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Abstract 

According to the World Health Organization's (WHO) external situation report on the multi-

country outbreak of Monkeypox in 2023, from 11 countries in Southeast Asia Regions, Thailand 

recorded the highest reported cases, totaling 461. The ongoing Monkeypox outbreak has raised 

significant public health concerns due to its rapid spread across several nations. Early detection 

and diagnosis are imperative for effectively treating and controlling Monkeypox. Given this 

context, this study aimed to determine the most efficient model for detecting Monkeypox by 
employing interpretable deep learning techniques. This study utilizes deep learning techniques to 

diagnose Monkeypox based on images of skin lesions. We evaluate based on four models—

convolutional neural network (CNN), gated recurrent unit (GRU), long short-term memory 
(LSTM), and bidirectional long short term memory (BiLSTM)—using a publicly available dataset. 

Additionally, we incorporate Local Interpretable Model-Agnostic Explanations (LIME) and 

techniques for explainable AI, facilitating visual interpretation of model predictions for healthcare 
practitioners. The CNN model's performance and LSTM model's performance have an accuracy of 

100%, while the GRU model's performance and BiLSTM model's performance have an accuracy 

of 99.88% and 99.45%. Our findings demonstrate the effectiveness of deep learning models, 
including the suggested CNN model leveraging the pre-trained MobileNetV2 and LSTM. These 

models can play a pivotal role in combating the Monkeypox virus. 
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1- Introduction 

While Covid-19 was still occurring in 2022, the world was again shocked by the emergence of the Monkeypox 

virus in May 2022 [1]. The reported cases of Monkeypox to the World Health Organization (WHO) now exceed the 

cumulative total from all previous years. On May 5, three years after the declaration of COVID-19 as a pandemic, the 

WHO announced the conclusion of the global Public Health Emergency (PHE) for COVID-19 [2]. In 1958, 

Monkeypox was initially detected in the rural rainforest regions of West Africa, which are among the world's most 

impoverished and underprivileged areas [3]. The initial human infection of Monkeypox in 1970 was identified in the 

Democratic Republic of the Congo (DRC) [4, 5]. Subsequently, the next Monkeypox outbreak was documented in 

2003 in the DRC, followed by occurrences in 2005 in South Sudan and 2017 in Nigeria [6, 7]. Monkeypox outbreaks 

in regions beyond Africa in 2003 were documented in the Midwest states of the United States, followed by 

occurrences in the United Kingdom, Israel, and Singapore [6, 8]. Despite a lull in Monkeypox infections, a solitary 

case emerged in an individual who had traveled from Nigeria to the UK on May 7, 2022 [9, 10]. Subsequently, on July 

23, 2022, the World Health Organization (WHO) announced the intensifying global Monkeypox outbreak as a Public 

Health Emergency of International Concern (PHEIC) due to the rapid surge in cases and the severity of the situation 
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[1, 11]. Between January 1, 2022 to September 30, 2023, WHO recorded a total of 91,123 laboratory-confirmed cases 

of Monkeypox, along with 157 fatalities, across 115 countries [12, 13]. In September 2023, the most heavily impacted 

areas, ranked by case count, were in some regions, such as the Western Pacific, Europe, South-East Asia, America, 

and Africa. A single case was also documented in the Eastern Mediterranean Region [12, 13]. 

Thailand, the researcher's residence, which is included in the Southeast Asia Region, experiences an increase in 

Monkeypox every month, the most common case compared to other Southeast Asia Region countries [12, 13]. A 

significant increase in cases in recent months has been reported in Thailand, with 48 new cases in June, 80 in July, 145 

in August, and 461 in September 2023. So far, only one Monkeypox-related death has been recorded among the 461 

reported cases in an immune compromised patient (case fatality ratio 0.30%). While the outbreak was initially 

centered in Bangkok, it has expanded, with cases reported in 28 of the 76 national provinces. Most cases (95%) do not 

have a recent travel history, suggesting local virus acquisition. Most of the reported cases involve adults and young 

males, particularly those who are men engaging in same-sex activity [12, 13]. 

Monkeypox is a zoonotic illness caused by members of the Orthopoxvirus genus within the Poxviridae family [14]. 

This genus encompasses viruses like variola (responsible for smallpox), vaccinia (utilized in smallpox vaccines), and 

cowpox [15]. Monkeypox transmission can occur through contact with an infected animal, person, or contaminated 

objects [16]. The virus can additionally traverse the placenta from a pregnant woman to the fetus. The Monkeypox 

virus from animals to humans can be transmitted via bites or scratches from infected animals, during the handling or 

processing of game animals, or through products derived from infected animals [17]. The virus can disseminate 

through direct contact with an infected individual's bodily fluids or wounds or with objects contaminated by these 

fluids or wounds, like clothing or bedding. It can be transferred from an infected person to another healthy person 

through direct interaction with infected wounds, scabs, or bodily fluids [18]. Moreover, respiratory droplets can 

propagate the illness during prolonged proximity to an infected person [19]. 

Efficient and prompt prevention and diagnosis of this disease are crucial to curbing its global spread. The 

conventional method is employed for diagnosing this infectious ailment, wherein medical professionals detect 

Monkeypox disease through fluid swabs from skin rashes. Confirmation of Monkeypox infection can be attained 

through diagnostic testing, such as amplifying viral genetic material by polymerase chain reaction from samples of 

skin vesicular fluid [20]. However, manual interpretation of gene sequence data demands expertise and consumes 

time. This approach has several drawbacks, including the need for medical expertise, high costs, slow processing, and 

often unsatisfactory results [21]. Deep learning technologies could aid in preventing and detecting this infectious 

disease. 

Modern machine learning approaches, such as deep learning, have advanced significantly in recent years. This 

progress was made feasible by the availability of large datasets, enhanced computational capabilities, and broader 

access to cutting-edge technologies. Consequently, artificial intelligence and machine learning have evolved from 

theoretical concepts confined to research labs to practical and widely applicable tools across various commercial 

sectors [22]. The healthcare sector has experienced significant expansion in utilizing machine learning methods 

[23]. Deep learning has garnered attention in health informatics, presenting advantages in extracting features and 

classifying data [24]. Deep learning models often incorporate numerous hidden neurons and layers, a departure from 

conventional neural network structures. This decision is influenced by the volume of raw data available while 

learning, allowing for using more neurons [25]. Deep learning approaches are based on representation learning, a 

process that develops nonlinear components layer per layer to achieve ever more profound levels of depiction. 

