022 0.090 0.147 -0.067 0.008 0.048 0.090 0.600 0.004 0.035 0.061 0.813 

GB 0.018 0.083 0.135 0.101 0.010 0.054 0.099 0.513 0.009 0.054 0.095 0.558 

AdaBoost 0.028 0.122 0.167 -0.386 0.012 0.068 0.108 0.419 0.013 0.081 0.116 0.333 

Deep Learning 

LSTM 0.018 0.086 0.136 0.087 0.011 0.063 0.107 0.438 0.014 0.072 0.119 0.304 

GRU 0.018 0.086 0.135 0.093 0.011 0.060 0.103 0.478 0.014 0.071 0.118 0.309 

BWS 

Algorithm MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2 

Machine Learning 

KNN 0.007 0.044 0.086 0.633 0.007 0.043 0.084 0.648 0.005 0.038 0.072 0.747 

SVR 0.010 0.078 0.100 0.506 0.009 0.069 0.093 0.575 0.006 0.054 0.074 0.726 

DT 0.012 0.053 0.111 0.386 0.012 0.051 0.108 0.425 0.005 0.037 0.073 0.733 

LR 0.012 0.070 0.109 0.410 0.012 0.069 0.108 0.426 0.011 0.067 0.105 0.453 

Ensemble Learning 

XGBoost 0.008 0.044 0.088 0.616 0.006 0.041 0.078 0.698 0.003 0.030 0.052 0.865 

RF 0.007 0.044 0.085 0.646 0.006 0.041 0.076 0.716 0.003 0.030 0.052 0.867 

GB 0.007 0.043 0.081 0.673 0.006 0.042 0.078 0.696 0.004 0.035 0.061 0.818 

AdaBoost 0.008 0.055 0.090 0.598 0.008 0.055 0.090 0.600 0.007 0.058 0.085 0.641 

Deep Learning 

LSTM 0.007 0.046 0.084 0.650 0.007 0.044 0.081 0.673 0.006 0.045 0.079 0.690 

GRU 0.007 0.048 0.084 0.648 0.007 0.047 0.081 0.673 0.006 0.044 0.078 0.699 
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Table 15. Evaluation of Models on 1420 and 1424 Weather Station dataset in FC Prediction 

1420 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.003 0.034 0.055 0.389 0.002 0.028 0.047 0.550 0.002 0.023 0.041 0.667 

SVR 0.006 0.069 0.079 -0.261 0.006 0.065 0.075 -0.134 0.004 0.053 0.062 0.219 

DT 0.003 0.033 0.052 0.457 0.004 0.032 0.062 0.225 0.002 0.018 0.041 0.668 

LR 0.005 0.060 0.069 0.046 0.005 0.059 0.069 0.058 0.005 0.059 0.068 0.066 

Ensemble Learning 

XGBoost 0.003 0.033 0.052 0.457 0.002 0.027 0.046 0.567 0.001 0.016 0.028 0.839 

RF 0.003 0.033 0.052 0.457 0.002 0.031 0.048 0.531 0.001 0.022 0.034 0.764 

GB 0.003 0.034 0.052 0.455 0.003 0.034 0.051 0.474 0.002 0.032 0.048 0.539 

AdaBoost 0.003 0.042 0.058 0.330 0.004 0.050 0.064 0.178 0.005 0.061 0.072 -0.049 

DL 

LSTM 0.003 0.038 0.053 0.428 0.003 0.037 0.053 0.444 0.004 0.053 0.065 0.158 

GRU 0.003 0.038 0.054 0.421 0.003 0.036 0.053 0.442 0.005 0.062 0.070 0.010 

1424 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.003 0.033 0.052 0.457 0.002 0.024 0.043 0.632 0.001 0.020 0.037 0.732 

SVR 0.003 0.034 0.055 0.389 0.003 0.027 0.056 0.372 0.002 0.017 0.039 0.689 

DT 0.005 0.060 0.069 0.046 0.005 0.059 0.069 0.053 0.004 0.054 0.063 0.202 

LR 0.006 0.069 0.079 -0.261 0.005 0.061 0.070 0.013 0.005 0.059 0.069 0.053 

Ensemble Learning 

XGBoost 0.003 0.033 0.052 0.458 0.002 0.023 0.041 0.658 0.001 0.015 0.028 0.843 

RF 0.003 0.033 0.052 0.457 0.002 0.028 0.044 0.607 0.001 0.022 0.035 0.757 

GB 0.003 0.034 0.052 0.455 0.002 0.032 0.049 0.514 0.002 0.032 0.048 0.539 

AdaBoost 0.003 0.042 0.059 0.307 0.004 0.053 0.065 0.161 0.006 0.065 0.078 -0.235 

DL 

LSTM 0.003 0.038 0.054 0.424 0.003 0.042 0.055 0.391 0.004 0.051 0.063 0.198 

GRU 0.003 0.036 0.054 0.414 0.003 0.036 0.052 0.466 0.003 0.037 0.054 0.420 

Table 16. Evaluation of Models on 7341 and BWS Weather Station dataset in FC Prediction 

