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Abstract 

This study uncovers the findings of a four-species food chain model, focusing on its equilibrium 

points, global stability, and population dynamics. Through rigorous mathematical analysis, we 

identify the equilibrium points of the model and investigate the global stability of the coexistence 

equilibrium point. We present the existence conditions for all equilibrium points and assess the 

stability characteristics of the coexistence fixed point. Time series solutions offer a captivating 
perspective on the dynamic behavior of a system. Our investigation into the effects of parameters 

provides the fluctuations in population density, with specific parameters exerting significant 

influence as a result of the random movement of linked species. Understanding the need for taking 
account of diffusion-dominated situations, the diffusive version of the model is developed and 

analyzed. By constructing a numerical system with three-time levels (n-1, n, and n+1), its stability 

can potentially be tested thoroughly using the Von Neumann stability criterion. Numerical 
simulations and graphs depict the system's dynamic interaction. We also examine how diffusion 

coefficients affect population density, creating remarkable charts that show interactive species 

relationships. We also identify exciting bifurcation occurrences in the system, which helps us 
comprehend its complex dynamics. Predator-prey systems can be studied using Artificial Neural 

Networks (ANNs) to handle complexity, discover patterns, and predict future dynamics. ANNs can 

predict population dynamics and assess various parameters by analyzing prior data. Their 
adaptability lets them improve forecasts over time, improving management methods and ecosystem 

balance. We use ANN methods to see how specific parameters affect interacting species population 

dynamics. 
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1- Introduction 

When both organisms interact and do not damage each other, both gain from it in terms of food, shelter, and growth. 

For example, we say that the relationship is mutualistic. Such interactions have gained much attention from contemporary 

society during the past several years [1-3], contrary to other significant ecological interactions that cast negative 

influences, such as predation and competition. Cleaner fish, pollination, seed dispersal mechanisms, gut flora, and 

nitrogen fixation are just a few instances of a mutualistic association that are mentioned in the traditional ecological 

theory of natural selection and habitat separation, which also accounts for metapopulations. Positive interactions can be 

spotted naturally due to interaction with the third population in the competitive or predator-prey relationship [4, 5]. 

Before: It is revealed that predators are of utmost importance in mutualism occurring in predator-prey relations and 

described by formulating mathematical modeling [6-8]. 
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The populations mutualistic to predators could survive without mutualists. This means mutualism exists in a 

population irrespective of isolated populations, which are difficult to witness because of the continual migration process. 

The authors investigated the mutualism that occurs in prey with the two-dimensional mutualism mode [9-11]; however, 

a three-dimensional model was formulated by Rai et al. [12], in which mutualism occurred due to third-personality 

interaction. The three-dimensional mutualistic model in which mutualism occurred in prey [7, 13, 14]. Following 

Thirthar et al. [8], these models were further strengthened through their integration with the food chain. 

Qualitative traits of ecological systems made them challenging to understand with respect to mutualism, which is 

very diverse, obligatory and needs: 

 The mechanism by which one species benefits the other. 

 The number of species interacting to attain mutualism between them. 

The complexity of ecological problems that organisms face might vary depending upon the variation that mutualistic 

interaction causes. Several factors are predominant in mutualism: shelter, organic nutrients, dispersal of gametes, 

competition, and predation, and imparting mutualistic benefits to the population [4]. Qualitative mutualistic systems are 

of different kinds and benefit involved species differently. 

Mutualists of prey may reduce the predation of their predators or compete with them. A mutualist of a predator may 

increase predation on the prey or stimulate the prey to more rapid growth. Mutualists can assist a species in out-

competing its predators by adding it directly, competing with competitors, or preying on predators. Because of these, it 

is essential to analyze multispecies models. Mutualistic benefits involve the direct modification of abiotic components 

and the circulation of nutrients among governing bodies. It has been studied that mutualistic interaction might have 

consisted of three or more species [15]. A mutualist prey competes with its predator and decreases the predation of its 

predator, whereas a mutualistic predator causes vigorous growth of its prey. A mutualist species competes with its 

predators directly [16]. 

Taking account of the complexity and diversity of a mutualistic system, it isn't easy to get peculiar results after 

applying a unified approach. Initially, mutualism was discussed in terms of the two-species model. Later, multispecies 

models were formulated in which the number of species extended to the value n reasons for considering the multispecies 

model: 

 The qualitative behaviour of systems can never be explained through a single-species mutualistic model. 

 Models with two-species mutualistic relations need additional density-dependent mutualism coefficients, even if 

the system defines the model's complexity. 

 Appropriate forms of the function appear when such models are analyzed. 

 The multispecies model provides field ecologists with a new platform to reveal variable aspects of research. 

The ecosystem combines several species, and a single-species ecosystem is rare. However, during the past few 

centuries, ecologists focused on two- or three-species systems, such as predator-prey and food chain systems [17, 18]. 

Plenty of naturally occurring phenomena are beyond the two- or three-species systems but consist of many interacting 

species. It is of utmost importance to formulate theoretical methods to study such complex systems [19]. Owaidy et al. 

[20] explored the presence of bounded solutions and the stability of equilibrium points in a four-level generalized food-

chain model. 

Forest and wildlife management authorities established policies and harvesting laws in developed countries to prevent 

ecological niches. The fundamental aspect of these preventions is to protect the integrity of nature and the environment 

without economic default. Therefore, it is essential to develop theoretical methods for optimal harvesting techniques to 

conserve the environment. In this respect, Tuerxun et al. [21] investigated a stochastic two-predator and one-prey system 

with distributed delays, harvesting, and Levy jumps. The main objectives were to analyze optimal harvesting strategy, 

and environmental changes mainly influenced the results. 

The ecosystem is a self-regulatory system of biotic and abiotic components to attain functional stability. Communities 

comprising one or two species are very rare in nature due to the process of migration, which led to the coexistence of 

many species to stabilize the natural ecosystem [17, 22]. Scientists have worked over the past few years to develop 

models of two or three species behaving mutualistically, while multispecies models also exist [19, 23]. It is revealed in 

Hastings & Powell [24] that the coexistence of species is not only studied in terms of singular stability and orbits but 

also in terms of quasi-periodic or strange attractors. 

Several simulation studies depicted that food chain models exhibit chaotic dynamics due to periodic doubling [25-

31]. In Hastings & Powell [24], the authors demonstrated the presence of a tea-cup strange attractor in three trophic 

levels of a food chain. The biological feasibility of strange attractors utilized by several authors in their studies has been 

questioned in McCann & Yodzis [27]. In contrast, parameters used by Scheffer [30] for plankton and Wilder et al. [31] 

to study gypsy moths are biologically feasible. Facts about strange attractors were combined and incorporated into 

analyses of the food chain and web (see [25, 27, 28]). The above studies are strong witnesses to deeper food chain/web 

complexity. 
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In Gakkhar & Naji [32], the authors modified the given model by altering the functional responses through numerical 

simulation and bringing it to the level where it becomes biologically feasible. The presence of chaos within the nature 

of species and that chaotic condition in the food chain and food web are discussed in Gakkhar & Naji [33, 34]. In El-

Owaidy & Ammar [20], the major objectives followed by the author were the analysis of the existence of a bounded 

solution and the measurement of the stability of equilibrium points, which were not enough to combat the current 

environmental challenges. The study by Pal et al. [35] explores a three-species food chain model comprising prey, an 

intermediate predator, and a top predator, emphasizing the effects of fear responses and foraging constraints on their 

interactions. Fear triggered by the intermediate predator impacts the prey's reproduction rate and intra-specific 

competition, while the presence of the top predator hinders the foraging efficiency of the intermediate predator. Through 

equilibrium analysis and stability investigations, the study demonstrates how behavioral and ecological factors influence 

population dynamics and food web resilience. In the study, Saikumar et al. (2024) [36] investigate the impact of 

microplastics on estuarine food chains through trophic transfer. They analyze how microplastics accumulate and move 

through various trophic levels, leading to bioaccumulation and potential ecological risks. The study highlights the need 

for strategies to mitigate the effects of microplastics in estuarine environments.  

