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Abstract 

In recent years, secondary batteries received considerable attention as promising technology for 

energy storage in combination with renewable energy sources. The oxidation of carbon in 

conventional air electrodes reduces the life of secondary batteries. One possible solution for 

overcoming this problem is the replacement of carbon material with zeolite.  

Zeolite is a natural or synthetic porous material with crystalline structure which provides the necessary 

gas permeability. The required hydrophobicity of the electrode is ensured by mixing zeolite with an 

appropriate amount of polytetrafluoroethylene following a specially developed procedure. The main 

purpose of the present research is to discover the optimum level of hydrophobicity (impregnation) of 

zeolite. Moreover, appropriate amount of PTFE will ensure better mechanical stability and long 

charge/discharge cycle life. 

The results from this study show that the replacement of carbon with zeolite in the gas diffusion layer 

is a promising direction for optimization of the bi-functional air electrode. The relationship between 

the particle size and the hydrophobicity of the electrode was found. It was found that the mechanical 

stability and hydrophobicity of the electrode improved with the replacement of the emulsion powder. 

The gas permeability is maintained in the norms, which guarantees the good performance of the 

electrode. More than 200 charge/discharge cycles were reached. 
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1- Introduction 

In order to turn Renewable Energy Sources (RES) into a main energy source it is necessary to store the produced 

energy, which thus requires "innovative solutions, next-generation technologies, including potentially revolutionary 

technologies" [1]. Batteries have an important role in integrating and optimizing the application of RES. Electrically 

rechargeable metal-air and metal-hydride air batteries are very attractive as a candidate for energy storage materials due 

to their low cost and high stability in an aqueous solution. They are environmentally friendly and would theoretically 

allow for a high specific energy [2-5]. Concentrated potassium hydroxide is the electrolyte of choice for metal-air 

rechargeable batteries such as the zinc-air and iron-air batteries. In order to operate properly, metal hydride-air systems 

require bi-functional air electrodes. One technological solution is to develop zinc-air batteries, because of their extremely 

high potential use. Research in this area paves the way for further industrial production. 

Metal-air system is a hybrid electrochemical structure which combines a metal anode and a gas-diffusion cathode, 

similar to that used in fuel cells. Its main advantage is the use of oxygen from the atmospheric air [6]. The development 

of rechargeable Zn-air batteries is a topic of current interest, due to the advantages of the system to ensure high energy 

density and capacity at low price [7-9]. However, there are still no effectively operating secondary metal-air batteries 

which make this topic attractive for necessary further research, which should be focused on improvements of the 
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recharging, enhancement of durability and reduction of costs [10]. The advantages of the system are: inexpensive, non-

toxic materials, operation in humid environments and water-based electrolytes, low self-discharge, recyclability, simple 

construction, long life and “flat“ discharge curves [11, 12].  

The components of the Zn-air cell are: Zn electrode, alkaline electrolyte, separator and Air electrode (AE). The AE 

consists of a gas-diffusion layer (GDL) which ensures the needed oxygen and a bifunctional catalytic layer (CL) where 

the oxygen reduction/evolution takes place [10, 13]. The classical GDL is made of carbon-based material and a 

hydrophobic binding material, typically polytetrafluoroethylene (PTFE). The optimization of its gas permeability and 

hydrophobicity is an important step in its preparation. The electrochemical reaction occurs at the triple-phase boundary 

electrode/ electrolyte/ gas phase. The active material in the GDE is oxygen from the ambient air and thus the air electrode 

does not "exhaust", i.e. it should work until it is mechanically damaged, e.g. caused by the oxidation of carbon [6]. 

During discharge, an oxygen reduction reaction (ORR) occurs, while the metal oxidizes and releases electrons which 

pass through the external net. In charge regime the opposite reactions with oxygen evolution take place. For a 

rechargeable gas diffusion electrode a bifunctional catalyst should be used in the CL layer. It needs to possess 

combination of good catalytic activity, electronic conductivity, good adhesion towards the GDL, and mechanical 

stability. 

The main problem with the GDE is the high electrochemical carbon corrosion during oxygen evolution reaction 

(OER), which reduces its stability [14-19]. 