7341 

3-Features 5-Features All-Features 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.003 0.034 0.055 0.389 0.003 0.031 0.051 0.486 0.002 0.026 0.043 0.626 

SVR 0.006 0.069 0.079 -0.261 0.006 0.064 0.074 -0.108 0.004 0.054 0.063 0.200 

DT 0.003 0.033 0.052 0.457 0.004 0.034 0.065 0.162 0.002 0.019 0.042 0.651 

LR 0.005 0.060 0.069 0.046 0.005 0.059 0.069 0.057 0.005 0.059 0.069 0.057 

Ensemble Learning 

XGBoost 0.003 0.033 0.052 0.457 0.002 0.029 0.047 0.551 0.001 0.016 0.029 0.826 

RF 0.003 0.033 0.052 0.457 0.002 0.033 0.050 0.507 0.001 0.023 0.036 0.747 

GB 0.003 0.034 0.052 0.455 0.003 0.034 0.052 0.468 0.002 0.032 0.048 0.536 

AdaBoost 0.003 0.042 0.059 0.312 0.005 0.059 0.071 -0.002 0.005 0.062 0.073 -0.077 

DL 

LSTM 0.003 0.038 0.053 0.428 0.003 0.039 0.054 0.415 0.004 0.056 0.066 0.124 

GRU 0.003 0.037 0.053 0.430 0.003 0.037 0.053 0.434 0.005 0.063 0.071 -0.016 
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BWS 

Algorithm MSE MAE RMSE R² MSE MAE RMSE R² MSE MAE RMSE R² 

ML 

KNN 0.002 0.026 0.046 0.582 0.001 0.020 0.036 0.737 0.001 0.018 0.034 0.773 

SVR 0.003 0.040 0.054 0.408 0.002 0.023 0.047 0.564 0.001 0.018 0.039 0.703 

DT 0.004 0.032 0.061 0.262 0.003 0.040 0.051 0.485 0.003 0.042 0.052 0.466 

LR 0.004 0.057 0.067 0.109 0.003 0.039 0.053 0.434 0.003 0.039 0.052 0.453 

Ensemble Learning 

XGBoost 0.002 0.026 0.044 0.610 0.001 0.018 0.033 0.778 0.001 0.014 0.027 0.856 

RF 0.002 0.026 0.045 0.593 0.001 0.019 0.034 0.770 0.001 0.015 0.027 0.851 

GB 0.002 0.026 0.046 0.568 0.001 0.022 0.038 0.718 0.001 0.020 0.035 0.756 

AdaBoost 0.002 0.029 0.048 0.538 0.003 0.043 0.054 0.408 0.004 0.051 0.061 0.244 

DL 

LSTM 0.002 0.029 0.046 0.580 0.002 0.026 0.040 0.678 0.002 0.029 0.044 0.618 

GRU 0.002 0.028 0.045 0.588 0.002 0.026 0.040 0.686 0.002 0.024 0.039 0.695 

5-5- Comparison with Existing Techniques 

We emphasize comparing machine learning techniques specifically for predicting TC consumption (Table 17), as 

other aspects like cooling ventilation or free cooling present limited scope for comparison in existing studies due to 

factors such as different evaluation metrics, low-scale datasets, and insufficient granularity in temporal data analysis. 

This lack of scope highlights one of the novel contributions of our research. Table 17 summarizes the performance 

metrics of various models used for predicting TC consumption. Fan & Ding [49] provide RMSE values of 405.7 kW and 

an R² of 0.958 for their MNR model, though MSE and MAE metrics are not available, limiting a full assessment of their 

model’s accuracy. He et al. [50] utilize an LSTM-ANN model, reporting an MAE of 111.95 and RMSE of 140.95 but 

omit MSE and R² values, which hampers a complete evaluation of their model’s performance. Bekdaş et al. [51] present 

a GBR model with negative MSE (-8.9397), MAE (-1.7699), and RMSE (-2.9843) but achieves an R² of 0.9949 

reflecting a high level of fit. Fan et al. [23] report an XGB model with an RMSE of 106.5 and an R² value but lacks MSE 

and MAE metrics, providing an incomplete view of its performance [23]. Myat et al. [52] use a MvFIF-PCA-LSTM 

model, showing an MAE of 9.06, RMSE of 0.015, and a very high R² of 99.68, with MSE not provided, suggesting 

exceptionally low error metrics. Our study, employing XGBoost, achieves an MSE of 0.011, MAE of 0.060, RMSE of 

0.104, and an R² of 0.911, indicating strong performance with comprehensive metrics. This focus on TC consumption, 

as opposed to other aspects, underscores the novelty and detailed contribution of our research to the field. 