Gao et al. [37] used the Eco tracer module from the EcoPath with the EcoSim (EwE) model to study microplastics 

(MPs) in the marine food web of Haizhou Bay, Jiangsu Province, China, over 20 years. They linked environmental 

plastic inflow with MPs in organisms to simulate their distribution and found that top consumers accumulated more 

MPs, while primary consumers showed decreased MP concentrations. Functional groups demonstrated trophic 

magnification with no bio-dilution. Reducing plastic inflows could effectively lessen MP pollution in coastal waters. 

Gomes et al. [38] analyzed the impacts of marine heat waves on the Northeast Pacific Ocean using time series 

abundance data, functional groups, and diet information. They built two food web models using the Ecotran extension 

of Ecopath, comparing pre- and post-heat wave conditions. The study revealed significant changes in trophic 

relationships, especially among gelatinous taxa like pyrosomes, and potential risks for threatened and harvested 

species due to altered ecosystem structure and function. The author in Xu et al. [39] emphasizes the interactions 

between microplastics (MPs) and organic pollutants (OPs), focusing on their potential risks through bioaccumulation 

and biomagnification in the food chain. There is limited data on MPs/OPs in food pollution, highlighting the need 

for further research on their impact on human health and food quality. The role of factors like temperature and pH in 

influencing pollutant behavior, particularly how MPs affect OP adsorption, is also addressed. Most of the food chains 

in the literature focus on three species of food chains; the food chains having four species are rarely discussed. The 

present study focuses on four species, incorporating diffusive effects. Additionally, the ANN has been incorporated 

to analyze the system. 

The paper is organized as follows: Section 2 introduces the formulation of the model using ordinary differential 

equations (ODEs) and provides details about the parameters. Section 3 explores the equilibrium points of the model, 

outlining the conditions for their existence and conducting a stability analysis. Section 4 focuses on the integration of 

Artificial Neural Networks (ANN) into the model framework. Section 5 extends the model to include its diffusive 

version, providing a comprehensive analysis of dynamics under diffusion. Section 6 develops a numerical scheme and 

performs a Von Neumann stability analysis. Finally, Section 7 concludes the study by summarizing key findings and 

suggesting directions for future research. 

Figures 1 and 2, respectively, represent the flow charts of the mathematical model and the methodology of the study. 
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Figure 1. Visualizing the Mathematical Food Chain Model 
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Figure 2. Flow Chart of the Methodology 

2- The Food Chain Mathematical Model 

The food chains and webs have different trophic levels. Generally, the food chains are represented by different trophic 

levels. These levels may include basal prey, primary, secondary, and tertiary consumers. We formulate a mathematical 

model to observe the relationship among species in a habitat. Four species are considered to model the food chain. We 

assume that the basal prey grows at a growth rate ′𝑎′. It is assumed that the predation rate by the species involved is 

𝛼𝑖  (𝑖 = 1, 2, 3, 4). The conversion rate of species to the next species under the effects of predation is 𝑐𝑖  (𝑖 = 1, 2, 3, ). It 
is assumed that the natural mortality of the species is 𝜇𝑖  (𝑖 = 1, 2, 3, 4). 

The parameters specifying growth rate, death rate conversion rate, etc., used in the model formulation are assumed to 

be non-negative. The system of ODEs developed under these assumptions is as follows. 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥1(𝑡)(𝑎 − 𝑥2(𝑡)𝛼1 − 𝜇1), t > 0, (1) 

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑥2(𝑡)(𝑐1𝑥1(t)𝛼1 − 𝑥3(𝑡)𝛼2 − 𝜇2), t > 0 (2) 

𝑑𝑥3(𝑡)

𝑑𝑡
= 𝑥3(𝑡)(𝑐2𝑥2(𝑡)𝛼2 − 𝑥4(𝑡)𝛼3 − 𝜇3), t > 0, (3) 

𝑑𝑥4(𝑡)

𝑑𝑡
= 𝑥4(𝑡)(𝑐3𝑥3(𝑡)𝛼3 − 𝜇4), t > 0 (4) 

where, 𝑥𝑖(0) ≥ 0, 𝑖 = 1, 2, 3, 4. 

Table 1 shows the parameters, and their description used in the formulation of the system. 

Table 1. Parameters and their physical meanings 

Parameters Physical meaning 

𝑥1 Density of basal prey 

𝑥2 Density of mid-predator-1 

𝑥3 Density of mid-predator-2 

𝑥4 Density of top predator 

𝑎 Growth rate of basal prey 

𝛼1 Death rate of basal prey due to predation 

𝛼2 Death rate of mid-predator-1 due to predation 

𝛼3 Death rate of mid-predator-2 

𝑐1 Biomass conversion parameter for basal prey to predator-1 

𝑐2 Biomass conversion parameter for medium predator-1 to predator-2 

𝑐3 Biomass conversion parameter for medium predator-2 to top predator 

𝜇1 Natural death rate of basal prey 

𝜇2 Natural death rate of medium predator-1 

𝜇3 Natural death rate of medium predator-2 

𝜇4 Natural death rate of top predator 

Four-Species 
Food Chain 

Modeling
Analysis of the 

Model
Positiviy and 
Boundedness

Equilibrium Points 
of the System

Globl Stability via 
Lyapunov 
Function 

Simulations
Incorporation of  
Artificial Neural 

Networking 

Graphical 
Representation 

and Explanation  
of Results

Diffusive Food 
Chain

Numerical 
Scheme 

Analysis of the 
Scheme

Simulations and 
Results Discussion



Emerging Science Journal | Vol. 9, No. 2 

Page | 704 

3- Analysis of the Model 

In this section, we investigate the positivity, boundedness, and stability aspects of the equilibrium points within the 

framework of the model (1-4). We discover how equilibrium points are maintained within the system and investigate 

their behavior concerning positivity and boundedness. Additionally, we scrutinize the stability of these fixed points, 

assessing how the system responds to perturbations and whether equilibrium is maintained over time. This examination 

highlights the long-term behavior, dynamics, and resilience of the system. 

3-1- Positivity and Boundedness 

In order to determine particular attributes, population models display certain essential features. When trying to make 

sense of population dynamics and behaviors in ecological systems, these traits are crucial. We may learn about the 

population models' development patterns, stability, and reactions to environmental changes by investigating these key 

characteristics. 

Theorem 1: All solutions of the systems (1-4) that start in 𝑅+
4  will always remain positive. 

Proof: The first equation of system (1-4) gives the following result. 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥1(𝑡)(𝑎 − 𝑥2(𝑡)𝛼1 − 𝜇1)  

𝑥1(𝑡) = 𝑥1(0)𝑒𝑥𝑝 [∫ (𝑎 − 𝑥2(𝜃)𝛼1 − 𝜇1)𝑑𝜃
𝑡

0
]  

⇒ 𝑥1(𝑡) ≥ 0 

Similarly, Equation 2 results in the following equation. 

𝑥2(𝑡) = 𝑥2(0)𝑒𝑥𝑝 [∫ {(𝑐1𝑥1(𝜃)𝛼1 − 𝑥3(𝜃)𝛼2 − 𝜇2)}𝑑𝜃
𝑡

0
]  

⇒ 𝑥2(𝑡) ≥ 0 

Now, Equation 3 gives us the following result. 