Every layer refines the depiction from one form to another, eventually leading to a broader representation, allowing 

for the automated development of a feature set [26, 27]. The automatic generation of feature sets without human 

interaction presents notable benefits in health informatics. Clinical image processing is a sector in which deep 

learning has been successfully used [28].  

Without laboratory PCR-based diagnostics, clinical diagnoses of Monkeypox infection frequently rely on 

professional evaluation of distinctive skin lesions. The WHO declared the increasing worldwide Monkeypox epidemic 

as a public health emergency of international concern in 2022, and several researchers have investigated the utilization 

of deep learning techniques to streamline the automated detection and classification of Monkeypox-associated skin 

lesions from medical imaging data. The potential for Monkeypox to trigger the next pandemic underscores the urgent 

need for efficient resource allocation. Deep learning offers valuable contributions in various aspects, notably in disease 

diagnosis. Table 1 compares prior studies employing deep learning predictions for diagnosing the Monkeypox virus. 

Convolutional neural networks (CNNs) are extensively used in clinical image processing due to their proficiency in 

picture analysis and capacity to harness Graphics Processing Units (GPUs) [29-33]. Recently, there has been 

significant growth in the application of Deep Learning in therapeutic settings, demonstrating impressive advancements 
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in performance. A range of Deep Learning and Artificial Intelligence models, including bidirectional long short-term 

memory (BiLSTM), SVM, K-NN, DT, Artificial Neural Network (ANN), and long short-term memory (LSTM), have 

been utilized for the classification of Monkeypox images [29-37].  

A significant challenge in deploying deep learning solutions in medical contexts is the inherent "black-box" 

character of these predictions. This opacity means that medical professionals may need to fully comprehend the 

reasoning behind specific machine predictions [38]. The deep learning models in prior research were essentially 

opaque, offering no clear explanation for their predictions in a format understandable to humans [39]. As a result, 

clinicians needed more trust in this technology, as transparency and interpretability are crucial for its acceptance and 

utilization in clinical environments. For a medical diagnostic system to earn the trust of clinicians, officers, and 

patients, it must be transparent, understandable, and capable of explaining its decisions. Ideally, it should elucidate all 

stakeholders' decision-making processes [40]. The proposed approach suggests an explainable deep learning-based 

diagnostic system designed to efficiently and promptly detect the Monkeypox virus. To instill trust within the medical 

community, we propose combining understandable artificial intelligence methods, for instance, Local Interpretable 

Model-Agnostic Explanations (LIME) [41] and Gradient-weighted Class Activation Mapping (Grad-CAM) [42]. The 

remainder of this study is as follows: Section 2 delves into the available literature surrounding Monkeypox diagnosis. 

Section 3 describes the transfer learning mechanism used. The results derived from the deep learning classifiers are 

deliberated in Section 4. Section 5 summarizes the findings and discusses the following directions. This study's 

favorable outcomes indicate this approach's superiority over current methodologies. The dataset used in this study 

comes from the Kaggle web repository [43]. 

2- Related Works 

Table 1 compares prior studies employing deep learning predictions for diagnosing the Monkeypox virus. 

Abdelhamid et al. [29] devised an image categorization algorithm named "AI-Biruni-Earth-Radius" by leveraging the 

GoogLeNet deep neural network for feature extraction; they achieved a peak accuracy of 98.8% in identifying 

Monkeypox within a multiclass dataset. Akin et al. [30] used Explainable Artificial Intelligence (XAI) and CNN to 

categorize Monkeypox skin lesion photos. Twelve deep-learning models were used to divide 572 skin lesion photos 

into two categories, and the MobileNetV2 model achieved the greatest accuracy, at 98.25%. Alakus & Baykara [34] 

employed sophisticated machine learning methods to distinguish Monkeypox from blisters by DNA sequencing. Their 

classification process comprised three stages, and the classifiers attained the maximum precision of 96.08%. They 

suggested that DNA sequences could be a diagnostic tool for distinguishing the Monkeypox virus from other 

comparable illnesses such as smallpox and measles. Khafaga et al. [36] utilized a deep CNN to group Monkeypox 

images sourced from Kaggle. The dataset comprised 293 normal, 279 Monkeypox, 107 Chickenpox, and 91 Measles. 

The model achieved a maximum precision of 98.83%. Eid et al. [35] introduced a method centered on an LSTM deep 

network, incorporating several optimization techniques. The outcomes, analyzed with various optimization methods 

using statistical techniques, achieved a maximum accuracy of 97%. In a separate study, Manohar & Das [37] utilized 

ANN along with optimization and K-Fold cross-validation strategies on a dataset of skin images for detecting 

Monkeypox disease, achieving an accuracy of 98%. 

Additionally, the findings were compared with previously utilized LSTM and Gated Recurrent Unit (GRU) 

models. Sahin et al. [31] devised a mobile app to identify Monkeypox using video footage of blisters collected and 

posted to Android cellphones. They built the program in Java, with a handheld gadget capturing photos and 

transmitting them to a CNN model. The CNN-based model, which was trained and evaluated using Matlab software 

linked with TensorFlow and TensorFlow Lite, obtained a maximum reliability of 91.11%. Sitaula & Shahi [32] 

applied deep learning techniques for Monkeypox virus diagnosis. They trained and tested thirteen diverse models on 

the dataset, creating a CNN-based prediction for classifying skin lesions into eight disease categories. To enhance the 

approach, they compared their solution against pre-trained VGG-16 models and further optimized the ensemble, which 

their models yielded an average accuracy of 87.13%. Nayak et al. [33] utilized various deep learning models, 

including GoogLeNet, Places365-GoogleNet, SqueezeNet, AlexNet, and ResNet-18 for detecting the Monkeypox 

virus and from that, achieved the highest accuracy of 99.49% with their approach. The objectives of this investigation 

are defined as follows: 

 Leveraging deep learning architectures like CNN, GRU, LSTM, and BiLSTM to achieve precise detection of the 

Monkeypox virus. 