Table 17. Comparing machine learning techniques 

Reference Year Technique MSE MAE RMSE R² 

Fan & Ding [49] 2019 MNR - - 405.7 (kW) 0.95 

He et al. [50] 2022 LSTM-ANN - 111.95 140.95 - 

Bekdaş et al. [51] 2023 GBR -8.9397 -1.7699 -2.9843 0.99 

Fan et al. [23] 2017 XGB  71.6 106.5 - 

Myat et al. [52] 2024 MyFIF-PCA-LSTM - 9.06 0.015 0.99 

This study 2024 XGBoost 0.011 0.060 0.104 0.911 

5-6- Discussion 

This section discusses the performance of various models for predicting different cooling needs across weather 

stations. Starting from Cooling Consumption (CC), RF consistently emerged as the top performer for both stations 1420 

and 1424 across all feature sets. This can be attributed to RF's ability to handle non-linear relationships and high-

dimensional data effectively, leading to superior accuracy. Notably, in station 1424, RF achieved an R2 value of 0.841 

with all features, highlighting its strength in capturing complex data patterns. Regarding feature sets, including more 

features generally improved model performance, suggesting that a comprehensive set of variables enhances prediction 

by capturing nuanced data relationships. Station 1424 exhibited better results compared to station 1420, possibly due to 

differences in data quality or environmental factors influencing CC demands. 
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Moving to FC, XGBoost consistently demonstrated the best performance across all feature sets and weather stations 

for FC prediction. Its ensemble learning approach, combining the strengths of multiple DT, enables the effective capture 

of intricate data patterns, resulting in superior accuracy. In station 1424, XGBoost achieved an impressive R² value of 

0.922 with all features, indicating its efficacy in predicting FC loads. A moderate number of features yielded optimal 

results for FC prediction, suggesting a balance between capturing relevant information and avoiding overfitting. Station 

1424 again exhibited better performance than station 1420, suggesting potential variations in environmental conditions 

influencing FC requirements. 

With respect to CV, several models, including SVR, RF, LSTM, and GRU, emerged as top performers for predicting 

CV across various datasets. SVR's strength lies in handling complex relationships and high-dimensional data, while RF's 

ensemble nature reduces overfitting. LSTM and GRU, as deep learning models, excel in capturing temporal 

dependencies, which is crucial for modeling CV dynamics. Key variables like temperature, humidity, airflow rate, and 

equipment status significantly impact prediction accuracy. The inclusion of comprehensive feature sets further enhances 

predictive power by offering a holistic view of system dynamics. 

Finally, considering TC, similar to FC prediction, XGBoost emerged as the top performer across both weather 

stations, 7341 and BWS, achieving consistently high R2 values across different feature sets. XGBoost's ensemble 

learning methodology allows it to handle complex data relationships, making it well-suited for TC prediction tasks. For 

instance, in station 7341, XGBoost achieved an R2 value of 0.911 with all features, displaying its ability to accurately 

predict TC demands. Notably, a balanced selection of features, including both environmental and operational variables, 

contributed to the models' predictive efficacy. Station 7341 presented slightly better results compared to station BWS, 

indicating potential differences in cooling load dynamics influenced by location-specific factors. 

More importantly, the scalability of these findings to other buildings or geographic locations with different climate 

conditions and building characteristics depends on several factors. While the models demonstrated strong performance 

for the ECB building, their effectiveness in other settings may vary due to differences in local weather patterns, building 

designs, and operational conditions. To enhance scalability, it would be beneficial to validate the models on diverse 

datasets from various geographic regions and building types.   

The study acknowledges the complexity of machine learning models, particularly ensemble and deep learning 

approaches, which can pose challenges in terms of interpretability and practical application [53]. To ensure that the 

model's predictions are both understandable and actionable for building managers, the study emphasizes the use of 

feature importance metrics and sensitivity analysis to highlight the most influential factors driving the predictions, 

making it easier for managers to grasp key contributors to cooling demand. 

6- Conclusion 

This study has significantly advanced the field of cooling consumption forecasting by rigorously evaluating various 

ML and DL models to optimize energy management in interconnected HVAC systems. The analysis underscored the 

critical role of accurate predictions in enhancing the efficiency and sustainability of building energy systems. Our 

comprehensive evaluation utilized a diverse set of ML algorithms, including KNN, DT, SVR, LR, RF, GB, XGBoost, 

Adaboost, LSTM, and GRU models across multiple weather stations and feature sets. The study specifically focused on 

four key cooling systems: CC, CV, FC, and TC, leveraging data from four weather stations relevant to the ECB building 

in Frankfurt. The fundamental findings are as follows: Random Forest emerged as the strongest performer for overall 

cooling prediction, demonstrating its ability to capture intricate data relationships. XGBoost excelled in free cooling 

prediction, showcasing the efficacy of ensemble learning methods in this domain. Comprehensive feature sets 

significantly improved model performance by capturing the complex interactions between environmental and 

operational variables. Variations in performance across stations emphasized the influence of location-specific factors on 

cooling demand dynamics, highlighting the need for tailored prediction approaches. 

Future research will consider advanced feature engineering techniques such as feature selection algorithms, 

dimensionality reduction, and domain-specific feature creation. This would allow models to identify the most influential 

variables, leading to improved accuracy and interpretability. Moreover, integrating real-time data from Internet of Things 

(IoT) sensors, weather forecasts, and building management systems would enable models to adapt dynamically to 

changing conditions. This would enhance predictive capabilities for optimized cooling load management. 
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