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Abstract 

This research paper presents a comprehensive analysis of three prominent volatility and dependence 

models for financial time series: ARMA-GARCH, GARCH-EVT, and DCC-GARCH. These 

models are employed to assess and forecast capital requirements for life and non-life insurer 

investments. This study evaluates the models' performance in forecasting Value-at-Risk, using daily 

data on key Thai financial indicators (representing permissible insurer investment assets) from 
March 2009 to March 2024. Specifically, 1-day and 10-day VaR forecasts are generated using the 

ARMA-GARCH and DCC-GARCH models, while the ARMA-GARCH-EVT model is employed 

for 1-day VaR forecasting. Our findings indicate that the ARMA-GARCH model effectively 
captures time-varying volatility, while the GARCH-EVT approach enhances tail risk estimation, 

particularly relevant for stress testing. Additionally, the DCC-GARCH model allows for the 

examination of dynamic conditional correlations between assets, providing insights into portfolio 
diversification benefits. Rigorous backtesting procedures, employing Kupiec and Christoffersen 

tests with a rolling window of 1,000 out-of-sample observations, confirm that the majority of models 

accurately forecast VaR at their respective horizons, with only a very small subset of 10-day VaR 
models exhibiting limitations. These results highlight that ARMA-GARCH, ARMA-GARCH-EVT, 

and DCC-GARCH models offer insurers robust tools for estimating minimum capital requirements, 

forecasting investment risk, and guiding strategic asset allocation decisions. This research 
underscores the effectiveness of these models for practical application in the insurance industry 

while also emphasizing the importance of continued model validation, particularly for extended 

forecasting horizons. 
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1- Introduction 

Insurance companies are crucial to the financial sector's stability, enabling them to adeptly manage risks and uphold 

their commitments to policyholders. Solvency, underpinned by a stringent regulatory framework that stipulates minimum 

capital requirements, is vital for their continuous operation and the health of the industry, as affirmed by scholars like 

[1-3]. The International Association of Insurance Supervisors (IAIS) promotes these principles globally through the 

Insurance Core Principles (ICPs), which establish standards for capital adequacy and guide national regulators, as noted 

by Gaganis et al. (2016) [4].  

In Thailand, the Office of Insurance Commission (OIC) diligently enforces capital requirements in line with the IAIS' 

ICPs, thereby bolstering the financial system's stability and curtailing insolvency risks. The OIC's policies, detailed in 

official notifications, emphasize the significance of investment diversification for insurers. Firms are encouraged to 
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spread their capital across various asset classes such as equities, commodities, real estate, fixed-income securities, and 

foreign currencies in order to diffuse risk concentration. Capital charges set by the OIC are calibrated based on the risk 

profile of each investment asset class, fortifying insurers' solvency in both regular and stressed market conditions. These 

regulatory precautions are crafted to shield against potential investment shortfalls, aiding insurers in handling market 

fluctuations, safeguarding customer interests, and maintaining substantial capital reserves.  

In the realm of financial risk management, the complexity of market dynamics necessitates a shift from conventional 

analytics to advanced econometric methodologies. Traditional models, such as simple moving averages or historical 

simulation, often relying on an oversimplified assumption of constant variability, fail to adequately capture the complex 

stochastic behavior of financial market returns, particularly during unforeseen market events [5-7]. This inadequacy is 

particularly evident in the presence of heteroskedasticity, where volatility clusters and exhibits variability across different 

time periods, highlighting the need for more sophisticated risk assessment tools [8]. Zhou et al. (2021) [5], Huang et al. 

(2024) [6], and Petkov et al. (2021) [5-7] further emphasized how traditional approaches struggle to accurately model 

tail risks, leaving institutions vulnerable to extreme market movements. While the potential benefits of both 

Autoregressive Moving Average and Generalized Autoregressive Conditional Heteroskedasticity (ARMA-GARCH) 

models existed before the 2008 financial crisis, they were not fully realized, especially when used in combination. Had 

they been applied more rigorously, these models could have provided earlier warnings of escalating risks, potentially 

enabling more effective interventions such as forecasting more appropriate capital requirements for insurers.  

The 2008 crisis underscored the need for models that could better account for volatility clustering, leading to increased 

interest in GARCH-type approaches. Regulatory bodies and insurance entities have since begun to adopt more robust 

econometric designs, such as ARMA-GARCH models, within their risk management strategies. Numerous studies have 

demonstrated the superior performance of GARCH models in forecasting volatility across various asset classes, 

including equities, bonds, and commodities [9-15]. For example, research on the Indian stock market highlights the 

ability of GARCH models to identify temporal patterns in market trends and forecast volatility with greater accuracy. 

These findings suggest a predictable behavior of market turbulences over intervals, indicating that GARCH-based 

approaches can effectively model these patterns. 

While GARCH models have proven effective in capturing volatility clustering across various financial markets, their 

application to forecasting short- and long-term Value-at-Risk (VaR) at both individual asset and portfolio levels requires 

further exploration. This study addresses this gap by first employing an ARMA-GARCH framework to model volatility 

dynamics and forecast one-day and ten-day VaR for several key asset classes: equities, commodities, real estate, fixed-

income securities, and foreign currencies. As a widely used risk metric, VaR quantifies potential losses over specific 

time horizons and confidence levels, proving crucial for informed risk management [16].  For each asset class, this study 

utilizes an ARMA model to capture the conditional mean dynamics and a GARCH model to estimate the time-varying 

volatility, allowing for a comprehensive assessment of individual asset risk exposures. Our approach employs a rolling 

window on out-of-sample data to enhance the robustness and timeliness of these single-asset VaR estimates. The one-

day and ten-day VaR forecasts offer insights into short-term trading and strategic asset allocation, respectively, with the 

latter derived from Bollerslev's ARCH paradigm [17]. The preference for the GARCH model stems from its effectiveness 

in capturing volatility clustering in financial time series [6, 18-27]. However, to further enhance risk assessment, 

particularly in the tails of the distribution, this study also incorporates GARCH-EVT, which leverages extreme value 

theory. This study further employs a portfolio-level analysis using Dynamic Conditional Correlation-Generalized 

Autoregressive Conditional Heteroskedasticity (DCC-GARCH) to capture asset class co-movements and provide a 

comprehensive portfolio VaR analysis. By leveraging EVT, this advanced approach aligns with the risk management 

protocols of the Basel Accords, providing sophisticated methods to calculate the necessary capital for market risk. 

Supported by theoretical and empirical underpinnings [28-30], this study contributes significantly to risk management 

practices by offering refined methods to accurately estimate minimum capital requirements for both one-day and ten-

day periods. 

This study elevates the modeling of financial market volatility through the integration of ARMA-GARCH with 

Extreme Value Theory (EVT), acknowledging the importance of capturing tail risks. The predictive power of EVT is 

well-established, allowing for the extrapolation of risks from events that are not bounded by historical precedent [31-

34]. The ARMA-GARCH-EVT model effectively estimates the probability and impact of rare market events, enhancing 

traditional volatility analysis and strengthening stress testing capabilities [35-37]. The integrated model takes advantage 

of GARCH residuals being independently and identically distributed, providing a robust framework for risk evaluation 

[38-41]. This sophisticated approach to risk measurement bolsters stress testing capabilities, mitigating the risk of capital 

shortfalls and reputational risks due to underestimating market risk [42]. Our application of a rolling window analysis 

furthers the precision of one-day VaR calculations, a critical factor in establishing insurer capital reserves against 

significant market downturns, an aspect vital as identified by Brooks & Persand (2003) [43]. This methodology not only 

meets but anticipates regulatory standards, ensuring capital adequacy and financial resilience in the face of potential 

investment losses. 