𝑥3(𝑡) = 𝑥3(0)𝑒𝑥𝑝 [∫ (𝑐2𝑥2(𝜃)𝛼2 − 𝑥4(𝜃)𝛼3 − 𝜇3)𝑑𝜃
𝑡

0
]  

⇒ 𝑥3(𝑡) ≥ 0 

𝑥4(𝑡) = 𝑥4(0)𝑒𝑥𝑝 [∫ (𝑐3𝑥3(𝜃)𝛼3 − 𝜇4)𝑑𝜃
𝑡

0
]  

⇒ 𝑥4(𝑡) ≥ 0 

Hence, the theorem is proved. 

Theorem 2: All solutions of the systems (1-3) are bounded. 

Proof: Consider system (1-4). The initial equation of the system gives the subsequent result. 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥1(𝑡)(𝑎 − 𝑥2(𝑡)𝛼1 − 𝜇1) 

𝑑𝑥1(𝑡)

𝑑𝑡
≤ 𝑎𝑥1(𝑡)  

𝑥1(𝑡) ≤ 𝐾1 𝑒
𝑎𝑡   

where 𝐾1 = 𝑒𝒸1, with 𝒸1 as constant of integration. 

Similarly, the other equations provide the following outcomes. 

𝑑𝑥2(𝑡)

𝑑𝑡
≤ 𝑐1𝛼1𝑥1(𝑡)𝑥2(𝑡)  

𝑑𝑥2(𝑡)

𝑥2(𝑡)
≤ 𝑐1𝛼1𝐾1 𝑒

𝑎𝑡𝑑(𝑡)  

𝑥2(𝑡) ≤ 𝐾2 𝑒
𝑎𝑡   

where, 𝐾2 = 𝑒𝒸2𝑐1𝛼1𝐾1 with 𝒸2 as constant of integration. 

𝑑𝑥3(𝑡)

𝑑𝑡
≤ 𝑐2𝛼2𝑥2(𝑡)𝑥3(𝑡)  

𝑑𝑥3(𝑡)

𝑥3(𝑡)
≤ 𝑐2𝛼2𝑥2(𝑡)𝑑𝑡  

𝑑𝑥3(𝑡)

𝑥3(𝑡)
≤ 𝑐2𝛼2𝐾2 𝑒

𝑎𝑡   

𝑥3(𝑡) ≤ 𝐾3 𝑒
𝑎𝑡   

where, 𝐾3 = 𝑒𝒸3𝑐2𝛼2𝐾2 with 𝒸2 as constant of integration. 
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Considering Equation 4, we have the following result. 

𝑑𝑥4(𝑡)

𝑑𝑡
≤ 𝑐3𝛼3𝑥3(𝑡)𝑥4(𝑡)  

It is easy to see that, 

 𝑥4(𝑡) ≤ 𝐾4 𝑒
𝑎𝑡 . 

where, 𝐾4 = 𝑒𝒸4𝑐3𝛼3𝐾3 with 𝒸3 as constant of integration. 

Hence, the theorem is proved 

3-2- Stability Analysis 

Here, we do an extensive mathematical examination of the model that has been provided in (1-4). The goal of this 

section is to locate the model's equilibrium points and elucidate the necessary conditions for their existence. By 

thoroughly examining the dynamics of the model, we aim to pinpoint the pivotal points at which the system achieves 

stability. This analytical approach provides the details of how the model behaves and maintains stability across different 

circumstances. Furthermore, we look at the implications of these equilibrium points. This precise mathematical scrutiny 

enriches our understanding of the dynamics of the model. It facilitates a deeper exploration of its broader implications 

within the context of the phenomenon under study. 

3-3- Equilibrium Points of Model 

We have the following system of equations for computing the equilibrium points of the proposed model (1-4). 

0 = 𝑥1(𝑡)(𝑎 − 𝑥2(𝑡)𝛼1 − 𝜇1)  (5) 

0 = 𝑥2(𝑡)(𝑐1𝑥1(t)𝛼1 − 𝑥3(𝑡)𝛼2 − 𝜇2)  (6) 

0 = 𝑥3(𝑡)(𝑐2𝑥2(𝑡)𝛼2 − 𝑥4(𝑡)𝛼3 − 𝜇3)  (7) 

0 = 𝑥4(𝑡)(𝑐3𝑥3(𝑡)𝛼3 − 𝜇4)  (8) 

After solving the system of Equation 5 to 8 simultaneously, we find that five equilibrium points are given as under. 

a)  Prey-free, top predator-free equilibrium point 

𝐸1 = (0,
𝜇3

𝑐2𝛼2
, −

𝜇2

𝛼2
, 0)  

This particular equilibrium point represents the extinction of basal prey and top predators. It is obvious that this point 

does not exist because 𝜇2 > 0 and 𝛼2 > 0. 

b) Prey-free, predator-1 free fixed point 

𝐸2 = (0, 0,
𝜇4

𝑐3𝛼3
, −

𝜇3

𝛼3
)  

This particular equilibrium point represents the extinction of basal prey and medium predator-1. It is obvious that this 

point does not exist because 𝜇3 > 0 and 𝛼3 > 0. 

c) Coexistence Fixed Point 

𝐸3 = (
𝑐3𝛼3𝜇2+𝛼2𝜇4

𝑐1𝑐3𝛼1𝛼3
,
𝑎−𝜇1

𝛼1
,
𝜇4

𝑐3𝛼3
,
𝑐2𝛼2(𝑎−𝜇1)−𝛼1𝜇3

𝛼1𝛼3
)  

The equilibrium point guarantees the existence of all species under the following conditions. 

𝑎 > 𝜇1, 𝑐2𝛼2(𝑎 − 𝜇1) > 𝛼1𝜇3. 

d) Trivial Fixed Point 

𝐸4 = (0, 0, 0, 0) 

This equilibrium point shows the extinction of all the species from the habitat. From an ecological point of view, this 

point is not of interest as it leads to habitat destruction. 

e) Predator-2, top predator-free fixed point 

𝐸5 = (
𝜇2

𝑐1𝛼1
,
𝑎−𝜇1

𝛼1
, 0, 0)  

The equilibrium point guarantees the extinction of two predators, i.e., medium predator and top predator. This point 

exists if the growth rate of prey is greater than its natural death rate. 
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3-4- Global Stability 

To deal with the global stability of coexistence fixed point we have the following theorem. 

Theorem 3: For 𝑥i ≥ 𝑥i
∗ , (i = 1, 2, 3, 4), the equations (1-4) are globally asymptotically stable for the coexistence 

equilibrium point if the following hold. 

0 ≤ 𝑐i < 1, (𝑖 = 1, 2, 3)  

Proof: Consider the following Lyapunov function for the coexistence equilibrium point. 

V(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑘1 (𝑥1 − 𝑥1
∗ − 𝑥1

∗log
𝑥1
𝑥1
∗
) + 𝑘2 (𝑥2 − 𝑥2

∗ − 𝑥2
∗log

𝑥2
𝑥2

∗
) + 𝑘3 (𝑥3 − 𝑥3

∗ − 𝑥3
∗log

𝑥3
𝑥3

∗
) + 𝑘4 (𝑥4 − 𝑥4

∗ − 𝑥4
∗log

𝑥4
𝑥4

∗
) (9) 

where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are positive constants whose value is to be determined. The derivative of the above Equation 9 

leads to the following result. 