 Assessing the efficacy of the prediction models based on essential metrics like accuracy, precision, recall, and 

F1-score, and doing a comparison study with previous studies. 

 Integrating LIME and Grad-CAM approaches to improve model readability allows for more in-depth knowledge 

of the reasons impacting their decisions. It establishes trust in the medical community about their usage. 

 Further exploration of the practical applications of these models for real-time and accurate diagnosis. 
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Table 1. Comparison of prior studies employing deep learning techniques for diagnosing the Monkeypox virus 

Author Dataset Models Used Best Accuracy  

Abdelhamid et al. (2022) [29] Kaggle CNN 98.80% 

Akin et al. (2022) [30] Kaggle CNN 98.25% 

Alakus & Baykara (2022) [34] DNA seqences of Monkeypox and human papilloma virus BiLSTM 96.08% 

Khafaga et al. (2022) [36] Kaggle CNN, SVM, K-NN, DT 98% 

Eid et al. (2022) [35] Kaggle LSTM, BiLSTM 97% 

Manohar & Das (2022) [37] Monkeypox skin lesion images from UCI ANN, CNN 98% 

Sahin et al. (2022) [31] Kaggle CNN 91.11% 

Sitaula & Shahi (2022) [32] Kaggle CNN 87.13% 

Nayak et al. (2023) [33] Kaggle CNN 99.49% 

3- Research Methodology  

The proposed method comprises five primary phases: data gathering, data preprocessing, model training, and 

model assessment. Initially, images of patients with Monkeypox are collected, with data augmentation techniques 

employed due to the constrained data availability aimed at generating supplementary images. During the data 

preprocessing phase, the gathered images are subjected to resizing, standardization, and data augmentation. This phase 

is crucial as it aims to enhance the model's performance. Hence, four prevalent models (CNN, GRU, LSTM, and 

BiLSTM) were chosen and compared to improve the model's accuracy in detecting the Monkeypox virus. During this 

model development step, preprocessed photos train the selected models. Throughout the training stage, the model gets 

photos and adjusts its parameters to improve performance. The last phase evaluates the model's performance using 

measures like accuracy, precision, recall, and the F1 score. The model with the highest efficiency is picked as the final 

model. As a result, the recommended technique analyzes patients' photos using deep learning approaches. Figure 1 

shows the proposed method. 

 

Figure 1. Proposed techniques 
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3-1- Data Collection 

The rising global prevalence of Monkeypox infection has drawn interest, prompting the investigation of early 

detection strategies for this infectious ailment. A pivotal component of these initiatives involves harnessing the 

capabilities of machine learning methods to detect and differentiate Monkeypox from other comparable diseases 

precisely. We gathered data and assembled datasets as a preliminary measure to embark on this endeavor. 

The dataset employed to train and validate our proposed model involves a binary classification task, distinguishing 

between Monkeypox and non-Monkeypox classes. This dataset was curated using images from the Internet and is 

publicly accessible on Kaggle, a community platform for data scientists and machine learning enthusiasts. Figure 2 

and Figure 3 display samples from the dataset, comprising RGB images with dimensions of 224×224 pixels. The 

dataset consists of 9900 images, with 5064 classified as monkeypox and 4836 as non-monkeypox. The dataset's size is 

approximately 513.25 MB. Monkeypox disease classification was conducted using CNN, GRU, LSTM, and BiLSTM 

models, implemented in the PyTorch framework within the Python programming language, utilizing the Google Colab 

integrated development environment (IDE) for experimentation. 

 

 Figure 2. Images of skin lesions on monkeypox sufferers 

 

Figure 3. Images (a) – (m): class monkeypox, images (n) – (z): class non-monkeypox or others 
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3-2- Data Preprocessing 

In this study, the preprocessing phase is critical in improving the quality and consistency of the data for image 

analysis. This involved resizing the images, standardizing their properties, and augmenting the dataset to ensure 

comprehensive coverage. 

3-2-1-Image Resizing and Image Normalization 

The preprocessing methodology was applied in prior experiments, such as resizing images, a technique used by 

scientists to transform input photos into precise dimensions suited for deep learning. While this process typically 

occurs before feeding images into the models, in some experiments, resizing is integrated into the network through a 

fully convolutional layer to mimic real-time scenarios to ensure that these models are not overfitting. In our study, all 

images were uniformly resized to 224×224 pixels to standardize dimensions, facilitating easier data processing by the 

model. In addition, normalization was used to reduce the influence of brightness and exposure fluctuations by scaling 

picture pixel amounts from 0 to 255 to a normalized range of zero to one. 

3-2-2-Data Augmentation 

The proposed augmentation procedures were utilized to diversify a data set and improve the capacity of the model 

to generalize [44]. The model encounters a broader spectrum of variations through these techniques, enabling it to 

discern the intrinsic features more effectively within the images. The data augmentation techniques employed include 

the following: (1) random cropping, which involves selecting a random center spot and cropping the picture to 

produce numerous variants; (2) rotating an image by certain angles, such as "45 degrees" done many times to produce 

various orientations; (3) adjusting color by adding or subtracting numbers to the red, green, and blue channels to 

induce color distortions (RGB); (4) To produce mirrored versions, flip the photos horizontally or vertically; (5) 

Changing the luminosity of pictures to make them either lighter or darker; and (6) transforming the pixels of the image 

by rearranging a set number of pixels to produce a variety of variants. These information augmentation strategies 

improved the dataset's variety and strengthened the model's generalization capacity, leading to a more precise and 

dependable classification of Monkeypox images. As a reference, augmented images are depicted in Figure 4. 

 

Figure 4. Augmented images 
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3-3- Data Preprocessing 

3-3-1-Convolutional Neural Networks (CNN) 

Convolutional neural networks use convolution operations instead of ordinary matrix multiplication in at least one 

layer. Figure 5 depicts the CNN design, which includes a completely connected layer of neurons, with every neuron in 

this layer coupled to each neuron in the layer directly underneath it [45]. The down-sampling technique in each 

pooling layer sub-region reduces individual neurons' dimensionality in the current layer by segmenting the neurons 

from the preceding layer into non-overlapping rectangular arrays. The two most popular pooling methods, maximum 

pooling, and average pooling extract the maximum or average value from each subarea. CNNs have an edge over 

multi-layer perceptrons (MLPs) in time series forecasting due to their ability to handle multivariate inputs and outputs. 