During periods of market volatility, understanding variable asset correlations is pivotal, as corroborated by a breadth 

of research [44-48]. Building on the seminal works of Engle & Sheppard (2001) [49] and Engle (2002) [50], these studies 

utilized DCC-GARCH model to adeptly trace evolving risk profiles through the dynamics of co-volatility. This insight 
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is critical for comprehensive risk exposure management and maintaining diversified portfolios. The robustness of the 

DCC-GARCH model in volatile markets is well-supported by research studies [51-59]. Employing a rolling-window 

approach, our analysis forecasts out-of-sample portfolio performance, updating VaR estimates to mirror current market 

trends. For life and non-life insurers, this methodology proves invaluable, enabling them to synchronize asset portfolios 

with liability timelines and enhance their risk management practices. Moreover, such strategies allow for the 

recalibration of investment positions to maintain adequate capital buffers, adhering to the regulatory standards set by the 

OIC. Our research equips insurance firms with an advanced risk assessment tool that embraces the intricacies of asset 

correlation over time, which is especially useful in the event of financial disruptions akin to the 2008 crisis. By foreseeing 

risk correlations' upsurge, the DCC-GARCH model empowers insurers to proactively adjust their strategies, positioning 

them to better withstand future market stresses. 

To effectively navigate this paper, it is important to articulate the specific objectives that guided our analysis. The 

primary aims of this research are threefold: first, to apply the ARMA-GARCH and ARMA-GARCH-EVT models to 

improve the accuracy of VaR calculations integral to insurance capital reserve legislation; second, to leverage the DCC-

GARCH model to examine the interplay between asset correlations and market volatility, with a focus on portfolio 

diversification strategies; and third, to evaluate the efficacy of these models through rigorous backtesting procedures. Of 

particular novelty in our approach is the integration of EVT with the ARMA-GARCH model to enhance stress testing 

in volatile markets. Additionally, our study pioneers the application of these advanced econometric models within the 

regulatory framework specific to Thailand's Office of Insurance Commission, thus providing a valuable template for risk 

assessment in emerging markets. By setting clear objectives and highlighting these novel contributions, this paper aims 

to advance the field of financial risk management by offering implementable strategies for insurance firms to strengthen 

financial solvency and resilience. 

The paper is organized as follows: Section 2 presents the dataset, describing its sources and characteristics, and the 

methodology, including the ARMA-GARCH, ARMA-GARCH-EVT, and DCC-GARCH modeling techniques utilized 

to estimate asset volatility. Additionally, the backtesting approach is presented here. Section 3 presents the main 

empirical analysis, which applies the models to the data and discusses the implications of our findings, examining the 

models' performance and potential impact within the field. Finally, Section 4 concludes with a summary of the findings, 

outlining the contributions of this study to financial risk assessment and suggesting avenues for future research.  

2- Domain of Experiment and Methodology 

Daily returns, calculated using the logarithmic return formula (𝑟𝑡 = l n(𝑃𝑡/𝑃𝑡−1)), were analyzed for a dataset 

comprising 3,853 observations from March 1, 2009, to March 29, 2024. The dataset encompasses key Thai financial 

indicators: the SET index, Brent crude oil prices, government bond prices (3-7 and 7-10 year maturities), the JPY/THB 

exchange rate, and the property development sector index. Data were obtained from Datastream International and 

Bloomberg. Descriptive statistics, presented in Table 1, reveal characteristic features of financial time series. For 

instance, with the exception of the JPY/THB exchange rate, all series exhibit negative skewness, indicating a higher 

probability of large negative returns compared to a normal distribution. Additionally, all series display leptokurtosis, 

evidenced by high kurtosis values, implying a greater concentration of observations around the mean and fatter tails 

than a normal distribution. This leptokurtic behavior suggests an increased likelihood of extreme return movements. 

Volatility clustering is also evident, as confirmed by the Jarque-Bera (JB) test. The Augmented Dickey-Fuller (ADF) 

test confirms that all series are stationary, justifying the use of time-series models. Notably, heightened volatility during 

2020 underscores the importance of incorporating dynamic volatility patterns into risk management, especially during 

periods of market disruption. 

Table 1. Summary statistics for six assets 

 SET Index Brent Crude Oil GOV2 3-7 TTM GOV3 7-10 TTM JPY/THB Property Index 

Mean 0.00043 0.00015 0.00011 0.00014 -0.00010 0.00050 

Median 0.00027 0.00072 0.00013 0.00015 -0.00012 0.00014 

Maximum 0.07656 0.20340 0.00859 0.01651 0.04207 0.08324 

Minimum -0.11384 -0.27976 -0.00947 -0.01768 -0.03602 -0.14303 

SD 0.01012 0.02291 0.00121 0.00242 0.00594 0.01308 

Skewness -0.87236 -0.71476 -0.60515 -0.37548 0.11484 -0.78790 

Kurtosis 12.51147 17.13661 9.19053 6.083446 3.877468 10.40968 

JB 25,652 47,531 13,814 6,041 2,427 17,819 

JB (Probability) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

ADF -12.267 -12.521 -11.894 -12.287 -13.756 -11.144 

ADF (Probability) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

      Note: This table presents summary statistics for the daily return series of six assets. There are a total of 3,853 returns for each asset.                     

              The Jarque-Bera (JB) and Augmented Dickey-Fuller (ADF) test results are statistically significant at 0.01. 
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The analysis in this paper employs three complementary approaches to model asset volatility and risk which are as 

follows: 

2-1- Modeling Dynamic Volatility using Autoregressive Moving Average and Generalized Autoregressive Conditional 

Heteroskedastic  

Financial time series data often exhibit complex patterns, including volatility clustering and autocorrelation. To 

capture these complexities, this study utilizes Autoregressive Moving Average and Generalized Autoregressive 

Conditional Heteroskedastic (ARMA-GARCH) models. GARCH models are particularly well-suited for analyzing and 

forecasting volatility, which is a crucial component of financial risk management. Incorporating an ARMA model further 

enhances this analysis by explicitly modeling the conditional mean of the return series. The following equations describe 

the ARMA(m, n)-GARCH(p, q) model used in this study: 

{
 
 

 
 𝑟𝑡  =  𝜇 +∑ ∅𝑖

𝑚

𝑖=1
 𝑟𝑡−𝑖 +∑ 𝜃𝑗 

𝑛

𝑗=1
𝜀𝑡−𝑗 + 𝜀𝑡  

𝜀𝑡  =  𝜎𝑡𝑧𝑡                                                                   

𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖

𝑝

𝑖=1
𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗

𝑞

𝑗=1
𝜎𝑡−𝑗
2          

 (1) 

where 𝑟𝑡 represents the return at time t, 𝜇 is the constant term in the mean equation, ∅𝑖 represents the parameters of the 

AR(m) model and 𝜃𝑗  represents the parameters of the MA(n) model, 𝜀𝑡 is the residual of the mean equation at time t, 

𝜎𝑡
2 is the conditional variance at time t, 𝑧𝑡 represents the standardized innovations (or shocks) to the volatility process 

and is a sequence of independently and identically distributed (i.i.d.) random variables with a standard normal 

distribution with zero mean and unit variance, and 𝜔 is the constant term in the variance equation. The 𝛼𝑖 terms capture 

how sensitive current volatility is to recent shocks, while the 𝛽𝑗 terms measure the persistence of volatility from past 

periods. A larger 𝛼𝑖 implies that recent shocks have a stronger effect on today's volatility, indicating a market that is 

more sensitive to new information. Similarly, a larger 𝛽𝑗 suggests that volatility shocks tend to linger, implying a market 

where volatility clusters and periods of high/low volatility tend to persist. The sum (𝛼 + 𝛽) is often used as a measure 

of overall volatility persistence, with values close to 1 indicating long-lasting volatility shocks. To ensure the stationarity 

of the variance process, the parameters must satisfy the conditions: 𝜔 > 0, 𝛼𝑖   0, 𝛽𝑗   0, and ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑗

𝑞
𝑗=1 < 1.  