𝑑V

𝑑𝑡
= 𝑘1 (1 −

𝑥1
∗

𝑥1
)
𝑑𝑥1

𝑑𝑡
+ 𝑘2 (1 −

𝑥2
∗

𝑥2
)
𝑑𝑥2

𝑑𝑡
+ 𝑘3 (1 −

𝑥3
∗

𝑥3
)
𝑑𝑥3

𝑑𝑡
+ 𝑘4 (1 −

𝑥4
∗

𝑥4
)
𝑑𝑥4

𝑑𝑡
.      (10) 

We get the following form after some simplification. 

𝑑V

𝑑𝑡
= 𝑘1 (

𝑥1−𝑥1
∗

𝑥1
)
𝑑𝑥1

𝑑𝑡
+ 𝑘2 (

𝑥1−𝑥1
∗

𝑥1
)
𝑑𝑥2

𝑑𝑡
+ 𝑘3 (

𝑥1−𝑥1
∗

𝑥1
)
𝑑𝑥3

𝑑𝑡
+ 𝑘4 (

𝑥1−𝑥1
∗

𝑥1
)
𝑑𝑥4

𝑑𝑡
  (11) 

By using Equations 1 to 5 in the above equation, we get the following form 

𝑑V

𝑑𝑡
= 𝑘1 (

𝑥1−𝑥1
∗

𝑥1
) (𝑥1(𝑡)(𝑎 − 𝑥2(𝑡)𝛼1 − 𝜇1)) + 𝑘2 (

𝑥2−𝑥2
∗

𝑥2
) (𝑥2(𝑡)(𝑐1𝑥1(t)𝛼1 − 𝑥3(𝑡)𝛼2 − 𝜇2)) +

𝑘3 (
𝑥3−𝑥3

∗

𝑥3
) (𝑥3(𝑡)(𝑐2𝑥2(𝑡)𝛼2 − 𝑥4(𝑡)𝛼3 − 𝜇3)) + 𝑘4 (

𝑥4−𝑥4
∗

𝑥4
) (𝑥4(𝑡)(𝑐3𝑥3(𝑡)𝛼3 − 𝜇4)). 

(12) 

𝑑V

𝑑𝑡
= 𝑘1(𝑥1 − 𝑥1

∗)(𝑎 − 𝑥2𝛼1 − 𝜇1) + 𝑘2(𝑥2 − 𝑥2
∗)(𝑐1𝑥1𝛼1 − 𝑥3𝛼2 − 𝜇2) + 𝑘3(𝑥3 − 𝑥3

∗)(𝑐2𝑥2𝛼2 − 𝑥4𝛼3 − 𝜇3) +

𝑘4(𝑥4 − 𝑥4
∗)(𝑐3𝑥3𝛼3 − 𝜇4)  

(13) 

By utilizing the fact that 
𝑑𝑥i

∗

𝑑𝑡
= 0, for (𝑖 = 1,2,3,4), we get the following. 

𝑑V

𝑑𝑡
= 𝑘1(𝑥1 − 𝑥1

∗)(𝑥2
∗𝛼1 − 𝑥2𝛼1) + 𝑘2(𝑥2 − 𝑥2

∗)(𝑐1𝑥1𝛼1 − 𝑥3𝛼2 − 𝑐1𝑥1
∗𝛼1 + 𝑥3

∗𝛼2) + 𝑘3(𝑥3 −

𝑥3
∗)(𝑐2𝑥2𝛼2 − 𝑥4𝛼3 − 𝑐2𝑥2

∗𝛼2 + 𝑥4
∗𝛼3) + 𝑘4(𝑥4 − 𝑥4

∗)  
(14) 

Some simplification leads to the following result. 

𝑑V

𝑑𝑡
= −𝑘1𝛼1(𝑥1 − 𝑥1

∗)(𝑥2 − 𝑥2
∗) + 𝑘2𝑐1𝛼1(𝑥2 − 𝑥2

∗)(𝑥1 − 𝑥1
∗) − 𝑘2𝛼2(𝑥2 − 𝑥2

∗)(𝑥3 − 𝑥3
∗) +

𝑘3𝑐2𝛼2(𝑥3 − 𝑥3
∗)(𝑥2 − 𝑥2

∗) − 𝑘3𝛼3(𝑥3 − 𝑥3
∗)(𝑥4 − 𝑥4

∗) + 𝑘4𝑐3𝛼3(𝑥4 − 𝑥4
∗)(𝑥3 − 𝑥3

∗). 
(15) 

Further simplification leads to the following form. 

𝑑V

𝑑𝑡
= (𝑘2𝑐1𝛼1 − 𝑘1𝛼1)(𝑥1 − 𝑥1

∗)(𝑥2 − 𝑥2
∗) + (𝑘3𝑐2𝛼2 − 𝑘2𝛼2)(𝑥2 − 𝑥2

∗)(𝑥3 − 𝑥3
∗) + (𝑘4𝑐3𝛼3 −

𝑘3𝛼3)(𝑥4 − 𝑥4
∗)(𝑥3 − 𝑥3

∗). 
(16) 

Setting 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1, we get the following form. 

𝑑V

𝑑𝑡
= (𝑐1𝛼1 − 𝛼1)(𝑥1 − 𝑥1

∗)(𝑥2 − 𝑥2
∗) + (𝑐2𝛼2 − 𝛼2)(𝑥2 − 𝑥2

∗)(𝑥3 − 𝑥3
∗) + (𝑐3𝛼3 − 𝛼3)(𝑥4 − 𝑥4

∗)(𝑥3 − 𝑥3
∗).  (17) 

It is easy to observe that 
𝑑V

𝑑𝑡
≤ 0, 

if 𝑐1 < 1, 𝑐2 < 1 and 𝑐3 < 1. (18) 

Also 
𝑑V

𝑑𝑡
= 0, 

if 𝑥1 = 𝑥1
∗, 𝑥2 = 𝑥2

∗, 𝑥3 = 𝑥3
∗and 𝑥4 = 𝑥4

∗. (19) 

Hence, according to LaSalle's invariance principle, the coexistence equilibrium point is globally asymptotically stable 

under the mentioned condition. 

Figure 3 shows the solution of systems (1-4). The values of all the parameters involved in these plots are expressed 

ahead 𝑎 = 0.393, 𝑐1 = 0.51, 𝑐2 = 0.51 𝑐3 = 0.4, 𝛼1 = 0.414, 𝛼2 = 0.894, 𝛼3 = 0.9035, 𝛼4 = 0.035, 𝜇1 = 0.06, 𝜇2 =
0.04, 𝜇3 = 0.28, 𝜇4 = 0.6the initial conditions are(0.8, 0.2, 0.8, 0.2). It is obvious from the plots that the system is 

showing a damped oscillatory solution. The second plot shows the impact of the parameter 𝛼2 on the population 

dynamics. The respective values of the parameter are 0.5943, 0.6943, and 0.7943. All the other values are taken as in 

Figure 4. The plots depict that rising values of the parameter raise the amplitude. Figure 5 displays the impact of the 

parameter 𝑐3 on the population density. The values are taken as 0.047, 0.057, and 0.067. 
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Figure 3. Solutions of the system (1-4) with initial conditions (0.8, 0.2, 0.8, 0.2) 

 

 

(a) 

(b) 
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Figure 4. Impact of 𝛼2 on population density 

 

 

(c) 

(a) 

(b) 
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Figure 5. Impact of c3 on population density 

4- Artificial Neural Networks 

Artificial Neural Networks (ANNs) are increasingly employed to model complex systems, including ecological 

dynamics like predator-prey interactions. ANNs simulate human brain neural networks, with artificial neurons as nodes 

that process and send signals across layers. Trained in historical data, ANNs can analyze population factors such as 

environmental conditions, species density, and interactions. This enables ANNs to predict population distributions, 

examine the effects of various factors, and optimize resource conservation or use. By uncovering hidden patterns in data, 

ANNs provide enhanced predictive accuracy and offer deeper insights into the dynamics of species interactions, 

particularly in systems influenced by environmental variability. In conclusion, ANNs are an effective tool for 

investigating predator-prey systems, improving our understanding of species dynamics and ecological stability. 