Additionally, CNNs can learn complex functional relationships without explicitly relying on lagged observations. 

Thus, the CNN model can glean the most pertinent representation for the prediction problem from a diverse array of 

inputs [46]. CNN encodes information using convolution layers rather than tightly coupled processing units (neurons) 

in hidden layers, as with classic neural networks. The CNN model consists of clustering, convolution, and linked 

layers, serving as its primary components. Depending on the specific objective, these layers can be dynamically 

adjusted in terms of number or type. Through convolutional layers, the model utilizes multiple convolution kernels to 

grasp feature representations from inputs. Given their hierarchical structure, CNNs excel in noisy sequences, 

progressively filtering out noise in each subsequent layer while retaining essential patterns [47]. The choice to use the 

convolution layer instead of a completely connected layer is primarily driven by the latter's tendency to require a 

substantial number of parameters, necessitating significant computational resources. In contrast, the outputs of a 

convolutional layer undergo processing through a non-linear activation function before being passed to the subsequent 

layer. In constructing a convolutional layer h for a 1-D signal input, a series of small filters (of size L×1) indexed k = 

1,..., Nk are utilized, as depicted in Equation 1. 

ℎ𝑖
𝑘 = 𝑓 (∑ 𝑤𝑙

𝑘𝐿
𝑙=1  𝑋𝑖+1 + 𝑏𝑘)                                     (1) 

A frequently chosen activation function for f (∙) is the rectified linear unit (ReLU). These layers can be integrated 

with other architectures to tackle more intricate tasks, such as GRU [47] or LSTM [48]. 

 

Figure 5. The basic architecture of convolutional neural networks (CNNs) [45] 

The pooling layer was placed between two successive convolutional layers, reducing the picture's overall size. 

Pooling layers are classified into two types: max-pooling, which selects the most significant value, and average-

pooling, which determines the average value from all neurons inside the preceding layer's clusters [49]. In the entirely 

networked layer, each neuron from a single layer is coupled to every single neuron in the following stratum. The 

outcome of the previous layer is used as the input for the initial ultimately linked layer. Before being fed into this 

layer, the final layer's output is changed from a matrix to a vector. Finally, this vector is delivered to the ultimately 

linked layer. 

3-3-2-Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit (GRU) is a potent adaptation of the traditional Recurrent Neural Network (RNN) and 

shares similarities with LSTM, employing a sophisticated filtering system to handle short-term memory difficulties 

[50]. Figure 6 illustrates the fundamental structure of the GRU [51]. Within the GRU, internal gates control and 

modulate the information flow, aiding in determining which information is crucial for retention or deletion within the 

GRU cell [52]. Consequently, essential information is propagated to facilitate accurate predictions [28, 53]. Forget 

gate and input gates are combined as well to create an update gate 𝑧𝑡 as shown in equation (2). The update gate 

manages the equilibrium between maintaining prior memory and absorbing fresh information. Here, 𝑥𝑡 denotes the 
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current input vector, while ℎ𝑡−1 represents the value derived from the preceding adjacent layer [54]. The parameter 𝑤𝑧 

refers to the trainable weight matrix associated with the update gate. 

𝑧𝑡 =  𝜎 (𝑤𝑧 . [ℎ𝑡−1, 𝑥𝑡])                                                                             (2) 

Additionally, in GRU, the current input is merged with the previous memory through the reset gate, denoted as 𝑟𝑡. 
This gate determines how the formula integrates the prior state with the new result, as seen in equation (3). 

𝑟𝑡 =  𝜎 (𝑤𝑟 . [ℎ𝑡−1, 𝑥𝑡])                                                                                                                                                    (3) 

Tanh represents a tangential hyperbolic function with a result range of (-1,1). Additionally, ℎ𝑡 represents the 

computed value for the current cell, as depicted in equations (4) and (5). Moreover, the basic architecture of GRU can 

be seen in Figure 6. 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑟𝑟 ∗  [ℎ𝑡−1, 𝑥𝑡])                                                                                                                                             (4) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1  +  𝑧𝑡 ∗  ℎ𝑡                                                                                                                                     (5) 

 

Figure 6. The basic architecture of gated recurrent unit (GRU) [51]  

3-3-3- Long Short Term Memory (LSTM) 

LSTM networks represent a distinct category of continuous neural networks designed to capture persistent 

dependencies in data [55]. Compared to simple recurrent neural networks, which may struggle to learn information 

from distant positions due to increasing gaps between predictions and relevant data, LSTM networks overcome this 

limitation, enhancing performance [56]. In contrast to the standard single-loop architecture, the LSTM network 

features a distinctive three-"gate" configuration comprising a forgetting gate, an input gate, and an output gate [57, 

58]. LSTM networks have shown substantial success across various applications and are extensively employed in 

image analysis tasks [59-62]. Most existing recurrent neural networks utilize the LSTM architecture [63, 64], and the 

fundamental structure of the LSTM neural network is depicted in Figure 7 [65]. The number σ denotes the function 

sigmoid, which generates outcomes that vary between 0 to 1; tanh refers to the hyperbolic tangent function, yielding 

outputs between -1 and 1; ℎ𝑡−1 represents the previous cell's output, while 𝑋𝑡 stands for the current cell's input. 

During the early stages of the LSTM neural net, it decides either to keep or discard data within cell state. The 

equation 6 shows the computing formula for the forgetting gate. 