To identify the most appropriate ARMA-GARCH specification, this study considered a range of values for m, n, p, 

and q during the model selection process. Model validity is assessed by examining the residual series for constant mean 

and variance, as well as the absence of autocorrelation. Given the potential non-normality in the residuals, this GARCH 

model, with normal innovations, is fitted using the pseudo-maximum likelihood estimation procedure. The Akaike 

Information Criterion (AIC) is employed to determine the most appropriate ARMA-GARCH specification. As 

highlighted by Ardia (2008) [60] and Makridakis et al. (2008) [61], the model with the lowest AIC value is considered 

relatively optimal. Therefore, this paper will select the model exhibiting the lowest AIC among the candidate models. 

Equation, as defined by Akaike (1981) [62], presents the AIC calculation: 

AIC = −2𝑙𝑛𝐿 + 2𝐾 (2) 

where L represents the likelihood function of the model and K denotes the number of estimated parameters in the ARMA-

GARCH model. 

2-2- Modeling Tails using Extreme Value Theory 

Modeling the extreme movements in the tails of the asset return distribution is crucial for accurately assessing 

financial risk. The Extreme Value Theory (EVT) provides a robust framework for capturing these tail behaviors, which 

are essential for tasks such as estimating tail risk and setting appropriate capital requirements. Studies by researchers 

like [16, 41, 63] explored the application of EVT in finance. Building upon the ARMA(m, n)-GARCH(p, q) model 

established earlier, this study leverages the peak over threshold (POT) method to model the tails of the standardized 

residuals using a Generalized Pareto Distribution (GPD). This approach allows for a more nuanced understanding of 

extreme events within the context of the identified volatility dynamics. 

2-2-1- Peak Over Threshold Model 

The Peak Over Threshold (POT) method focuses on the distribution of exceedances over a predetermined threshold 

𝑢. Let 𝑋 denote a series of i.i.d. losses with cumulative distribution function 𝐹(𝑥). The conditional cumulative 

distribution function of the excess value 𝑦 = 𝑋 − 𝑢, given that 𝑋 > 𝑢, is defined as:  

𝐹𝑢(𝑦) = Pr((𝑋 − 𝑢) ≤ 𝑦|𝑋 > 𝑢) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢)
, 𝑦 ≥ 0   (3) 
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The goal is to find a suitable parametric distribution to model 𝐹𝑢(𝑦). Balkema & de Haan (1974) [64] and Pickands 

(1975) [65] showed that for a sufficiently high threshold 𝑢, the limiting distribution of these excesses can be well-

approximated by the Generalized Pareto Distribution (GPD): 

𝐺𝜉,𝛽(𝑦) = {
1 − (1 +  𝜉 

𝑦

𝛽
)

−1

𝜉
       𝑖𝑓      𝜉 ≠ 0 

1 − 𝑒
−𝑦

𝛽                        𝑖𝑓       𝜉 = 0 

    (4) 

where, 𝜉 and 𝛽 are the shape and scale parameters of the GPD, respectively. This function embodies three types of 

distributions. If 𝜉 > 0 , it corresponds to a heavy-tailed distribution. When 𝜉 = 0 , it represents an exponential 

distribution. If 𝜉 < 0, it indicates a bounded distribution (sometimes called Pareto type II). 

2-2-2- Extreme Value Theory and Estimation of Value-at-Risk 

Given that 𝐹𝑢(𝑦) converges to the GPD for sufficiently large 𝑢 and 𝑋 = 𝑦 + 𝑢 for 𝑋 > 𝑢, this study has the following 

representation: 

𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐹𝑢(𝑦) + 𝐹(𝑢), 𝑋 > 𝑢       (5) 

The tail of the underlying distribution 𝐹(𝑥) can be expressed as: 

𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐺𝜉,𝛽(𝑥 − 𝑢) + 𝐹(𝑢), 𝑋 > 𝑢     (6) 

Therefore, the tail estimator of 𝐹(𝑥) is given by: 

�̂�(𝑥) = 1 −
𝑁𝑢
𝑛
(1 + 𝜉

𝑥 − 𝑢

�̂�
)

−
1

�̂�
, 𝑋 > 𝑢        (7) 

where 𝑛 is the total number of observations, 𝑁𝑢 is the number of observations exceeding the threshold 𝑢, and 𝜉 and �̂� 

are the maximum likelihood estimates of the shape and scale parameters obtained from the excess data, respectively. 

For a given probability, 𝑞 > 𝐹(𝑢), the unconditional Value-at-Risk (VaR) quantile is obtained by inverting Equation 

7 to get: 

VaR𝑞 = 𝑢 +
�̂�

𝜉
[(
𝑛

𝑁𝑢
(1 − 𝑞))

−�̂�

− 1]   (8) 

2-3- Dynamic Conditional Correlation–Generalized Autoregressive Conditional Heteroskedasticity Models 

While effective for individual assets, univariate GARCH models are limited in their ability to capture the dynamic 

relationships between assets. To address this limitation, the Dynamic Conditional Correlation (DCC) model is employed, 

a multivariate GARCH model that captures both volatilities and time-varying correlations. Unlike the Constant 

Conditional Correlation (CCC) model, which assumes static correlations, the DCC model allows correlations to fluctuate 

over time, providing a more realistic representation of market dynamics. This analysis investigates the empirical 

applicability of the Dynamic Conditional Correlation–Generalized Autoregressive Conditional Heteroskedasticity 

(DCC-GARCH) model in estimating large conditional covariance matrices, allowing for time-varying conditional 

correlations as proposed by Engle (2002) [50]. The estimation of Engle’s DCC-GARCH comprises two steps.  

In the first step, a univariate GARCH model is estimated for each asset as follows: 

{
𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡, 𝜀𝑡|𝐼𝑡−1 ~ 𝑁(0, 𝐻𝑡)         

𝜀𝑡 = √𝐻𝑡𝑧𝑡                                                  
                                                        (9) 

where 𝑟𝑡 represents the (𝑀 × 1) vector of log returns of 𝑀 assets at time 𝑡; 𝜇𝑡 is the (𝑀 × 1) vector of the conditional 

means of 𝑀 assets at time 𝑡; 𝜀𝑡 is an (𝑀 × 1) vector of the residuals process; 𝐼𝑡−1 represents the information set at time 

t−1. 𝐻𝑡  is the multivariate conditional variance-covariance (𝑀 ×𝑀) matrix of 𝜀𝑡 . √𝐻𝑡  is obtained using Cholesky 

decomposition, and 𝑧𝑡  is the (𝑀 × 1) vector of independent and identically distributed random errors such that 𝐸[𝑧𝑡] =

0 and 𝐸[𝑧𝑡𝑧𝑡
′] = 𝐼𝑇 , where 𝐼𝑇  denotes the identity matrix of order T. 

The second step focuses on specifying a time-varying multivariate conditional variance. The multivariate DCC-

GARCH model is then defined as follows: 
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{

𝐻𝑡 = 𝐷𝑡  𝑅𝑡  𝐷𝑡                                                  

𝑅𝑡 = (𝑑𝑖𝑎𝑔(𝑄𝑡))
−1/2

𝑄𝑡  (𝑑𝑖𝑎𝑔(𝑄𝑡))
−1/2

𝐷𝑡 = 𝑑𝑖𝑎𝑔(√ℎ11,𝑡 , √ℎ22,𝑡 , … , √ℎ𝐾𝐾,𝑡)      

  (10) 

where 𝐷𝑡  is a diagonal (𝑀 ×𝑀) matrix of conditional standard deviations for return series at time t, obtained from 

estimating a univariate GARCH model with √ℎ𝑖𝑖,𝑡 on the ith diagonal, i = 1, 2, …, 𝑀.  