Figure 6-a plots the mean squared error of a four-species food chain model against the 𝛼1 basal prey death rate. The 

artificial neural network (ANN) model epochs, or the number of times the training data is run through it, are plotted on 

the x-axis of the Figure. The model's fit to the training set of data is indicated by the mean squared error, which is plotted 

on the y-axis. The Figure shows that 1.1905 × 10−9, which was attained at epoch 1000, had the best validation 

performance. This indicates that after 1000 training epochs, the model on the validation data set reached its lowest mean 

squared error. The plot indicates that, in general, the mean squared error decreases with increasing epochs. The mean 

squared error of the model is plotted against the medium predator-1 (𝛼2) death rate in Figure 6-b. The number of epochs, 

or the number of times the training data is run through the artificial neural network (ANN) model, is represented on the 

x-axis. The mean squared error, a gauge of how well the model matches the training set of data, is displayed on the y-

axis. The best validation performance, 5.5993 × 10−10, was attained at epoch 1000. This indicates that after 1000 

training epochs, the model reached its lowest mean squared error on the validation data set. 

  

(a) (b) 

Figure 6. Training process of artificial neural network (ANN) for the impact of (a) α1 (b) α2 

(c) 
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Figure 7-a shows the results of the transition state for 𝛼1, focusing on gradient and validation checks. The number of 

epochs, or the number of times the training data is run through the artificial neural network (ANN) model, is represented 

on the x-axis. The graphic shows that during the 1000 epochs, there were no validation checks. Two values for the 

gradient are mentioned in the text annotations: Mu 1 × 10−8 at epoch 1000 and 7.834 × 10−5 at epoch 1000. The 

gradient indicates how much the weights in the model should be changed to enhance the fit between the predicted and 

observed data. On the whole, the plot suggests that the model achieved a validation check value of zero. In Figure 7-b, 

plotted for 𝛼2, two values for the gradient are mentioned in the text annotations: Mu 1 × 10−7 at epoch 1000 and 3.4839×

10−6 at epoch 1000. The gradient indicates how much the weights in the model should be changed to enhance the fit 

between the predicted and observed data. To put it another way, it shows which way the error function's steepest descent 

is. The model may be approaching a minimum error state if the gradient has a smaller value. In this case, the gradient 

exhibits a positive sign at epoch 1000 and looks to be quite modest. 

 

(a) 

 

(b) 

Figure 7. Results of the transition state on the impact of (a) α1 (b) α2 
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The error distribution between the goal values and the output values of an ANN model for estimating the cannibalism 

rate of basal prey is represented visually in error histograms Figure 8(a) and (b). The histogram is divided into 20 bins, 

where the y-axis displays the number of occurrences inside each bin, and the x-axis represents the range of errors. The 

majority of the errors are centered on zero, demonstrating the effectiveness of the ANN model. On the left and right, 

there is a tiny tail of errors, though, which suggests that the actual values deviate significantly from the goal values. 

  

(a) (b) 

Figure 8. Histogram of error analysis for the impact of (a) α1 (b) α2 

Four graphs pertaining to the training and validation of a neural network for regression analysis are displayed in 

Figures 9-a and 9-b. All of the data points in the top left graph, which depicts the connection between the actual and 

anticipated goal values during the training phase, lie on the diagonal line. During the validation phase, the connection 

between the predicted and actual target values is depicted in the top right graph, where all data points are in close 

proximity to the diagonal line. On a different test dataset, the link between projected and actual target values is displayed 

in the bottom left graph, where all data points are near the diagonal line. The bottom right graph shows a strong overall 

fit of the neural network by combining data from all three phases into a single figure. 

 

(a) 
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(b) 

Figure 9. Regression analysis from using the target of the impact of (a) α1 (b) α2 

5- Diffusion System 

Diffusion is justified in predator-prey models because predators and prey are not equally distributed. Instead, they 

may cluster or disperse, causing regional variation in the two species population dynamics. Diffusion mathematically 

models spatial heterogeneity by including random population movements. Diffusion can reflect predator-prey mobility 

through their shared environment and predator-prey interactions in predator-prey models. Diffusion in predator-prey 

models can also explain how predator and prey populations can become patchily dispersed over time, with high and low 

densities. This may affect the two species' survival and environmental interactions. Diffusion in predator-prey models 

can assist explains the intricate dynamics of these ecological relationships and reveal the principles that sustain 

ecosystems. 

In ecological models, diffusion deals with the spatial spread of populations, where species disperse and interact based 

on their locations. Generally, in a food chain model, diffusion describes how prey species may spread across different 

regions, influencing their interaction with other species in the system. In contrast, non-diffusion factors involve internal 

processes like predation, birth, or death rates, which do not depend on spatial distribution. These non-diffusion factors 

capture interactions such as predation dynamics or competition within a population. Both diffusion and non-diffusion 

factors are crucial for modeling species interactions in food chains because they affect population dynamics through 

different mechanisms. 

One common mathematical representation of diffusion in predator-prey models is the use of partial differential 

equations to depict the temporal and spatial variation in predator and prey density. These equations account for the 

velocities of people in the environment and their interactions with one another. 

We examine the impact of diffusion on the density of interacting species' populations using the self-diffusive predator-

prey model. We take 𝑑𝑖, 𝑖 = 1, 2, 3, 4 as diffusion coefficient. 

The system defined in (1-4) takes the following form. 

𝑑𝑥1

𝑑𝑡
= 𝑑1

𝜕2𝑥1

𝜕𝑥2
+ 𝑥1(𝑎 − 𝑥2𝛼1 − 𝜇1),                   t > 0, x > 0 (20) 

𝑑𝑥2

𝑑𝑡
= 𝑑2

𝜕2𝑥2

𝜕𝑥2
+ 𝑥2(𝑐1𝑥1𝛼1 − 𝑥3𝛼2 − 𝜇2),          t > 0, x > 0 (21) 

𝑑𝑥3

𝑑𝑡
= 𝑑3

𝜕2𝑥3

𝜕𝑥2
+ 𝑥3(𝑐2𝑥2𝛼2 − 𝑥4𝛼3 − 𝜇3) ,         t > 0, x > 0  (22) 
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𝑑𝑥4

𝑑𝑡
= 𝑑4

𝜕2𝑥4

𝜕𝑥2
+ 𝑥4(𝑐3𝑥3𝛼3 − 𝜇4), t > 0,               x > 0 (23) 

where; 

𝑥1(0, 0) ≥ 0, 𝑥2(0, 0) ≥ 0, 𝑥3(0, 0) ≥ 0, 𝑥4(0, 0) ≥ 0.  

and Neumann boundary conditions 

𝜕𝑥1

𝜕𝜈
=

𝜕𝑥2

𝜕𝜈
=

𝜕𝑥3

𝜕𝜈
=

𝜕𝑥4

𝜕𝜈
= 0,              𝑥 ∈ 𝜕𝛺.  