One of the possible solutions is the replacement of the carbon black in the GDL with a material with a similar porous 

structure as that of the zeolite. There is no information for such replacement in the literature, although zeolites are used 

in batteries as molecular sieves that can protect metal electrodes from rupture. Zeolites are a large group of alumosilicates 

with a crystalline structure which forms evenly distributed voids and channels -20 to 50 %. The group consists of more 

than 50 naturals and 1400 synthetic minerals. They are soft minerals with a three-dimensional frame of interconnected 

tetrahedra, containing Al, Si and O [20]. In Bulgaria, in the region of Kardzhali there are large deposits of zeolite of the 

type clinoptiolite. It has a honeycomb-like structure, an active area of over 450 m2/g and an average pore size of 4.6 nm 

[21]. 

The aim of this work is the development of innovative zeolite based carbon-free gas diffusion electrodes for 

rechargeable metal-air batteries. The selected approach replaces the carbon based GDL with zeolite based one. 

2- Experimental  

The zeolite-based AE consists of two layers - porous zeolite-based GDL and CL. The replacement of carbon black 

with zeolite of the type clinoptilolite was performed on a gas diffusion electrode described elsewhere [22]. For the 

preparation of the zeolite GDL zeolite powder with grain size up to 250 μm was mixed with 20-60 % PTFE and hot 

pressed (0.3 t/cm2) at 250 o C for 3 min. The bifunctional CL was a mixture of Co3O4, Ag and PTFE. The morphological 

studies were performed using Electron microscope JEOL 6390. 

For fast evaluation of the hydrophobicity an empirical “water drop” test was introduced according to which the water 

drop should stay on the outer GDL surface for more than two hours for further testing of the sample (Figure 1a). The 

second leaking test was performed in a custom-made hydrophobicity test cell with electrolyte (6M KOH) for 100 hours 

(Figure 1b).  

  

Figure 1. Hydrophobicity testing: a) water drop test and b) real conditions test. 

For quick evaluation of the sample gas permeability, a simple testing system was used which gives a more realistic 

picture, reflecting the behavior of the percolating network. The methodology is based on measurements of the pressure 

P (mm H2O) dependence on the gas flow qflow [ml/min] penetrating through porous media [17]. A new characteristic 

parameter named permeability resistance Rp (inversely proportional to the permeability) was introduced as an empirical 

criterion for the investigated system:  the air permeability should not be less than 2.2 mol/min/cm2. 
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The zeolite-based AEs with stainless steel current collectors were electrochemically tested in half-cell configuration 

at room temperature in 6 M KOH. The AEs potential was measured vs. a hydrogen reference electrode (HRE). The 

electrode’s working areas were respectively 1cm2 for volt-ampere curves (VAC) measurements and 10 cm2 for 

charge/discharge cycling. Charge/discharge tests were performed on eight channel Galvanostat 54 (PMC) with a 

specialized electrochemical program, that allows potential evaluation within a pre-defined range with a given speed and 

current flow registration in parallel. A cycling was employed in the potential range -1.0 V to +2 V. The charge time was 

45 min, the discharge time - 30 min. The charge/discharge current density was ±2mA/cm-2. Volt-ampere curves (VAC) 

were obtained using a Tacussel (Bi-PAD) galvanostat and voltmeter. The VACs results were compared with those for a 

carbon-based gas diffusion etalon electrode (EE) [23] with the same CL. 

3- Results and Discussion 

After the replacement of carbon-based material with zeolite in the classical GDL-recipe, PTFE-fibers crosslink the 

zeolite beans, which is a prerequisite for sufficient hydrophobicity (Figure 2). 

 

 

 

 

 

 

 

 

Figure 2. SEM image of zeolite-based GDL with 11 wt.% PTFE. 

However, samples with PTFE above 20 wt. % show low air permeability and excellent hydrophobicity.  The samples 

with 10 ÷ 20 wt. % PTFE powder have good gas permeability and mechanical stability, but still insufficient 

hydrophobicity. In order to fulfill both requirements, the teflonization procedure was modified and the Second 

generation GDL was developed. A procedure for impregnation by the introduction of a diluted emulsion on the surface 

of a GDL, carried out in several cycles, is introduced. It ensured the necessary hydrophobicity and gas permeability. 