The DCC specification is defined as follows: 

{
𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑆 + 𝛼𝑧𝑡−1 𝑧𝑡−1

′ + 𝛽𝑄𝑡−1

𝑅𝑡 = 𝑄𝑡
∗ −1𝑄𝑡  𝑄𝑡

∗ −1                                         
 (11) 

where 𝑄𝑡 = [𝑞𝑖𝑗,𝑡] is (𝑀 ×𝑀)  time-varying covariance matrix of the standardized residuals, 𝑧𝑡 .  𝑆  is the (𝑀 ×𝑀) 
unconditional covariance matrix of the standardized residuals, 𝑧𝑡, and 𝛼 and 𝛽 are non-negative scalar parameters that 

satisfy 𝛼 + 𝛽 < 1. 𝑄𝑡
∗ = 𝑑𝑖𝑎𝑔(√𝑞𝑖𝑖,𝑡) is a diagonal matrix with the square root of the element of 𝑄𝑡 on its 𝑖th diagonal 

position. 𝑅𝑡  is the symmetric dynamic conditional correlation (𝑀 ×𝑀)  matrix with 𝜌𝑖𝑗,𝑡  ≤ 1  and 𝜌𝑖𝑖,𝑡 = 1.  The 

conditional correlation 𝜌𝑖𝑗,𝑡 = 𝑞𝑖𝑗,𝑡/√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡 are the elements in the matrix 𝑅𝑡 that is positive definite. 

As noted by Engle (2002) [50], the DCC model could be estimated by using a two-step approach to maximize the 

log-likelihood function. Let 𝜃 denote the parameters in 𝐷𝑡  and 𝜑 the parameters in 𝑅𝑡. Under the Gaussian assumption, 

the log-likelihood can be decomposed as follows:       

𝐿𝑡(𝜃, 𝜑) = [−
1

2
 ∑ 𝑛𝑙𝑜𝑔(2𝜋)

𝑇

𝑡=1
+ 𝑙𝑜𝑔|𝐷𝑡|

2 + 𝜀𝑡
′𝐷𝑡

−2𝜀𝑡] + [−
1

2
 ∑ 𝑙𝑜𝑔|𝑅𝑡|

𝑇

𝑡=1
+ 𝑧𝑡

′𝑅𝑡
−1𝑧𝑡 − 𝑧𝑡

′𝑧𝑡  ] (12) 

2-4- Forecasting Method  

A rolling window forecasting method generated out-of-sample predictions. Initially, a window comprising the first 

2,853 observations (approximately 11 years of daily trading data) was used to estimate the parameters of the ARMA-

GARCH, ARMA-GARCH-EVT, and DCC-GARCH models. To generate forecasts, the estimation window was then 

rolled forward by one observation at a time. This process involved removing the earliest observation and adding the next 

one from the dataset, maintaining a constant window size of 2,853. Re-estimation and forecasting were repeated 

sequentially, with each iteration producing a one-step-ahead forecast. For the ARMA-GARCH and ARMA-GARCH-

EVT models, this yielded a forecast of the conditional mean, 𝜇𝑡+1, and conditional variance, 𝜎𝑡+1
2 . The DCC-GARCH 

model produced forecasts of the conditional mean vector, 𝑟𝑡+1, and the conditional covariance matrix, 𝐻𝑡+1, capturing 

the dynamic correlations among the assets in the portfolio. Ultimately, this procedure yielded a total of 1,000 out-of-

sample forecasts for each model, covering the period from observation 2,854 to 3,853. 

2-5- Value-at-Risk Measures 

Building upon the ARMA-GARCH and ARMA-GARCH-EVT models for volatility forecasting, this section details 

the calculation of Value-at-Risk (VaR) measures. These measures provide a forward-looking assessment of potential 

portfolio losses and inform capital adequacy decisions. 

2-5-1- ARMA-GARCH VaR 

Capital requirements for market risk are determined using the VaR measure. Given the one-step-ahead forecasts of 

the conditional mean, 𝜇𝑡+1, and conditional variance, 𝜎𝑡+1
2 , from the ARMA-GARCH model, the 1-day VaR at time   

𝑡 + 1 with a confidence level of (1 − 𝛼) can be calculated as: 

VaR𝑡+1
𝛼 = 𝜇𝑡+1 + 𝑍𝛼𝜎𝑡+1         (13) 

where 𝑍𝛼 is the 𝛼 quantile of the standard normal distribution. A 95% confidence level aligns with Thai regulations for 

calculating the 1-day VaR. For the 10-day VaR, which follows the Basel requirements at a 99% confidence level, a 

rolling window approach generates a sequence of 10 one-step-ahead forecasts from the ARMA-GARCH model. The 

10-day VaR is then calculated as the 1st percentile of the simulated 10-day portfolio loss distribution. 

2-5-2- ARMA-GARCH-EVT VaR 

To assess the capital requirement under a stress scenario, the ARMA-GARCH-EVT model estimates the 1-day VaR 

at time 𝑡 + 1 with a 97.5% confidence level. This approach leverages the EVT framework to better capture the tail risk 

of asset returns, which is particularly relevant during periods of market stress. The 1-day VaR of ARMA-GARCH-EVT 

at time 𝑡 + 1, derived from the conditional EVT, can be expressed as: 
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VaR𝑡+1
𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1 [𝑢

�̂�

�̂�
[(

𝑛

𝑁𝑢
(1 − 𝑞))

−�̂�

− 1]]     (14) 

where the one-step-ahead forecasts of the conditional mean, 𝜇𝑡+1, and conditional variance, 𝜎𝑡+1
2 , from the ARMA-

GARCH model, 𝑛 is the total number of observations, 𝑁𝑢 is the number of observations exceeding the threshold 𝑢, and 

𝜉 and �̂� are the maximum likelihood estimates of the shape and scale parameters of GPD, respectively. 

2-5-3- DCC-GARCH VaR 

Accurate estimation of portfolio risk is crucial for determining adequate capital reserves. The DCC-GARCH model 

is leveraged to forecast the 1-day VaR at time 𝑡 + 1 for a portfolio of assets. The DCC-GARCH model captures dynamic 

correlations among assets by forecasting both the conditional mean vector, 𝜇𝑡+1, and the conditional covariance matrix, 

𝐻𝑡+1. Under the assumption of normality and a confidence level of (1 − α), the 1-day VaR can be expressed as: 

VaR𝑡+1
𝛼 = 𝑤′𝜇𝑡+1 + 𝑍𝛼√𝑤

′𝐻𝑡+1𝑤     (15) 

where 𝑤 is the weight vector of the assets in the portfolio and 𝑍𝛼 is the α quantile of the standard normal distribution. 

This study specifically employs the DCC-GARCH model to estimate the 1-day VaR at a 95% confidence level, aligning 

with Thai regulations. For a 10-day VaR, adhering to Basel requirements at a 99% confidence level, a rolling window 

approach generates a sequence of 10 one-step-ahead forecasts from the DCC-GARCH model. 

Two investment portfolios are constructed--one tailored for life insurers and one for non-life insurers--guided by two 

key objectives: duration matching, aligning the portfolio duration with the specific liability structures of each insurer 

type, and VaR minimization, employing the DCC-GARCH model to determine portfolio allocations that minimize the 

estimated VaR, thereby reducing the capital required to cover potential losses. This focus on minimizing risk, while 

incorporating duration matching, aligns with the core principles of Markowitz portfolio theory [66], which emphasizes 

the trade-off between risk and return in portfolio allocation. In determining the optimal asset allocation proportions, 

investment weight limits stipulated by the Thai OIC are adhered to: 1) stocks, exchange rates, and property each have a 

maximum allocation of 30%, 2) crude oil, representing the broader commodity asset class, has a maximum allocation of 

5%, and 3) bonds have no regulatory limit on allocation. These constraints, along with the conditions that ∑ wi
n
i=1 = 1 

and wi ≥ 0, where wi is the weight of the ith asset, are incorporated into the optimization process. This incorporation 

ensures that the resulting portfolios comply with regulatory requirements while striving to achieve the dual objectives 

of duration matching and VaR minimization. 