Figure 10 shows contour plots for the diffusion model. The parameters in these plots are taken as 𝑎 = 0.933, 𝑐1 =

0.848,   𝑐2 = 0.008,   𝑐3 = 0.0014,   𝛼1 = 0.165,  𝛼2 = 0.143,  𝛼3 = 0.199, 𝛼4 = 0.108,  𝜇1 = 0.06,  𝜇2 = 0.604,  𝜇3 = 0.028,  

𝜇4 = 0.6, 𝑑1 = 0.804, 𝑑2 = 0.93, 𝑑3 = 0.007, 𝑑4 = 0. Typically, contour maps are used to visualize the distribution of 

variables under study across a two-dimensional space. In the present case, the variable being mapped is the concentration 

or density of each species in the food chain diffusion model. The red strips likely represent areas of high concentration 

or density for the species in the food chain. The narrower width of the strips could indicate that the high-concentration 

areas are more localized or concentrated in specific areas. The green strips that are wider than the red ones indicate areas 

where the respective species in the food chain is more concentrated or abundant. Overall, the different colored strips on 

the contour map provide a visual representation of the distribution of species in the food chain diffusion model and can 

help to identify areas of high and low concentration or density for each species. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Contour plots for the diffusion system with ICs (0.2, 0.8, 0.2, 0.8) 
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6- Numerical Scheme 

In this section, we construct a numerical scheme using three-time levels. 

6-1- Construction of Numerical Scheme 

To construct the scheme, suppose we have the following diffusion equation. 

𝜕𝑤

𝜕𝑡
= 𝑑1

𝜕2𝑤

𝜕2𝑥
+ �̅�𝑤  

We construct an implicit scheme by considering the following difference equation. In this construction, three-time 

levels are taken, i.e., 𝑛, 𝑛 + 1 𝑎𝑛𝑑 𝑛 − 1. 

𝑤𝑖
𝑛+1 = 𝑎𝑤𝑖

𝑛 + 3
𝑣𝑖
𝑛−1

4
+ Δ𝑡 {𝑏 (

𝜕𝑤

𝜕𝑡
)
𝑖

𝑛+1

+ 𝑐 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+ 𝑒 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛−1

}  (24) 

The Taylor series expansions for 𝑤𝑖
𝑛+1, 𝑤𝑖

𝑛−1, (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛+1

 and (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛−1

 are given as, 

𝑤𝑖
𝑛+1 = 𝑤𝑖

𝑛 + Δ𝑡 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+
(Δ𝑡)2

2
(
𝜕2𝑤

𝜕𝑡2
)
𝑖

𝑛

+
(Δ𝑡)3

6
(
𝜕3𝑤

𝜕𝑡3
)
𝑖

𝑛

+ 𝑂((Δ𝑡)4),  (25) 

𝑤𝑖
𝑛−1 = 𝑤𝑖

𝑛 − Δ𝑡 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+
(Δ𝑡)2

2
(
𝜕2𝑤

𝜕𝑡2
)
𝑖

𝑛

−
(Δ𝑡)3

6
(
𝜕3𝑤

𝜕𝑡3
)
𝑖

𝑛

+ 𝑂((Δ𝑡)4),  (26) 

(
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛+1

= (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+ Δ𝑡 (
𝜕2𝑤

𝜕𝑡2
)
𝑖

𝑛

+
(Δ𝑡)2

2
(
𝜕3𝑤

𝜕𝑡3
)
𝑖

𝑛

+ 𝑂((Δ𝑡)3),  (27) 

(
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛−1

= (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

− Δ𝑡 (
𝜕2𝑤

𝜕𝑡2
)
𝑖

𝑛

+
(Δ𝑡)2

2
(
𝜕3𝑤

𝜕𝑡3
)
𝑖

𝑛

− 𝑂((Δ𝑡)3).  (28) 

Putting the above values in the above equation and further simplification leads to the following equations. 

1 = 𝑎 +
3

4
,                       (29) 

1 = −
3

4
+ 𝑏 + 𝑐 + 𝑒,  (30) 

1

2
=

3

8
+ 𝑏 − 𝑒,  (31) 

1

6
= −

1

8
+

𝑏

2
+

𝑒

2
.  (32) 

Solving Equations 29 to 32 gives the values of unknown parameters 𝑎, 𝑏, 𝑐, and 𝑒 as given below. 

𝑎 =
1

4
, 𝑏 =

17

48
, 𝑐 =

7

6
, 𝑒 =

11

48
.  (33) 

So, we have the following form. 

𝑤𝑖
𝑛+1 =

1

4
𝑤𝑖
𝑛 + 3

𝑤𝑖
𝑛−1

4
+ Δ𝑡 {

17

48
(
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛+1

+
7

6
(
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+
11

48
(
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛−1

}  

Further simplification leads to the following result. 

𝑤𝑖
𝑛+1 =

1

4
(𝑤𝑖

𝑛 + 3𝑤𝑖
𝑛−1) +

𝛥𝑡

48
{17 (

𝜕𝑤

𝜕𝑡
)
𝑖

𝑛+1

+ 56 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛

+ 11 (
𝜕𝑤

𝜕𝑡
)
𝑖

𝑛−1

}  (34) 

6-2- Stability Analysis 

We use the Von Neumann stability technique to investigate the stability of the constructed numerical scheme. For 

applying this technique, we consider the following diffusive linear predator-prey equation: 

𝜕𝑤

𝜕𝑡
= 𝑑1

𝜕2𝑤

𝜕2𝑥
+ �̅�𝑤.         (35) 

The discretization of Equation 35 using the presented scheme is given as under. 

𝑤𝑖
𝑛+1 = 𝑎𝑤𝑖

𝑛 +
3

4
𝑤𝑖
𝑛−1 + Δ𝑡 {𝑏𝑑1 (

𝑤𝑖+1
𝑛+1−2𝑤𝑖

𝑛+1+𝑤𝑖−1
𝑛+1

(Δ𝑥)2
) + 𝑏�̅�𝑤𝑖

𝑛+1 + 𝑐𝑑1 (
𝑤𝑖+1
𝑛 −2𝑤𝑖

𝑛+𝑤𝑖−1
𝑛

(Δ𝑥)2
+ �̅�𝑤𝑖

𝑛) + 𝑐�̅�𝑤𝑖
𝑛 +

𝑒𝑑1 (
𝑤𝑖+1
𝑛−1−2𝑤𝑖

𝑛−1+𝑤𝑖−1
𝑛−1

(Δ𝑥)2
+ 𝑒�̅�𝑤𝑖

𝑛−1)}.  
(36) 
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We consider the following transformations for analysis. 

𝑤𝑖
𝑛 = 𝐴𝑛𝑒𝑖𝐼𝜙, 𝑤𝑖

𝑛+1 = 𝐴𝑛+1𝑒𝑖𝐼𝜙 , 𝑤𝑖±1
𝑛 = 𝐴𝑛𝑒(𝑖±1)𝐼𝜙, 𝑤𝑖±1

𝑛−1 = 𝐴𝑛+1𝑒(𝑖±1)𝐼𝜙  (37) 

Here, 𝐼 = √−1. 

Substituting the above values in Equation 36 and multiplying both sides by 𝑒−𝑖𝐼𝜙 yields the following form. 

𝐴𝑛+1 = 𝑎𝐴𝑛 +
3

4
𝐴𝑛−1 + Δ𝑡

{
 
 

 
 𝑏𝑑1 (

2𝑐𝑜𝑠𝜙−2

(Δ𝑥)2
) 𝐴𝑛+1 + 𝑏�̅�𝐴𝑛+1 +

𝑐𝑑1 (
2𝑐𝑜𝑠𝜙−2

(Δ𝑥)2
)𝐴𝑛 + 𝑐�̅�𝐴𝑛 +

𝑒𝑑1 (
2𝑐𝑜𝑠𝜙−2

(Δ𝑥)2
)𝐴𝑛−1 + 𝑒�̅�𝐴𝑛−1 }

 
 

 
 

  (38) 

Taking 𝑑 =
Δ𝑡

(Δ𝑥)2
 and collecting coefficients of 𝐴𝑛+1 on the left-hand side provides the form given as under. 

