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Abstract 

Lung cancer (LC) is one of the most frequently diagnosed cancers and remains the leading cause of 

cancer-related mortality worldwide, representing a significant global health challenge. While 
numerous common lung diseases (CLDs) are implicated in LC development, the underlying causes 

of LC originating from CLDs remain inadequately elucidated. A thorough exploration of LC’s 

progression from CLDs is essential; our approach integrated bioinformatics and machine learning, 
utilizing data from GEO and TCGA databases. We began by identifying differentially expressed 

genes (DEGs) in LC and CLDs, and our gene-disease network revealed for the first time shared DEGs 

(LC shares significant genes with TB (36), asthma (10), pneumonia (17), COPD (18), and Idiopathic 
Pulmonary Fibrosis (IPF) (78)), providing insights into potential connections of LC with CLDs. This 

analysis not only broadened our understanding of their associations but also identified significant 

pathways and hub proteins (SPTBN1, KCNA4, SCN7A, KCNQ3, GRIA1, and SDC1) through a 

protein-protein interaction network (PPI). Furthermore, RNA-seq and clinical data were obtained 

from the cBioPortal portal for shared DEGs of LC and CLDs, assessing their impact on LC patient 
survival. Integrated mRNA-Seq and clinical data were analyzed via univariate and multivariate Cox 

Proportional Hazard models to elucidate the influence of significant genes on survival. Furthermore, 

we developed and deployed a predictive model leveraging the identified hub genes, which 
demonstrated high accuracy in predicting LC progression. The identified biomarkers and pathways 

hold promise for further translational research and potential therapeutic targets, advancing 

understanding of LC development from CLDs. Additionally, co-expression networks among common 
genes were explored using the Weighted Gene Co-expression Network Analysis (WGCNA). Finally, 

the hub genes were validated using the Human Protein Atlas (HPA) database and evaluated through 

various classification algorithms to ascertain their predictive power and diagnostic potential.  
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1- Introduction 

Lung cancer (LC) is the most often diagnosed disease and the most common cause of cancer death in both men and 

women worldwide, killing about 1.8 million people each year [1]. Specifically, LC is characterized by the uncontrolled 

proliferation of abnormal cells within the lungs, primarily in the cells lining the airways. Furthermore, the disease is 
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classified into two primary types: small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) [2]. 

Notably, NSCLC accounts for around 85% of all cases and includes histological subtypes such as adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma [3]. On the other hand, SCLC is more aggressive than NSCLC, with 

faster doubling times and a higher propensity for early metastasis [4]. The progression of LC is influenced by a variety 

of risk factors, among which common lung diseases (CLDs) are particularly noteworthy. Moreover, several studies have 

identified five CLDs–tuberculosis (TB), asthma, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary 

disease (COPD), and pneumonias critical risk factors for LC [5-9]. For instance, COPD, particularly chronic bronchitis, 

is a prevalent lung disease primarily caused by smoking and is associated with breathing difficulties. Studies have 

demonstrated that chronic bronchitis significantly elevates LC risk [6]. Similarly, TB, a bacterial infection caused by 

Mycobacterium tuberculosis (MTB), predominantly affects the lungs and spreads through the air when infected 

individuals cough, spit, speak, or sneeze. TB has also been shown to heighten LC risk [5, 10]. 

Furthermore, we found in one study that asthma increases the risk of LC [11]. Another note-worthy risk factor is IPF, 

a progressive disease that not only increases LC risk but also presents challenges in treating LC among IPF patients due 

to the potential exacerbation of fibrosis [12-14]. Despite the high prevalence of lung cancer in IPF patients, the 

pathogenesis and treatment strategies remain unclear [12]. Lastly, pneumonia, an acute respiratory infection, has also 

been implicated in LC risk, further emphasizing the role of CLDs as precursors to LC [7]. Indeed, several recent studies 

found that CLDs increase the risk of LC [11, 15, 16]. A recent study by Miron et. al. [17] provides an overview of the 

relationship between chronic lung diseases and lung cancer, discussing common risk factors, biological mechanisms, 

and their impact on patient prognosis. 