2-6- Backtesting 

Backtesting is essential for evaluating the accuracy of VaR models by comparing predicted VaR with actual losses. 

Two widely recognized backtesting methods are employed: Kupiec's unconditional coverage test [67] and 

Christoffersen's conditional coverage test [68]. 

2-6-1- Kupiec's Unconditional Coverage Test 

Kupiec's unconditional coverage test focuses on the frequency of exceedances, instances where actual losses exceed 

the predicted VaR. The null hypothesis (𝐻0) states that the observed frequency of exceedances is statistically consistent 

with the expected frequency based on the model's chosen confidence level. Let 𝑁 be the number of exceedances over 𝑇 

trading days, and 𝛼 be the probability of an exceedance. Under 𝐻0, 𝑁 follows the binomial distribution with parameters 

(𝑇, 𝛼). The likelihood ratio test statistic is: 

𝐿𝑅𝑈𝐶 = −2 ln  [
(1−𝛼)𝑇−𝑁(𝛼)𝑁

(1−
𝑁

𝑇
)
𝑇−𝑁

 (
𝑁

𝑇
)
𝑁 ] ∼ 𝜒1 

2     (16) 

If the calculated 𝐿𝑅𝑈𝐶  exceeds the critical value from the chi-squared distribution with 1 degree of freedom at a 

chosen significance level (e.g., 5%), this study rejects 𝐻0, indicating the model's predicted exceedance frequency is 

inaccurate. 

2-6-2- Christoffersen's Conditional Coverage Test 

While Kupiec's test assesses the overall frequency of exceedances, Christoffersen's test goes a step further by 

examining whether these exceedances are independent over time. The null hypothesis (𝐻0) for Christoffersen's test is 

that the exceedances are independent, meaning an exceedance on one day does not affect the probability of an exceedance 

on the following day.  Let 𝑛𝑖𝑗 be the number of observations where transition 𝑖, 𝑗 occurs, representing the four possible 

combinations of exceedances (denoted as 1) or no exceedances (denoted as 0) on consecutive days. The following 

conditional probabilities can then be defined: 



Emerging Science Journal | Vol. 8, No. 6 

Page | 2180 

𝜋01 = 𝑃(𝐼𝑡+1 = 1|𝐼𝑡 = 0) = 𝑃(𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 | 𝑁𝑜 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑑𝑎𝑦) 
𝜋11 = 𝑃(𝐼𝑡+1 = 1|𝐼𝑡 = 1) = 𝑃(𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 | 𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑑𝑎𝑦) 

 

under the assumption of independence, 𝜋01 should equal 𝜋11, and both should equal to the model's specified probability 

of an exceedance, 𝛼. Christoffersen's test uses a likelihood ratio statistic to compare the likelihood of the observed data 

under independence versus without this restriction: 

𝐿𝑅𝐶𝐶 = 2𝑙𝑛[(1 − 𝜋01)
𝑛00𝜋01

𝑛01(1 − 𝜋11)
𝑛10𝜋11

𝑛11] − 2𝑙𝑛[(1 − 𝛼)𝑇−𝑁𝛼𝑁] ~ 𝜒2
2                        (17) 

where 𝑁  represents the total number of observed exceedances over 𝑇 trading days. Similar to Kupiec's test, if the 

calculated 𝐿𝑅𝐶𝐶  statistic exceeds the critical value from the chi-squared distribution with 2 degrees of freedom at a 

chosen significance level, the null hypothesis of independence is rejected. This suggests that the model might not 

adequately capture the time-varying nature of risk. 

The research methodology procedures are visually represented in Figure 1. 

 

Figure 1. Procedures for the research methodology 

3- Empirical Results 

This section presents the empirical findings of the study, beginning with the estimation results of the ARMA-GARCH 
models for each asset. Subsequently, the analysis extends to the ARMA-GARCH-EVT model, which incorporates 
extreme value theory to capture tail risk. Finally, the DCC-GARCH model is employed to assess the dynamic 
correlations among assets and their impact on portfolio VaR. The results of each model are discussed in detail, 
highlighting key findings and their implications for risk management within the Thai insurance industry. 

3-1- ARMA-GARCH Estimation  

Table 2 presents the in-sample parameter estimates of the selected ARMA-GARCH model specifications for each 

asset based on the AIC. The selected models employed distinct orders for different assets: for example, ARMA(3,3)-
GARCH(1,1) for the SET index, ARMA(3,2)-GARCH(1,1) for Brent crude oil, ARMA(1,1)-GARCH(1,1) for 
government bond prices (3-7 year maturities), ARMA(2,1)-GARCH(1,1) for government bond prices (7-10 year 
maturities), ARMA(2,0)-GARCH(1,1) for the JPY/THB exchange rate, and ARMA(1,1)-GARCH(1,1) for the property 
development sector index. Notably, all assets exhibit persistent volatility clustering, as indicated by the near-unity sum 
of the ARCH and GARCH coefficients across the selected models. This finding underscores the importance of 

incorporating time-varying volatility into risk management models for all assets included in this analysis. The significant 
and positive coefficients of lagged squared returns further emphasize the presence of strong GARCH effects, suggesting 
that historical volatility information is crucial for predicting future volatility. These results are consistent with findings 
by Floros (2007) [69], who observed similar evidence of persistent volatility in mature and emerging markets. Our study 
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extends these findings by demonstrating the relevance of GARCH models for capturing volatility dynamics specifically 
within the context of the investment risk of the Thai insurance industry. Diagnostic tests, including the Ljung-Box test 
on standardized squared residuals and the ARCH-LM test, confirm the absence of autocorrelation and autoregressive 

conditional heteroskedasticity (p-values > 0.05 for most assets, except for Brent crude oil, where the p-value is slightly 
above 0.01). However, these results still generally support the adequacy of the selected GARCH models in capturing 
volatility dynamics. The robust performance of the selected GARCH models highlights their value as a tool for risk 
management and capital adequacy assessment within the Thai insurance sector. 

Table 2. Parameter estimation results of the ARMA-GARCH model 

Model 

SET Index 

ARMA(3,3)-

GARCH(1,1) 

Brent Crude Oil  

ARMA(3,2)-

GARCH(1,1) 

GOV2 3-7 TTM 

ARMA(1,1)-

GARCH(1,1) 

GOV3 7-10 TM 

ARMA(2,1)-

GARCH(1,1) 

JPY/THB 

ARMA(2,0)-

GARCH(1,1) 

Property Index 

ARMA(1,1)-

GARCH(1,1) 

Mu 

(p-value) 

0.0006 

(0.0001***) 

0.0002 

(0.3601) 

0.0001 

(0.0000***) 

0.0001 

(0.0000***) 

-0.0001 

(0.1885) 

0.0006 

(0.0102**) 

ar(1) 
(p-value) 

0.4916 
(0.0000***) 

0.2065 
(0.0000***) 

0.2911 
(0.0000***) 

-0.480754 
(0.0049***) 

-0.0272 
(0.1737) 

0.9373 
(0.0000***) 

ar(2) 
(p-value) 

0.7415 
(0.0000***) 

-0.9890 
(0.0000***) 

- 
0.2549 

(0.0000***) 
0.0055 

(0.7796) 
- 

ar(3) 

(p-value) 

-0.7430 

(0.0000***) 

-0.0368 

(0.0000***) 
- - - - 

ma(1) 

(p-value) 

-0.4515 

(0.0000***) 

-0.2426 

(0.0000***) 

0.0573 

(0.2992) 

0.7812     

(0.0000***) 
- 

-0.9103 

(0.0000***) 

ma(2) 