(1 − 2𝑏𝑑𝑑1(𝑐𝑜𝑠𝜙 − 1) − 𝑏Δt�̅�)𝐴
𝑛+1 = 𝑎𝐴𝑛 +

3

4
𝐴𝑛−1 + 2𝑐𝑑𝑑1(𝑐𝑜𝑠𝜙 − 1)𝐴

𝑛 + Δ𝑡�̅�𝐴𝑛+1 +

2𝑒𝑑𝑑1(𝑐𝑜𝑠𝜙 − 1)𝐴
𝑛−1 + 𝑒Δ𝑡�̅�𝐴𝑛−1.  

(39) 

Equation 38 can be written as below: 

𝐴𝑛+1 = 𝑃𝐴𝑛 + 𝑄𝐴𝑛−1  (40) 

where, 

𝑃 =
𝑎+2𝑐𝑑𝑑1(𝑐𝑜𝑠𝜙−1)+𝑐Δ𝑡�̅�

1−2𝑏𝑑𝑑1(𝑐𝑜𝑠𝜙−1)−𝑏Δ𝑡�̅�
 and 𝑄 =

3+8𝑒𝑑𝑑1(𝑐𝑜𝑠𝜙−1)+4𝑒Δ𝑡�̅�

4(1−2𝑏𝑑𝑑1(𝑐𝑜𝑠𝜙−1)−𝑏Δ𝑡�̅�)
. (41) 

To write the amplification matrix, we need another equation. The additional equation is expressed below. 

𝐴𝑛 = 1. 𝐴𝑛 + 0. 𝐴𝑛−1  (42) 

The matrix-vector equation can be expressed as below: 

[𝐴
𝑛+1

𝐴𝑛
] = [

𝑃 𝑄
1 0

] [
𝐴𝑛

𝐴𝑛−1
].  (43) 

The stability criteria for the amplification matrix's eigenvalues are as follows: 

|
𝑃+√𝑃2+4𝑄

2
| ≤ 1 and |

𝑃−√𝑃2+4𝑄

2
| ≤ 1 . (44) 

If the eigenvalues of the amplification matrix are positive, then the scheme is stable if the inequalities (44) are 

satisfied, and if the eigenvalues are negative, then the stability requirement is expressed as: 

|𝑄|2 ≤ 1.  (45) 

where 𝑃 𝑎𝑛𝑑 𝑄 are given in Equation 41. 

6-3- Numerical Simulations 

We apply the constructed third-order multistep finite difference scheme to the model presented in Equations 20-23. 

𝑣𝑖
𝑛+1 =

1

4
(𝑣𝑖

𝑛 + 3𝑣𝑖
𝑛−1) +

𝛥𝑡

48
{17 (

𝜕𝑣

𝜕𝑡
)
𝑖

𝑛+1

+ 56 (
𝜕𝑣

𝜕𝑡
)
𝑖

𝑛

+ 11 (
𝜕𝑣

𝜕𝑡
)
𝑖

𝑛−1

}  

𝑥1,𝑖
𝑛+1 =

1

4
(𝑥1,𝑖

𝑛 + 3𝑥1,𝑖
𝑛−1) +

𝛥𝑡

48
{17 (

𝜕𝑥1

𝜕𝑡
)
𝑖

𝑛+1

+ 56 (
𝜕𝑥1

𝜕𝑡
)
𝑖

𝑛

+ 11 (
𝜕𝑥1

𝜕𝑡
)
𝑖

𝑛−1

}. 

The above equation can be written as follows: 

𝑥1,𝑖
𝑛+1 =

1

4
(𝑥1,𝑖

𝑛 + 3𝑥1,𝑖
𝑛−1) +

𝛥𝑡

48

[
 
 
 
 
 
 
 17 {

𝑑1 (𝑥1,𝑖+1
𝑛+1 − 2𝑥1,𝑖

𝑛+1 + 𝑥1,𝑖−1
𝑛+1 ) (∆𝑥)2⁄ +

𝑥1,𝑖
𝑛+1(𝑎 − 𝑥2,𝑖

𝑛+1𝛼1 − 𝜇1)
} +

56 {
𝑑1 (𝑥1,𝑖+1

𝑛 − 2𝑥1,𝑖
𝑛 + 𝑥1,𝑖−1

𝑛 ) (∆𝑥)2⁄ +

𝑥1,𝑖
𝑛 (𝑎 − 𝑥2,𝑖

𝑛 𝛼1 − 𝜇1)
} + 11

{
𝑑1 (𝑥1,𝑖+1

𝑛−1 − 2𝑥1,𝑖
𝑛−1 + 𝑥1,𝑖−1

𝑛−1 ) (∆𝑥)2⁄ +

𝑥1,𝑖
𝑛−1(𝑎 − 𝑥2,𝑖

𝑛−1𝛼1 − 𝜇1)
}

]
 
 
 
 
 
 
 

  (46) 
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Similarly, the other equations of the system described above are as follows: 

𝑥2,𝑖
𝑛+1 =

1

4
(𝑥2,𝑖

𝑛 + 3𝑥2,𝑖
𝑛−1) +

𝛥𝑡

48

[
 
 
 
 
 
 
 17 {

𝑑2 (𝑥2,𝑖+1
𝑛+1 − 2𝑥2,𝑖

𝑛+1 + 𝑥2,𝑖−1
𝑛+1 ) (∆𝑥)2⁄ +

𝑥2,𝑖
𝑛+1(𝑐1𝑥1,𝑖

𝑛+1𝛼1 − 𝑥3,𝑖
𝑛+1𝛼2 − 𝜇2)

} +

56 {
𝑑2 (𝑥2,𝑖+1

𝑛 − 2𝑥2,𝑖
𝑛 + 𝑃2,𝑖−1

𝑛 ) (∆𝑥)2⁄ +

𝑥2,𝑖
𝑛 (𝑐1𝑥1,𝑖

𝑛 𝛼1 − 𝑥3,𝑖
𝑛 𝛼2 − 𝜇2)

} + 11

{
𝑑2 (𝑥2,𝑖+1

𝑛−1 − 2𝑥2,𝑖
𝑛−1 + 𝑥2,𝑖−1

𝑛−1 ) (∆𝑥)2⁄ +

𝑥2,𝑖
𝑛−1(𝑐1𝑥1,𝑖

𝑛−1𝛼1 − 𝑥3,𝑖
𝑛−1𝛼2 − 𝜇2)

}
]
 
 
 
 
 
 
 

 (47) 

𝑥3,𝑖
𝑛+1 =

1

4
(𝑥3,𝑖

𝑛 + 3𝑥3,𝑖
𝑛−1) +

𝛥𝑡

48

[
 
 
 
 
 
 
 17 {

𝑑3 (𝑥3,𝑖+1
𝑛+1 − 2𝑥3,𝑖

𝑛+1 + 𝑥3,𝑖−1
𝑛+1 ) (∆𝑥)2⁄ +

𝑥3,𝑖
𝑛+1(𝑐2𝑥3,𝑖+1

𝑛+1 𝛼2 − 𝑥3,𝑖+1
𝑛+1 𝛼3 − 𝜇3)