𝑓𝑡 =  𝜎 (𝑊𝑓 . [ ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (6) 

here, 𝜎 denotes the function of sigmoid activation, 𝑓𝑡 represents the forgetting gate, ℎ𝑡−1 signifies the output at time 

𝑡 − 1, and 𝑋𝑡 indicates the input vector at time 𝑡. 𝑊𝑓 and 𝑏𝑓 are the weight and bias vectors for the forget gate, 

respectively. A number of 𝑓𝑡 nearing 0 implies the prior data has been discarded, while a value near 1 doesn't 

necessarily denote retention of the previous data. In the second phase of the LSTM neural network, the process 

involves deciding which new data to retain in the cell state. This involves two stages: Initially, the sigmoid layer 

decides which information requires updating, while the tanh layer produces a vector, denoted as 𝐶̃𝑡, serving as an 

alternative candidate value for updating, which is then incorporated into the cell state. After combining the two types 

of data, the resulting model generates novel data for updating the cell state. The computation for calculating the input 

gate is delineated by the following equations (Equations 7 and 8): 



Emerging Science Journal | Vol. 8, No. 5 

Page | 1883 

𝑖𝑡 =  𝜎 (𝑊𝑖  . [ℎ𝑡−1, 𝑋𝑡]+𝑏𝑖)                                                                                                                                              (7) 

𝐶̃𝑡 = tanh (𝑊𝐶 . [ℎ𝑡−1, 𝑋𝑡] +  𝑏𝐶)                                                                                                                                    (8)                     

With these equations, the term 𝜎 denotes a function of sigmoid-shaped activation, 𝑖𝑡 signifies the input gate, 𝑊𝑖 and 𝑏𝑖 

signify the weight and bias vectors of the input gate, while 𝑊𝐶 and 𝑏𝐶  represent the updated weights and biases, 

respectively. 

During the third stage of the LSTM neural network, the prior cell state 𝐶𝑡−1 undergoes an update process 

determined by 𝑓𝑡 and 𝑖𝑡. By multiplying 𝐶𝑡 and 𝐶𝑡−1 with 𝑓𝑡  redundant information is eliminated. The resulting new 

cell state 𝐶𝑡 is derived from the updated past state 𝐶𝑡−1, as described in Equation 9: 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶̃𝑡                                                                        (9) 

In the final stage of the LSTM neural network, we activate a layer with sigmoid shape to determine which fraction 

of the cell state will be output. The cell state is then processed using the function tanh to generate a value inside the 

range of -1 to 1, which is followed by multiplying by the output from the sigmoid gate. This process ensures that only 

the designated part of the output is produced. The calculation is outlined in Equations 10 and 11: 

𝑂𝑡 =  𝜎 (𝑊𝑂 . [ℎ𝑡−1, 𝑋𝑡] +  𝑏𝑂                                                                                  (10) 

ℎ𝑡 = 𝑂𝑡 tanh(𝐶𝑡)                                                                                                                                                          (11) 

where ℎ𝑡 signifies the updated output value, 𝑂𝑡 denotes the output gate, and 𝑊𝑂 for the weight vector and 𝑏𝑂 for bias 

vector of the output gate, correspondingly. 

 

Figure 7. The basic architecture of long short term memory (LSTM) [65] 

3-3-4- Bidirectional Long Short Term Memory (BiLSTM)                                                                                                                        

The BiLSTM network consists of LSTM units that handle data inputs in forward and reverse directions, enabling 

the model's algorithm to gather context data from both prior and future viewpoints. This enables BiLSTM to grasp 

long-term dependencies in sequences while avoiding redundancy in context information [66]. In BiLSTM, two LSTM 

layers are linked to the output layer. This configuration, treating two LSTM layers as a single layer, enhances model's 

ability to learn long-term dependencies, thereby improving its overall performance [67]. Previous research has 

demonstrated the superiority of bidirectional networks over standard ones across various domains, including 

estimation tasks [68-70]. The unfolded structure of a BiLSTM layer, comprising both forward and backward LSTM 

layers, is depicted in Figure 8 [71]. 

The upstream LSTM layer creates the outcome sequence ℎ⃗  in a conventional way, whereas the reverse LSTM layer 

generates the outcome sequence ℎ⃖⃗ utilizing reversed data at times 𝑡 − 1 to 𝑡 − 𝑛. The 𝜎 function is used to aggregate 

the output sequences, resulting in the vector 𝑦𝑡  [72]. A BiLSTM layer's final output is a vector, 𝑌𝑡 = [𝑦𝑡−𝑛,…,𝑦𝑡−1] 

where the final component, 𝑦𝑡−1, is the estimate for the next repetition, similar to the LSTM layer. 
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Figure 8. The basic architecture of bidirectional long short term memory (BiLSTM) [71] 

3-4- Evaluation Metrics 

In binary classification, evaluation metrics are represented by a 2×2 matrix, which includes numbers for true 

positives, true negatives, false positives, and false negatives [73]. True positive cases refer to instances where the 

model correctly identifies samples belonging to the Monkeypox class. True negative cases indicate accurate 

identification of samples that do not belong to the Monkeypox class. False positive and false negative outcomes 

represent incorrect predictions. False positive findings arise once non-Monkeypox samples are mistakenly recognized, 

while false negative results occur when Monkeypox cases are wrongly forecasted. Designs demonstrate well in terms 

of reducing false positives and false negatives. 

To thoroughly assess the efficacy of our suggested approach for Monkeypox identification and classification, we 

used a range of conventional assessment indicators, including accuracy, precision, recall, F1-score, and Receiver 

Operating Characteristics (ROC) curve. Additionally, we computed extended evaluation metrics such as True Positive 

Rate, True Negative Rate, False Positive Rate, and False Negative Rate to provide a comprehensive evaluation.  

1) Accuracy 

Accuracy is the fraction of accurately predicted samples among the entire data. It represents several correctly 

predicted samples, including Monkeypox and non-Monkeypox (or other) instances, about the overall amount of data. 

This metric is determined using the Equation 12. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (ℎ) =  
1

|𝑋|
 ∑ [ℎ(𝑥) = 𝑦]𝑥∈𝑋                                                                                                                           (12) 

2) Precision 

Precision measures a ratio of correctly classified harmful programs relative to the number of detected harmful 

applications. This metric focuses on both true positive and false positive outcomes. Precision is highest when the 

number of false positives is low. The calculation is based on Equation 13. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (ℎ) =  
∑ 𝑡𝑃𝑗

𝑙
𝑗=1

∑ (𝑡𝑃𝑗+ 𝑓𝑃𝑗)
𝑙
𝑗=1

                                                                        (13) 

where, 𝑡𝑝 corresponds to the count of true-positive determinations, and 𝑓𝑝 represents the count of false-positive 

identifications. 