(p-value) 

-0.7405 

(0.0000***) 

1.0008 

(0.0000***) 
- - - - 

ma(3) 

(p-value) 

0.7181 

(0.0000***) 
- - - - - 

omega 

(p-value) 

7.92E-07 

(0.4494) 

3.15E-06 

(0.5498) 

1.69E-08 

(0.9307) 

1.01E-07 

(0.7493) 

1.00E-06 

(0.2220) 

2.00E-06 

(0.1535) 

alpha1 

(p-value) 

0.1021 

(0.0000***) 

0.0791 

(0.0129**) 

0.0807 

(0.0000***) 

0.1137     

(0.0000***) 

0.0739     

(0.0000***) 

0.0913 

(0.0000***) 

beta1 

(p-value) 

0.8968 

(0.0000***) 

0.9191 

(0.0000***) 

0.9064 

(0.0000***) 

0.8787     

(0.0000***) 

0.9132     

(0.0000***) 

0.0930 

(0.0000***) 

AIC -6.6690 -5.2017 -11.0320 -9.5956 -7.48650 -6.1433 

Ljung-Box Test 

(p-value) 

4.7510 

(0.4669) 

10.7790 

(0.0340) 

1.5692 

(0.9497) 

1.6363 

(0.9437) 

1.9867 

(0.9066) 

5.3038 

(0.3862) 

ARCH LM Test 

(p-value) 

3.0930 

(0.4961) 

1.2179 

(0.8757) 

1.7585 

(0.7683) 

1.0905 

(0.8984) 

0.5556 

(0.9731) 

3.0120 

(0.5114) 

Note: *** significant at 0.01, ** significant at 0.05, * significant at 0.1. 

3-2- ARMA-GARCH-EVT estimation  

Accurately capturing the tail behavior of asset returns is crucial for quantifying capital requirements under stress 

scenarios. To achieve this, an ARMA-GARCH-EVT model was employed, focusing on the left tail due to the generally 

observed negative skewness. Following a Gaussian ARMA-GARCH specification (as determined in Section 3.1), the 

POT method was employed for EVT implementation. Selecting an appropriate threshold is critical in POT, as it directly 

influences the number of exceedances used to estimate the tail distribution. A low threshold may include observations 

not truly representative of extreme events, biasing the tail estimation. On the other hand, a high threshold may result in 

too few exceedances, leading to high variance in tail estimates [70].  

While various studies such as [41, 71-75] have employed different thresholds for POT, often ranging from the 90th 

to 95th percentiles, our study specifically focuses on a 95th percentile threshold. This choice stems from our objective 

of capturing extreme tail risk relevant for solvency considerations, which typically involve higher confidence levels than 

those used for general risk management. This yielded a consistent number of approximately 143 exceedances across all 

assets, despite potentially different threshold values (𝑢), indicating the model's effectiveness in capturing tail events 

across different asset classes. This consistency further supports the suitability of the chosen threshold for our analysis. 

As shown in Table 3, the estimated shape parameter (𝜉) for all assets is close to zero, suggesting an exponential 

distribution for the tails. This finding is supported by the Kolmogorov-Smirnov test (KS Test), where p-values greater 

than 0.05 indicate that the null hypothesis of an exponential distribution cannot be rejected. These results collectively 

validate the model's applicability in assessing investment risk. Importantly, our findings suggest that models assuming 

a normal distribution may significantly underestimate the capital required by Thai insurers to cover potential investment 

losses under stress scenarios. This underestimation could jeopardize insurer solvency and, ultimately, policyholder 

protection. 
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Table 3. Parameter estimation results of the ARMA-GARCH-EVT model 

 u Nu AIC 
𝜷 

(Lower, Upper) 

Standard 

Error of 𝜷 

𝝃 

(Lower, Upper) 

Standard 

Error of 𝜶 
Distribution 

KS 

Test 

SET Index 

ARMA(3,3)-ARCH(1,1) 
1.7790 143 183.952 

0.6546 

(0.4971, 0.8122) 
0.0803 

0.0598 

(-0.1166, 0.2362) 
0.0900 exponential 0.711 

Brent Crude Oil 
ARMA(3,2)-ARCH(1,1) 

1.6891 143 189.675 
0.6169 

(0.4683, 0.7655) 
0.0758 

0.1392 
(-0.0387, 0.3172) 

0.0908 exponential 0.773 

GOV2 3-7 TTM 

ARMA(1,1)-ARCH(1,1) 
1.5115 143 232.340 

0.7274 

(0.5256, 0.9293) 
0.1029 

0.1235 

(-0.1012, 0.3483) 
0.1146 exponential 0.418 

GOV3 7-10 TTM 

ARMA(2,1)-ARCH(1,1) 
1.5868 143 227.4788 

0.7390 

(0.5639, 0.9142) 
0.0893 

0.0907 

(-0.0810, 0.2624) 
0.0876 exponential 0.954 

JPY/THB 

ARMA(2,0)-ARCH(1,1) 
1.5493 143 149.882 

0.5622 

(0.4248, 0.6996) 
0.0701 

0.0928 

(-0.0890, 0.2748) 
0.0928 exponential 0.929 

Property Index 

ARMA(1,1)-ARCH(1,1) 
1.7314 143 190.356 

0.6523 

(0.4882, 0.8163)  
0.0837 

0.0858 

(-0.1054, 0.2771) 
0.0976 exponential 0.486 

3-3- DCC-GARCH Estimation  

Table 4 presents the log-likelihood, AIC, and optimal asset allocations for minimizing portfolio VaR for both life 

and non-life insurers based on the DCC-GARCH estimated model. While a direct comparison is not possible without 

alternative model specifications, the high log-likelihood values and relatively low AIC values suggest that the DCC-

GARCH model provides a reasonable representation of the data for both life and non-life insurer portfolios. As 

expected, the life insurer adopts a more conservative approach, allocating a significant portion of their portfolio (57%) 

to long-duration government bonds, with only 13% in stocks and minimal allocations to crude oil (5%) and property 

(1%). This strategy aligns with the goal of matching asset duration to their longer-term liability profiles. In contrast, 

the non-life insurer, facing shorter-term liabilities, adopts a more diversified approach. They allocate 30% to each of 

the riskier asset classes: stocks, exchange rates, and property. This allocation reflects a higher risk tolerance and seeks 

to maximize returns within acceptable risk limits. They allocate a smaller proportion of their portfolio (5%) to shorter -

duration bonds. 

Table 4. Estimation of the DCC-GARCH model 

Portfolio for Life 

Insurer 

Investment Assets 

SET Index Brent Crude Oil GOV3 7-10 TTM JPY/THB Property Index 

Weight 0.13 0.05 0.57 0.15 0.01 

Log-likelihood 51779.82 

AIC -36.263 

Portfolio for Non-

Life Insurer 

Investment Assets 

SET Index Brent Crude Oil GOV2 3-7 TTM JPY/THB Property Index 

Weight 0.3 0.05 0.05 0.3 0.3 

Log-likelihood 53822.49 

AIC -37.696 

Table 5 presents the unconditional correlation matrices of asset returns for portfolios mimicking the investment 

durations of life and non-life insurers, respectively. As anticipated, government bonds and the JPY/THB exchange 

rate exhibit negative correlations with the SET index and Brent crude oil, suggesting potential diversification benefits. 