The hydrophobicity increases as a result of the stepwise zeolite pores coating with PTFE. This technology was used for 

the preparation of GDEs with bifunctional CL (20 wt. % Co3O4 and 70 wt. % Ag mixed with 10 wt. % PTFE powder).  
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Figure 3. Volt-ampere characteristics during discharge (ORR) and charge (OER) measured on AE with impregnated 

zeolite-based GDL (ZE 2) compared with the etalon carbon-based GDE (EE). 
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Although ZE 2 has similar behaviour as EE - up to 7 mA/cm2 (Figure 3), its durability is low – it operates several 

cycles before wetting. The results presented in Figure 3 are similar to those obtained by Amin at al. [24]. For its 

improvment a second optimization of the hydrophobization procedure was performed.  

Third generation GDL was developed, replacing the PTFE powder with diluted PTFE emulsion – PTFE emulsion 

was added to the powdered zeolite before hot pressing. The relationship between the particle size and the wetting of the 

electrode was found. With a zeolite particle size between 180 and 250 µm, the electrode has a poorer hydrophobicity 

than that obtained with zeolite with a particle size of up to 250 µm. This can be explained by the partial filling of large 

pores in the zeolite crystal lattice with smaller particles. This maintains oxygen permeability but reduces electrolyte 

leakage. Varying the ratio between the zeolite and PTFE emulsion was achieved a good balance between hydrophobicity 

and gas permeability. That increased the number of charge/discharge cycles (Figure 4).  
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Figure 4. Volt-ampere characteristics of third-generation zeolite-based AE (ZE 3) during discharge and charge compared 
with ZE 2. 

The current density about 2-5 mA/cm2 is a promising initial result, taking into account the requirements for the final 
usage of Zn-air batteries in solar farms, where they operate in combination with other batteries/supercapacitors [10]. 

It was found that the replacement of the PTFE powder with PTFE emulsion leads to an improvement in the 

mechanical stability and hydrophobicity of the electrode. The gas permeability is maintained in the norms that ensure 

electrode operation. As it is shown in Figure 5, the third-generation zeolite-based AE was stable during charge/discharge 

cycling for over 200 cycles.  

It was found that small microstructural changes have a significant effect on the mechanical stability of the material 

under study. In this case, zeolite with a particle size of up to 250 µm shows good cycling performance - more than 200 

charge/ discharge cycles. 
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4- Conclusion 

Theprimery results obtained on the development of carbon-free air electrode replacing carbon-based materials with 

zeolite are promising in respect to both the current densities reached and the number of cycles.  In addition, zeolites are 

available, lightweight, porous, and cheap materials with a crystalline structure, making them an attractive option for the 

replacement of the carbon-black in the gas diffusion layer for secondary metal-air batteries. In this study, the optimum 

level of hydrophobicity (impregnation) and gas permeability of the zeolite used to make the gas diffusion layer of 

secondary metal-air batteries was established. In addition, optimizing the amount of PTFE guarantees better mechanical 

stability, good oxygen permeability and longer charge/ discharge cycle times. 

A relationship was found between the zeolite particle size and hydrophobicity, as well as the mechanical stability of 

the electrode. The removal of particles smaller than 180 µm and the hydrophobicity and mechanical stability of the 

prepared electrodes decreased significantly.  

It was found that the mechanical stability and hydrophobicity of the electrode improved with the replacement of the 

emulsion powder. The gas permeability is maintained within the norms, which guarantee the good performance of the 

electrode. The achieved current density of about 2-5 mA/cm2 is a promising initial result, given the requirements for 

using metal-air batteries in solar farms where they work in combination with other types of batteries or supercapacitors. 

The next stage of the optimization of the zeolite-based secondary metal-air electrode is focused on further increase 

of the current density and number of charge/discharge cycles, i.e. durability and scale up. Zeolite electrodes with other 

noble metal-free bifunctional catalysts will also be tested. 
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Figure 5. Charge/discharge cycling of third-generation zeolite-based AE at: charge time 45 min; discharge time 30 min; 

current density: ± 2 mA/cm2. 
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