3) Recall 

Recall, also known as True Positive Rate (TPR), represents the ratio of precisely predicted values to the total 

number of records for each class. It assesses how well the model identifies positive instances from the entire dataset 

and the Equation 14 is utilized to compute recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 (ℎ) =  
∑ 𝑡𝑃𝑗

𝑙
𝑗=1

∑ (𝑡𝑃𝑗+ 𝑓𝑛𝑗)
𝑙
𝑗=1

                               (14) 
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where, 𝑡𝑝 signifies the count of true-positive determinations made by the algorithm model, while 𝑓𝑛 indicates the count 

of false-negative identifications by the model. 

4) F1-score 

The F1 score indicates the harmonic mean of recall and precision. Its calculation is represented by Equation 15: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 × 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                            (15) 

5) Confusion Matrix 

The matrix of confusion is a comprehensive tool for assessing the efficacy of a classification model, whether in 

binary or multi-class contexts. It gives useful information on measures like as accuracy, precision, recall, and the 

AUC-ROC curve. 

4- Results and Discussion 

Figure 9 displays an extensive confusion matrix illustrating the multi-classification task performed by our 

proposed models, encompassing CNN, GRU, LSTM, and BiLSTM. The classifier's evaluation primarily relies on this 

confusion matrix. In a pair of categories situation, the confusion matrix is a 2×2 square matrix where the columns 

denote the classifier's predictions, and the rows indicate the actual class labels. This matrix enables a comparison 

between predicted and true labels, facilitating the computation of measures such as accuracy, precision, recall, and F1-

score. The confusion matrix comprises four components: true positives (TPs), true negatives (TNs), false positives 

(FPs), and false negatives (FNs). TPs correspond to accurately predicted positive cases, with both actual and predicted 

classes being Monkeypox. TNs signify accurately predicted negative instances, where both actual and predicted 

classes are not Monkeypox or others. FPs indicate cases where the true class is not Monkeypox or others, but the 

predicted class is Monkeypox. FNs denote cases where the true class is Monkeypox, but the predicted class is not 

Monkeypox or others. The final model for detecting and classifying Monkeypox was chosen based on its superior 

performance. The accuracy, precision, recall, and F1-score measures were used to assess the performance of the four 

models. 

 

Figure 9. Confusion matrix results of monkeypox classification: (a) CNN Model, (b) GRU Model, (c) LSTM Model, (d) 

BiLSTM Model  
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The precision, recall, F1-score, and accuracy of our model were extracted from the confusion matrix to assess the 

robustness of our pre-trained model in binary categorization. CNN achieved the highest precision of 100%, followed 

by GRU, LSTM, and BiLSTM with accuracies of 99% each. This demonstrates the effectiveness of the methods 

employed in the classification process. The uniformity in performance evaluation metrics results across models 

suggests that they have reached a plateau in classification performance. The precision values for CNN, GRU, LSTM, 

and BiLSTM stand at 90%, 81%, 81%, and 81%, respectively. In terms of recall, CNN achieved 90%, GRU and 

LSTM both attained 80%, and BiLSTM reached 81%. Similarly, the f1-scores for CNN, GRU, LSTM, and BiLSTM 

are 90%, 80%, 81%, and 81%, respectively. 

Our model effectively identifies both Monkeypox and non-Monkeypox cases, showcasing high precision. It has the 

capability to act as a significant tool for the rapid and accurate detection of Monkeypox in clinical applications. A 

crucial aspect of the proposed model is its capacity to achieve a remarkable accuracy rate of 100% in detecting 

Monkeypox cases. Utilizing the MobileNetV2 architecture, the CNN model ensures rapid and efficient processing for 

image classification duties. 

 

Figure 10. Deep learning model receiver operating characteristic (ROC) curves value: (a) CNN model, (b) GRU model, (c) 

LSTM model, (d) BiLSTM model 

Figure 10 depicts the ROC curves generated by our models, encompassing CNN, GRU, LSTM, and BiLSTM. An 

ROC curve depicts a categorizing model's efficacy at different categorization criteria. Shown above, the ROC curves 

of our model demonstrate its performance across different classes. This graph visualizes two essential variables: True 

Positive Rate and False Positive Rate, serving as crucial evaluation metrics for assessing the success of any 

classification algorithm. Visually, the ROC is typically depicted as a curve plotting the true positive rate against the 

false positive rate for a given dataset. More precisely, The ROC approach involves charting recall values at different 

threshold levels and linking them to construct a curve. A curve sloping toward the top left corner reflects a classifier's 

greater ability to discriminate between positive and negative classifications. 

The area under the ROC curve (AUC) is a simple statistic that summarizes a classifier's performance, reducing it to 

an individual measure. In contrast to the issue of comparing ROC curves, especially when they cross, the AUC allows 

models to be ranked based on their overall performance. Thus, the AUC is highly valued in the evaluation of models 
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[74, 75]. The estimation of the AUC employs several techniques, with the trapezoidal method being the most 

common. This method involves geometric calculations based on linear interpolation between points on the ROC 

curve. Alternatively, some researchers suggest approximating the AUC, particularly in binary learning scenarios, using 

Balanced Accuracy for simplicity [76, 77]. The AUC possesses a significant statistical characteristic: it reflects the 

likelihood that a classifier would score a selected by random positive case more than a picked at random negative case 

[78, 79]. The AUC serves as a complete assessment of efficacy throughout every feasible categorization criteria. It 

may be regarded as the chance that the model favors a random positive case over a random negative one. Specifically, 

the AUC values for CNN, GRU, LSTM, and BiLSTM are 89%, 80%, 81%, and 81%, respectively. 

Figure 11(a) – 11(d) model loss curve gives us insights into how the model's efficacy improves over time by 

assessing the error or dissimilarity between its predicted output and the true output. The loss is the difference between 

the model's predicted and actual values. The model aims to minimize this loss, aiming to ensure its predictions closely 

align with the true values. So, the loss curve shows us how the model's error decreases as it learns, which indicates an 

improvement in its performance. The narrow blue line (‘Train’) represents the learning curve derived from the training 

dataset, providing insight into the model's learning progress, while the orange line (‘Validation’) represents the 

learning curve derived from a separate validation dataset, offering insight into the model's generalization capability. 