While most correlations remain below 0.80, indicating low co-movement, a notable exception exists between 

property and stock, with a high correlation of 0.851. The high correlation between property and stocks underscores 

the limitation of static correlation measures. Employing the DCC-GARCH model allows for capturing the time-

varying nature of these relationships, leading to more accurate VaR estimations, especially when using a rolling 

window forecasting method. This dynamic approach is crucial for the subsequent VaR analysis, which utilizes a 

rolling window forecasting method and evaluates model performance using Kupiec and Christoffersen tests, as 

presented in the next section. 
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Table 5. Correlation coefficient matrix 

 
Investment Portfolio for Life Insurer 

SET Index Brent Crude Oil GOV3 7-10 TTM JPY/THB Property Index 

SET Index 1     

Brent Crude Oil 0.1778 1    

GOV3 7-10 TTM -0.0056 -0.0504 1   

JPY/THB -0.2397 -0.1923 0.0369 1  

Property Index 0.8517 0.1172 0.0220 -0.1998 1 

 
Investment Portfolio for Non-Life Insurer 

SET Index Brent Crude Oil GOV2 3-7 TTM JPY/THB Property Index 

SET Index 1     

Brent Crude Oil 0.1778 1    

GOV2 3-7 TTM -0.0244 -0.0500 1   

JPY/THB -0.2397 -0.1923 0.0380 1  

Property Index 0.8517 0.1172 0.0023 -0.1998 1 

3-4- Value-at-Risk Backtesting  

This section evaluates the accuracy of our VaR forecasts using the Kupiec and Christoffersen backtests. A rolling 

window approach (detailed in Section 2.4) generates 1,000 daily out-of-sample VaR forecasts. The performance of three 

models is examined across different VaR horizons: 1) ARMA-GARCH: Generates both 1-day-ahead VaR forecasts at a 

95% confidence level (aligning with Thai OIC regulations) and 10-day-ahead VaR forecasts at a 99% confidence level 

(as specified by Basel accords). 2) ARMA-GARCH-EVT: Focuses solely on 1-day-ahead VaR forecasts at a 97.5% 

confidence level for stress scenario analysis. 3) DCC-GARCH: Similar to ARMA-GARCH, it generates both 1-day-

ahead VaR forecasts at a 95% confidence level and 10-day-ahead VaR forecasts at a 99% confidence level.  

3-4-1- ARMA-GARCH Model Performance 

Figures 2 (a-f) and 3 (a-f) and Tables 6 and 7 present the backtesting results for the ARMA-GARCH forecasts. For 

the 1-day VaR, the model demonstrates robust performance across all assets. Both the Kupiec and Christoffersen tests 

indicate statistically accurate VaR estimates, suggesting that the ARMA-GARCH model, under the assumption of a 

normal distribution, is adequate and efficient for one-period 95% VaR forecasts. However, the model's performance for 

the 10-day VaR reveals potential limitations in capturing tail risk dynamics over longer horizons, as significant 

deviations from expected exceedances are observed for Brent crude oil, government bond 3-7 TTM, and government 

bond 7-10 TTM, suggesting the model may not adequately account for the potential clustering of volatility or risk events 

over longer time horizons for these specific assets. Despite these limitations, the VaR estimates, representing the capital 

requirements insurers need to hold to protect their solvency, range from 0.17% to 4.23% for a 1-day horizon and from 

0.71% to 18.78% for a 10-day horizon of insurers' investments. Notably, the average 10-day-ahead VaR for the SET 

index, indicating a capital requirement of 6.04%, is slightly higher than those reported for stock indices in developed 

markets by Degiannakis et al. (2014) [76]. 

 

(a) The SET index 
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(b) Brent crude oil price 

 

(c) Government bond price (3-7 TTM) 

 

(d) Government bond price (7-10 TTM) 
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(e) The JPY/THB exchange rate 

 

(f) The Property development sector index 

Figure 2. 1-day-ahead VaR forecasting of (a) the SET index, (b) Brent crude oil price, (c) Government bond price (3-7 TTM), 

(d) Government bond price (7-10 TTM), (e) the JPY/THB exchange rate, and (f) the Property development sector index. 
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(b) Brent crude oil price 
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(e) The JPY/THB exchange rate 

 

 (f) The Property development sector index 

Figure 3. 10-day-ahead VaR forecasting of (a) the SET index, (b) Brent crude oil price, (c) Government bond price (3-7 TTM), 

(d) Government bond price (7-10 TTM), (e) the JPY/THB exchange rate, and (f) the Property development sector index. 

Table 6. 1-day-ahead VaR backtesting: ARMA-GARCH performance 

Asset Model   
Average 1-day-ahead 

VaR at 95% 

Observed  

Exceedance Rate 

Kupiec 

Test 

Kupiec’s 

p-value 

Christoffersen 

Test  

Christoffersen’s  

p-value 

SET Index 

ARMA(3,3)-GARCH(1,1) 
-1.42% 

5.5% 

 

0.510 

 
0.475 0.842 0.656 

Brent Crude Oil 

ARMA(3,2)-GARCH(1,1) 
-4.23% 

5.5% 

 

0.510 

 
0.475 0.521 0.770 

GOV2 3-7 TTM 

ARMA(1,1)-GARCH(1,1) 
-0.17% 

5.6% 

 

0.731 

 
0.392 1.269 0.530 

GOV3 7-10 TTM 

ARMA(2,1)-GARCH(1,1) 
-0.42% 

4.8% 

 

0.085 

 
0.770 1.229 0.541 

JPY/THB 

ARMA(2,0)-GARCH(1,1) 
-0.93% 

4.3% 

 

1.081 

 
0.298 1.079 0.583 

Property Index 
ARMA(1,1)-GARCH(1,1) 

-1.84% 
3.8% 

 
3.294 

 
0.069 3.476 0.176 
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Table 7. 10-day-ahead VaR backtesting: ARMA-GARCH performance 

Asset Model   
Average 10-day-ahead  

VaR at 99% 

Observed  

Exceedance Rate 

Kupiec 

Test 

Kupiec’s 

p-value 

Christoffersen 

Test  

Christoffersen’s  

p-value 

SET Index 
ARMA(3,3)-GARCH(1,1) 

-6.04% 
0.9% 

 
0.087 

 
0.768 3.456 0.178 

Brent Crude Oil 
ARMA(3,2)-GARCH(1,1) 

-18.78% 
0.7% 

 
0.962 

 
0.327 22.664 0.000*** 

GOV2 3-7 TTM 

ARMA(1,1)-GARCH(1,1) 
-0.71% 

3.2% 

 

8.012 

 
0.004*** 55.755 0.000*** 

GOV3 7-10 TTM 

ARMA(2,1)-GARCH(1,1) 
-1.80% 

1.5% 

 

2.282 

 
0.131 53.970 0.000*** 

JPY/THB 

ARMA(2,0)-GARCH(1,1) 
-4.27% 

0.5% 

 

3.003 

 
0.083 8.824 0.012 

Property Index 

ARMA(1,1)-GARCH(1,1) 
-7.87% 

1.0% 

 

0.001 

 
0.972 8.933 0.012 

Note: *** significant at 0.01 

3-4-2- ARMA-GARCH-EVT Model Performance 

To better capture tail risk, this study employs the ARMA-GARCH-EVT model, incorporating EVT, to generate 1-
day-ahead VaR forecasts at a 97.5% confidence level. Figures 4 (a-f) and Table 8 present the backtesting results, which, 
similar to the ARMA-GARCH model, demonstrate robust performance of the ARMA-GARCH-EVT model in 1-day-
ahead VaR forecasting, with the exception of government bond 3-7 TTM. While both the Kupiec and Christoffersen 
tests confirm the accuracy of most VaR estimates, the Christoffersen test rejects the accuracy for the Government bond 
3-7 TTM. The VaR estimates derived from the ARMA-GARCH-EVT model, ranging from 0.23% to 5.58% of insurers' 
investments for a 1-day horizon, are crucial as they represent the capital requirements insurers would need to hold under 
a stress scenario to maintain solvency. Of note, the average 1-day-ahead VaR for the SET index, indicating a capital 
requirement of 2.03%, is lower than the 2.60% to 3.99% range reported for stock indices in developed markets, which 
are calculated at a 99% confidence level, by Echaust & Just (2020) [77]. This difference highlights potential variations 
in capital adequacy standards across markets.  
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(c) Government bond price (3-7 TTM) 