} +

56{
𝑑3 (𝑥3,𝑖+1

𝑛 − 2𝑥3,𝑖
𝑛 + 𝑥3,𝑖−1

𝑛 ) (∆𝑥)2⁄ +

𝑥3,𝑖
𝑛 (𝑐2𝑥3,𝑖+1

𝑛 𝛼2 − 𝑥3,𝑖+1
𝑛 𝛼3 − 𝜇3)

} + 11

{
𝑑3 (𝑥3𝑖+1

𝑛−1 − 2𝑥3,𝑖
𝑛−1 + 𝑥3,𝑖−1

𝑛−1 ) (∆𝑥)2⁄ +

𝑥3,𝑖
𝑛−1(𝑐2𝑥3,𝑖+1

𝑛−1 𝛼2 − 𝑥3,𝑖+1
𝑛−1 𝛼3 − 𝜇3)

}
]
 
 
 
 
 
 
 

 (48) 

𝑥4,𝑖
𝑛+1 =

1

4
(𝑥4,𝑖

𝑛 + 3𝑥4,𝑖
𝑛−1) +

𝛥𝑡

48

[
 
 
 
 
 
 
 17 {

𝑑4 (𝑥4,𝑖+1
𝑛+1 − 2𝑥4,𝑖

𝑛+1 + 𝑥4,𝑖−1
𝑛+1 ) (∆𝑥)2⁄ +

𝑥4,𝑖
𝑛+1(𝑐3𝑥3,𝑖+1

𝑛+1 𝛼3 − 𝜇4)
} +

56{
𝑑3 (𝑥4,𝑖+1

𝑛 − 2𝑥4,𝑖
𝑛 + 𝑥4,𝑖−1

𝑛 ) (∆𝑥)2⁄ +

𝑥4,𝑖
𝑛 (𝑐3𝑥3,𝑖+1

𝑛 𝛼3 − 𝜇4)
} + 11

{
𝑑3 (𝑥4,𝑖+1

𝑛−1 − 2𝑥4,𝑖
𝑛−1 + 𝑥4,𝑖−1

𝑛−1 ) (∆𝑥)2⁄ +

𝑥4,𝑖
𝑛−1(𝑐3𝑥3,𝑖+1

𝑛−1 𝛼3 − 𝜇4)
}

]
 
 
 
 
 
 
 

 (49) 

The above Equations 46 to 49 describe the diffusive system's discretization Equations 20-23. The graphical 
presentation of the system (20-23) through the presented scheme is as follows. 

Figure 11 presents the solution of the diffusive system for the species population. The diffusion coefficients are taken 
as (0.98, 0.999, 0.007, 0.15). The values of other parameters are 𝑎 = 0.7, 𝑐1 = 0.848, 𝑐2 = 0.008, 𝑐3 = 0.0014, 𝛼1 =
0.16, 𝛼2 = 0.843, 𝛼3 = 0.19, 𝜇1 = 0.006, 𝜇2 = 0.604, 𝜇3 = 0.028, 𝜇4 = 0.909. Figure 12 shows the solution of the 

diffusive system for the parameter values as in Figure 3. Figure 13 shows the bifurcation plots for all the populations by 
taking ′𝑎′ as the bifurcation parameter. The values of ′𝑎′ are taken up to 0.4. The values of parameters in these plots are 
𝑎 = 0.933, 𝑐1 = 0.88, 𝑐2 = 0.999 𝑐3 = 0.14, 𝛼1 = 0.9916, 𝛼2 = 0.4814, 𝛼3 = 0.4519, 𝜇1 = 0.006, 𝜇2 = 0.604, 𝜇3 =
0.0028, 𝜇4 = 0.03239, with initial condition(0.9, 0.19, 0.7, 0.8). Figure 14 depicts the comparison of solutions for all 
the interactive species for two distinct values of respective diffusion coefficients. Here parameters are 𝑑1  =
 (0.68, 0.78), 𝑑2 = (0.899, 0.999), 𝑑3 = (0.005, 0.007), 𝑑4 = (0.19,0.29). The rest of the parameters are the same as 

those in Figure 11. The analysis underscores the critical influence of diffusion parameters on species population 
dynamics within the system. Increasing the diffusion values generally exerts inverse effects on the population densities 
of all species, except for medium predator-2, which exhibits a direct correlation with diffusion rates. This distinction 
highlights the unique ecological interactions and adaptive strategies of medium predator-2, potentially reflecting its 
pivotal role in the trophic hierarchy. Figure 14 illustrates the impact of migration parameters on the prey population, 
showing an inverse relationship. As migration rates enhance, prey populations decrease, suggesting that elevated 

migration moves to a more uniform spatial distribution and decreases localized population densities. This result 
highlights the role of spatial heterogeneity and migration in regulating prey dynamics. Overall, these results emphasize 
the complex relationship between diffusion and migration in shaping ecological systems.  

 

(a) 
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Figure 11. Solution for the diffusive system with initial conditions (0.17, 0.92. 0.58, 0.02) 

(b) 

(c) 

(d) 
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Figure 12. Numerical solution for the diffusive system 
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(d) 

Figure 13. Bifurcation diagram for the non-diffusive model 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 14. Impact of diffusion coefficients on the interactive population 

The present work focuses on the global existence and stability of equilibrium states in a four-species food chain 

model, utilizing Lyapunov functionals and bifurcation analysis, particularly focusing on the role of prey growth rate as 

a bifurcation parameter. Additionally, artificial neural networks (ANN) are incorporated to explore complex dynamics. 

The study by Jin et al. [40] emphasizes global existence using coupling energy estimates in two-dimensional spaces. It 

applies Lyapunov functionals along with LaSalle's invariance principle to establish the stability of prey-only, semi-

coexistence, and coexistence steady states. At the same time, the present study highlights diffusive and non-diffusive 

dynamics. Both studies contribute to understanding equilibrium stability, but with different methodologies, we explore 

bifurcation and modern computational tools, whereas Jin et al. [40] focused on coupling energy techniques and 

invariance principles. 

7- Conclusion 

In this study, a comprehensive investigation into a food chain model involving four species is conducted, considering 

both diffusive and non-diffusive versions of the model. By establishing criteria for the existence and stability of 

equilibrium points within a bounded region in terms of system parameters, the study provided valuable analysis of the 

dynamics of the system. Utilizing analysis techniques, positivity and boundedness are discussed. The equilibrium points 

are identified, and conditions for their existence are outlined. Stability analysis is performed using the Lyapunov 

function, and a numerical scheme based on three-time levels and the system's behavior under various conditions is 

discussed. The results showed that diffusion has a major effect on the dynamics of interacting species' populations, 
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highlighting how important it is to include diffusion in the model. In particular, bifurcation plots highlighted the 

significance of prey growth rate as a bifurcation parameter, providing greater insight into the system's behavior. 

Decoding the complex food chain model using ANN gives a better insight into species interaction, dynamics, and 

behaviors. The article concludes with a call for more significant research into more complicated dynamics by 

recommending that this line of inquiry be expanded to investigate stability and bifurcation in the context of a fractional-

order food chain model. 

The research also overlays the way modern computational techniques, such as hybrid modeling techniques and data-

driven methods, are integrated to study ecological systems. By bridging traditional analytical methods with emerging 

technologies, future studies could unveil concealed patterns in population interactions and responses to environmental 

changes. Expanding the study to add stochastic effects, environmental variability, and multi-scale interactions would 

supplement the understanding of real-world dynamics. Moreover, investigating anthropogenic influences, such as 

pollution effects and habitat fragmentation, within the fractional-order framework could offer valuable insights into 

managing ecosystems under stress. Such modifications would not only deepen the theoretical understanding of 

ecological models but also contribute to practical strategies for biodiversity conservation and sustainable ecosystem 

management. 
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