 

Figure 11. Model loss: (a) CNN model, (b) GRU model, (c) LSTM model, (d) BiLSTM model 

Figure 12 illustrates the performance of the proposed models in classifying Monkeypox disease and other diseases 

based on accuracy and loss metrics. These models, including CNN, GRU, LSTM, and BiLSTM, are evaluated 

regarding their capacity to effectively classify instances and the extent of deviation between their predictions and the 

actual output, quantified by the loss metric. Loss serves as an indicator of the model's accuracy, with lower loss values 

indicating higher correctness. It is computed separately for validation and training datasets, reflecting the general 

efficacy of the model on these sets by aggregating the errors made across individual examples. Given the definitions of 

Accuracy and Loss, there should be an inverse relationship between the two: when Accuracy is high, Loss tends to be 

low, and vice versa. 
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Additionally, given that the weights and biases are chosen randomly, the precision pattern should start low (with 

large loss values, suggesting that the network is generating inaccurate estimations). However, as the network learns 

over numerous "epochs" (i.e., both forward and reverse runs of every training sample), the accuracy should gradually 

increase in subsequent iterations (resulting in lower loss values). The epoch is a selected variable, typically selected 

such that a loss reaches at least a minimum and does not worsen in the subsequent epochs. As a result, the accuracy 

value achieved is maximized. If it does not improve in the following epochs, it indicates that the network has attained 

stability and that more epochs will not boost performance. We set the number of epochs to a hundred, as both models 

achieve stability within or before this number of epochs. Specifically, the performance plots feature the following 

lines: The thin blue line ('loss') represents a training loss; the orange line ('accuracy') identifies a training precision; the 

green line ('val_loss') represents the result of validation loss; and the thin red line ('val_accuracy') shows the reliability 

of the validation. 

                                                                                                                                          

Figure 12. Model accuracy/loss: (a) CNN model, (b) GRU model, (c) LSTM model, (d) BiLSTM model 

Figure 13, the accuracy curve, also known as the accuracy of the training curve, demonstrates the model's ability to 

make reliable forecasts on the training information as it is trained. Accuracy, expressed as a percentage, indicates the 

proportion of instances correctly classified by the model out of the total cases. Therefore, the accuracy curve shows 

how effectively its model matches the training set and improves its ability to make correct predictions. The thin blue 

line ('Accuracy') represents the training accuracy, while the orange line ('Validation') depicts the accuracy of the 

validation dataset. 

Figures 11(a), 12(a), and 13(a) depict the performance plots of Model Loss, Model Accuracy/Loss, and Model 

Accuracy and Validation for the 100 epochs using the CNN model. As illustrated in Figure 12(a), the accuracy of the 

CNN model is 1. Figures 11(b), 12(b), and 13(b) exhibit the performance plots of Model Loss, Model Accuracy/Loss, 

and Model Accuracy and Validation for the 100 epochs using the GRU model. Similarly, Figures 11(c), 12(c), and 

13(c) present the performance plots of Model Loss, Model Accuracy/Loss, and Model Accuracy and Validation on 

100 epochs with the LSTM model. As indicated by Figure 12(c), the accuracy of the LSTM model is 1. Finally, 

Figures 11(d), 12(d), and 13(d) demonstrate the performance plots of Model Loss, Model Accuracy/Loss, and Model 

Accuracy and Validation for the 100 epochs using the BiLSTM model. 
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Figure 13. Model accuracy and validation: (a) CNN model, (b) GRU model, (c) LSTM model, (d) BiLSTM model 

The overall performance of the proposed four models, which include CNN, GRU, LSTM, and BiLSTM, is shown 

in Figure 14. The study results indicate that the performance of the CNN and LSTM models is higher than that of the 

GRU and BiLSTM models. The proportion of true positives to true negatives among all classes measures a classifier's 

accuracy. The CNN model's performance and LSTM model's performance have an accuracy of 100%, while the GRU 

model's performance and BiLSTM model's performance have an accuracy of 99.88% and 99.45%. The precision, 

recall, F1 score, and AUC score achieved by the CNN model notably surpass those of the GRU, LSTM, and BiLSTM 

models. 

 

Figure 14. Evaluation metrics 
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In summary, the results suggest that CNN and LSTM models offer a promising avenue for enhancing the 

effectiveness of models in classifying Monkeypox. Precision is a crucial measure in model classification, indicating 

the proportion of true positives compared to all positives recognized by the classifier for a particular class. This metric 

inversely correlates with the count of false positives attributed to the class. The precision obtained by CNN, GRU, 

LSTM and BiLSTM is 90%, 81%, 81%, and 81%, respectively. CNN achieved the highest precision of 90% in 

classifying Monkeypox. Recall, formerly known as sensitivity, is a measure of a classifier's capability to accurately 

identify positive occurrences compared to the total of true positives and false negatives for the given class. This 

measure is oppositely proportional to a few false negative occurrences connected with the class. Recall plays a 

significant role in machine learning evaluations, particularly in highlighting false negative occurrences. The recall 

obtained by CNN, GRU, LSTM, and BiLSTM is 90%, 80%, 81%, and 81%, respectively. CNN obtained the highest 

precision of 90% for Monkeypox classification. The F1-Score given a particular class considers both recall and 

accuracy to assess the classifier's efficacy better. The F1-score is a statistic used to determine the effectiveness of a 

predictive model across a dataset, especially in binary categorization scenarios where Monkeypox is classified as 

'positive' or 'negative'. This score is determined by taking a harmonic average of the model's accuracy and recall. 

CNN, GRU, LSTM, and BiLSTM attained F1-scores of 90%, 80%, 81%, and 81%, respectively. CNN notably 

achieved the highest F1-score of 90% among all models for Monkeypox classification. 