 

(d) Government bond price (7-10 TTM) 
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(f) The Property development sector index 

Figure 4. 1-day-ahead EVT VaR forecasting of (a) the SET index, (b) Brent crude oil price, (c) Government bond price (3-7 

TTM), (d) Government bond price (7-10 TTM), (e) the JPY/THB exchange rate, and (f) the Property development sector index 

Table 8. 1-day-ahead VaR backtesting: ARMA-GARCH-EVT performance 

Asset Model 
Average 1-day-ahead 

VaR at 95% 

Observed 

Exceedance Rate 

Kupiec 

Test 

Kupiec’s 

p-value 

Christoffersen 

Test 

Christoffersen’s 

p-value 

SET Index 

ARMA(3,3)-GARCH(1,1) 
-2.03% 

1.8% 

 
2.224 0.136 3.163 0.205 

Brent Crude Oil 

ARMA(3,2)-GARCH(1,1) 
-5.58% 

2.6% 

 
0.041 0.839 0.081 0.961 

GOV2 3-7 TTM 

ARMA(1,1)-GARCH(1,1) 
-0.23% 

3.4% 

 
2.992 0.084 33.799 0.000*** 

GOV3 7-10 TTM 

ARMA(2,1)-GARCH(1,1) 
-0.58% 

2.4% 

 
0.042 0.838 2.347 0.309 

JPY/THB 

ARMA(2,0)-GARCH(1,1) 
-1.07% 

3.1% 

 
1.374 0.241 2.312 0.315 

Property Index 

ARMA(1,1)-GARCH(1,1) 
-2.59% 

2.2% 

 
0.385 0.535 0.822 0.663 

Note: *** significant at 0.025. 

3-4-3- DCC-GARCH Model Performance 

This study examined VaR forecasts using ARMA-GARCH, ARMA-GARCH-EVT, and ultimately the DCC-GARCH 

model, which explicitly accounts for time-varying correlations between assets – a crucial factor for assessing 

diversification benefits. This feature is particularly relevant for assessing the diversification benefits for life and non-life 

insurers, which employ distinct investment strategies aimed at matching asset duration to liability profiles and 

minimizing portfolio VaR. Accurately capturing these benefits is crucial for optimizing asset allocation and ensuring 

sufficient capital reserves. As highlighted in Table 5, while static correlations suggest potential diversification benefits, 

such as the negative correlations between government bonds and the SET index and between the JPY/THB exchange 

rate and Brent crude oil, these relationships can fluctuate significantly over time. The DCC-GARCH model captures this 

dynamic, leading to more accurate VaR estimations. Figures 5 (a-b) and 6 (a-b) and Tables 9 and 10 present the 

backtesting results, confirming the statistical accuracy of the DCC-GARCH VaR forecasts across both 1-day and 10-

day horizons.  

The findings reveal notable differences in capital requirements between life and non-life insurers, even when both 

seek to match portfolio duration to their liabilities. The analysis indicates 1-day and 10-day VaR portfolio estimates of 

0.5% and 2.09% for life insurers, and 0.96% and 4.12% for non-life insurers, respectively. This difference underscores 

the impact of varying asset allocation strategies driven by the nature of their liabilities, with life insurers typically holding 

more long-duration assets like government bonds. This aligns with [78], which highlighted factors influencing risk-

taking and performance differences between life and non-life insurers. Importantly, the DCC-GARCH model 

demonstrates the benefits of diversification in reducing overall portfolio risk. Compared to a hypothetical portfolio 

constructed using constant correlations from Table 5, VaR estimates were reduced by an average of 48.37% (1-day) and 
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48.98% (10-day) for life insurers, and 34.70% (1-day) and 35.88% (10-day) for non-life insurers. These substantial risk 

reductions highlight the limitations of static correlation measures and underscore the importance of considering dynamic 

correlations, especially in light of findings from [79, 80], which demonstrated this importance in the context of 

international investments. This study builds upon this understanding by demonstrating these benefits within a domestic 

market, specifically highlighting the differences between life and non-life insurers. 

 

(a) Life insurer investment portfolio 

 

(b) Non-life insurer investment portfolio 

Figure 5. 1-day-ahead VaR forecasting of (a) life insurer investment portfolio and (b) non-life insurer investment portfolio 

Table 9. 1-day-ahead VaR backtesting: DCC-GARCH performance 

Portfolio Model 
Average 1-day-ahead 

VaR at 95% 

Observed 

Exceedance Rate 

Kupiec 

Test 

Kupiec’s 

p-value 

Christoffersen 

Test 

Christoffersen’s 

p-value 

Portfolio for Life Insurer -0.50% 5.3% 0.186 0.666 0.480 0.787 

Portfolio for Non-Life Insurer -0.96% 5.6% 0.731 0.393 3.120 0.210 

Table 10. 10-day-ahead VaR backtesting: DCC-GARCH performance 

Portfolio Model 
Average 10-day-ahead 

VaR at 99% 

Observed 

Exceedance Rate 

Kupiec 

Test 

Kupiec’s 

p-value 

Christoffersen 

Test 

Christoffersen’s 

p-value 

Portfolio for Life Insurer -2.09% 0.7% 0.962 0.327 5.340 0.069 

Portfolio for Non-Life Insurer -4.12% 0.6% 1.814 0.178 6.838 0.033 
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(a) Life insurer investment portfolio 

 

(b) Non-life insurer investment portfolio 

Figure 6. 10-day-ahead VaR forecasting of (a) life insurer investment portfolio and (b) non-life insurer investment portfolio 

4- Conclusion 

This research provides a robust framework for assessing and forecasting capital requirements for life and non-life 

insurers to effectively navigate evolving regulations and market uncertainties. By employing ARMA-GARCH, ARMA-

GARCH-EVT, and DCC-GARCH models, this study captured both typical and tail-risk dynamics, providing a nuanced 

understanding of insurers' capital adequacy needs. Rigorous backtesting procedures confirm the overall effectiveness of 

these models in accurately forecasting VaR. Notably, the integration of EVT significantly enhanced stress testing 

capabilities, proving particularly valuable in volatile markets. However, a small subset of 10-day VaR models revealed 

limitations, potentially due to structural breaks not fully captured in the model. This highlights the need for insurers to 

consider potential regime changes, such as geopolitical events impacting oil or central bank announcements affecting 

bond markets, when making decisions based on longer-horizon VaR forecasts. 

Furthermore, the findings underscore the importance of dynamic asset correlations. The DCC-GARCH model 

demonstrated that diversification strategies, tailored to the specific risk exposures of life and non-life insurers, can 

significantly reduce capital requirements. This emphasis on dynamic correlations highlights the need for insurers to 

incorporate time-varying factors into their risk management practices, especially during periods of potential financial 

disruption. The insights derived from this novel study offer a strong foundation for insurance firms to enhance their risk 

assessment and capital allocation strategies. By adopting the robust methodological approach demonstrated here, insurers 

can gain a nuanced understanding of capital requirements and the benefits of dynamic diversification, empowering them 

to make more informed decisions.  
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Building upon this focus on ARMA-GARCH, ARMA-GARCH-EVT, and DCC-GARCH models under normal 

distribution assumptions, future research could explore alternative distributions, such as Student's t-distribution or 

skewed distributions, and explore the application of other GARCH family models, such as EGARCH or TGARCH, to 

potentially further refine VaR estimation and offer additional insights into volatility dynamics. Additionally, exploring 

the GARCH-M model, which incorporates volatility as a factor directly influencing returns, could be particularly relevant 

for insurers given the potential impact of market volatility on investment strategies and overall portfolio returns. These 

avenues of exploration will contribute to the ongoing development of resilient and responsive insurance markets. 
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