A detailed summary of the performance measures is included in Table 2 for CNN, GRU, LSTM, and BiLSTM 

models. CNN demonstrated a precision, recall, and F1-score of 90%, along with the highest accuracy of 100%. GRU 

achieved a precision of 81%, recall of 80%, F1-score of 80%, and a peak accuracy of 99.88%. LSTM exhibited a 

precision, recall, and F1-score of 81%, along with a top accuracy of 100%. BiLSTM attained a precision, recall, and 

F1-score of 81%, with the best accuracy of 99.45%. 

Table 2. Efficacy of classifier models 

 Precision Recall F-1 Score AUC Score Accuracy 

CNN 90% 90% 90% 89% 100% 

GRU 81% 80% 80% 80% 99.88% 

LSTM 81% 81% 81% 81% 100% 

BiLSTM 81% 81% 81% 81% 99.45% 

4-1- Explainable Deep Learning 

To address the inherent opacity of deep learning classifiers, it is critical to employ visual approaches that reveal the 

learned features by CNNs during training. Such insights facilitate subsequent endeavors like fine-tuning and exploring 

alternative models to address erroneous feature acquisition and overfitting. Our study utilized a method for generating 

'visual explanations' for decisions made by various CNN-based models, enhancing their interpretability. This 

technique, Grad-CAM, leverages the gradients of Monkeypox images streaming through the ultimate convolutional 

neural layer to produce an approximate localization map, highlighting essential parts in the visualization for notion 

prediction. Grad-CAM employs gradient data from CNN's final convolutional layer to assign significance levels to 

individual neurons during specific decision-making steps. Figure 15 illustrates Grad-CAM explanations, shedding 

light on the models' interpretability. 

 

 (a)                                               (b) 

Figure 15. Grad-CAM explanations. Image (a): monkeypox, image (b): non monkeypox 

The visualization method employed, LIME, is widely utilized to illuminate the predictions generated by 

convolutional neural networks. LIME operates by collecting input picture data and applying random perturbations to 

figure out methods underlying the forecasts. The XAI visual representation focuses on MobileNetV2, the top-

performing deep learning model. Figures 16 and 17 provide insights into LIME explanations. In the machine learning 

academia, interpreting a deep learning model typically involves discerning the significance of features. This entails 

determining which aspects of the input features of a given data point contribute to the prediction outcome at the output 
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layer and/or the heightened activation of an internal layer or node. Machine learning and artificial intelligence have 

devised novel methodologies to address this challenge. Techniques such as perturbation experiments [80] and saliency 

map-based methods [41] have demonstrated their efficacy in elucidating which sections of the input image exert the 

most influence on a model's ultimate prediction. Input perturbation assesses the degree to which regions of the input 

image identified as significant by XAI tools fulfill that role. The underlying concept is as follows: With a trained 

model in place, a test image is employed as input to generate its heatmap using an XAI technique tailored for that deep 

network. 

Additionally, the most pertinent regions, clusters of pixels, undergo alterations in their values within the original 

(input) image, using uniformly and randomly generated values. Subsequently, the adjusted image is reintroduced to 

the network for classification purposes. This process is iterated several times to significantly increase the number of 

altered patches. The assumption is that the model's performance will deteriorate as the count of modified patches rises. 

A proficient XAI technique is anticipated to be more impacted by these modifications than a less effective one.   

 

Figure 16. Training explanations for top-performing using LIME for monkeypox images 

 

Figure 17. Training explanations for top-performing using LIME for non monkeypox images 
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A novel approach known as LIME [81] has emerged, effectively constructing a locally linear model from a 

complex one. This enables the interpretation of the weights in the linear combination as indicators of feature 

importance. Moreover, a classical method known as influence functions has efficiently pinpointed the training data 

instances that impact specific prediction outputs most. Integrating these advanced computational techniques with 

interactive visualizations holds considerable promise for enhancing the interpretability of deep learning, although it 

presents a significant challenge in practical applications [82]. 

5- Conclusion 

This work presents an explainable deep learning method for identifying and categorizing Monkeypox ailment 

through skin lesion image data. Employing an openly accessible dataset, we assessed four models—CNN, GRU, 

LSTM, and BiLSTM—on the dataset. Incorporating interpretative artificial intelligence methods like LIME and Grad-

CAM allows for visual comprehension of the model's predictions, aiding healthcare professionals in utilizing the 

model. The CNN model's performance and LSTM model's performance have an accuracy of 100%, while the GRU 

model's performance and BiLSTM model's performance have an accuracy of 99.88% and 99.45%. The results confirm 

the applicability of deep learning models, including the suggested CNN model utilizing the pre-trained MobileNetV2 

and LSTM, in combating the Monkeypox virus, highlighting their potential significance in this endeavor. To bolster 

trust and transparency, we integrated LIME and Grad-CAM techniques, providing perspectives on the choice-making 

process of deep learning model algorithms. Future research endeavors will explore alternative deep learning or 

machine learning algorithms, building upon the findings of this study. This contribution enriches the existing literature 

in the field, paving the way for further investigations. 
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Appendix I: List of Acronyms 

Acronyms Descriptions Acronyms Descriptions 

ANN Artificial Neural Network MLPs Multi-Layer Perceptrons 

AUC Area Under the ROC Curve UK United Kingdom 

BiLSTM Bidirectional Long Short Term Memory PCR Polymerase Chain Reaction 

CNN Convolutional Neural Network PHE Public Health Emergency 

Covid-19 Coronavirus Disease PHEIC Public Health Emergency Of International Concern 

DNA Deoxyribonucleic Acid ReLU Rectified Linear Unit 

DRC Democratic Republic of the Congo RGB Red, Green, Blue 

DT Decision Tree RNN Recurrent Neural Network 

FNs False Negatives ROC Receiver Operating Characteristics 

FPs False Positives SVM Support Vector Machine 

GPU Graphics Processing Units TNs True Negatives 

Grad-CAM Gradient-Weighted Class Activation Mapping TPR True Positive Rate 

GRU Gated Recurrent Unit TPs True Positives 

IDE Integrated Development Environment WHO World Health Organization 

K-NN K-Nearest Neighbors XAI Explainable Artificial Intelligence 

LIME Local Interpretable Model-Agnostic Explanations LSTM Long Short Term Memory 

 