In addition, bioinformatics and machine learning approaches have been increasingly used to explore the molecular 

mechanisms underlying LC progression from CLDs in recent years. For instance, researchers have identified shared 

differentially expressed genes (DEGs) and transcriptional regulators between LC and other lung diseases, offering 

insights into potential mechanisms of cancer development in patients with pre-existing lung conditions [18, 19]. Yao et 

al. applied bioinformatics approaches to identify potential therapeutic targets involved in the progression of IPF to 

NSCLC [19]. Similarly, Dasgupta utilized bioinformatics techniques to uncover potential targets for therapeutic 

intervention in the context of interstitial lung disease and LC [20]. Furthermore, a recent study by Ali et al. identified 

key genetic pathways linking lung cancer, smoking, and COVID-19, highlighting therapeutic targets using 

bioinformatics and machine learning [21]. Notably, machine learning techniques have been instrumental in analyzing 

large-scale datasets, enhancing lung cancer diagnosis, prognosis prediction, and treatment planning [19]. Additionally, 

some recent studies have highlighted the association between CLDs and LC [11, 15-17, 21-23]. However, while these 

investigations provide critical insights into the molecular mechanisms underlying LC in the context of CLDs, the precise 

mechanisms and the extent to which CLDs contribute to LC risk remain unclear. Furthermore, current studies have yet 

to establish how commonly CLDs increase the likelihood of LC development. The genetic associations between 

significant CLDs and LC need to be validated, and causal links between these conditions must be elucidated. 

Consequently, there is an urgent need for integrative bioinformatics and machine learning models that can explore shared 

pathways and genetic mechanisms between CLDs and LC. Such efforts will not only enhance our understanding of 

disease progression but also open new avenues for personalized care and therapeutic interventions. 

In the present study, bioinformatics and machine learning techniques were utilized to identify genes associated with 

the risk of developing LC in the presence of various common lung diseases such as TB, asthma, IPF, COPD, and 

pneumonia. The analysis involved high-throughput transcriptomics data analysis, PPI sub-network reconstruction, gene 

ontologies, and molecular pathways using a network-based ”multi-omics” approach to understand the genetic influence 

of these factors on the progression of LC. To investigate the effect of clinical factors and disease marker gene expression 

on LC patient survival, standard Cox Proportional Hazard (PH) models were used for univariate and multivariate 

analyses. The study started by identifying differentially expressed genes (DEGs) of LC and 5 CLDs, followed by 

identifying common genes between LC and the 5 CLDs. A gene-disease association network was constructed using these 

shared genes to see the association of LC with CLDs.  

The Weighted Gene Coexpression Network Analysis (WGCNA), a widely used method for identifying clusters of 

correlated genes [24], was applied using the WGCNA R package to construct a correlation network and assess the 

interrelationships among common genes [25]. We used publicly accessible clinical data from the Bro ad Institute 

Cancer Genome Atlas (TCGA) datasets as well as LC gene transcription profiles to correlate LC patient survival and 

other clinical variables with gene expression to identify new LC biomarkers that predict patient mortality. 

Furthermore, the study identified the mRNA of common genes of LC and CLDs by comparing these genes with the 

mRNA data of LC obtained from TCGA. These clinical and mRNA data were integrated and subjected to univariate 



Emerging Science Journal | Vol. 9, No. 2 

Page | 918 

and multivariate analyses to identify genes that affect the survival of LC. Finally, common pathway and GO ontology 

analyses were performed on the commonly identified genes of LC with five CLDs. We used machine learning 

approaches to check the validity of the identified biomarker genes among the diseases on the lung cancer dataset. 

Furthermore, we used the HPA database to explore the protein expression levels of significant biomarker genes in 

normal tissues and lung cancer tissues through immunohistochemistry (IHC) testing. We subjected these genes to 

evaluation through classification algorithms. Additionally, we developed and deployed a predictive model using these 

identified hub genes to assess LC progression, offering a practical application of our findings in clinical settings. This 

deployment emphasizes the translational potential of our study, bridging the gap between molecular research and 

real-world clinical implementation. 

The study employs bioinformatics and machine learning techniques to identify genes associated with lung cancer risk 

amidst common lung diseases like TB, asthma, IPF, COPD, and pneumonia. Biomarkers are validated through multi-

omics analysis and machine learning, while protein expression levels are examined for robustness using the Human 

Protein Atlas database. This comprehensive approach enhances understanding of genetic influences on lung cancer 

progression and mortality prediction. 

2- Materials and Methods 

In this study, we analyzed publicly available microarray datasets from the NCBI Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo/) focusing on lung diseases such as LC, TB, asthma, COPD, and pneumonia. 

Additionally, mRNA-Seq and clinical data of LC were accessed from the Cancer Genome Atlas (TCGA) via the TCGA 

Genome Data Analysis Center (http://gdac.broadinstitute.org/), providing a comprehensive resource for investigating 

shared molecular mechanisms. 

Figure 1 shows the work steps used in our work. Our research work follows the following steps: 

1) DEG Identification: We identified DEGs for each disease (LC and common CLDs) using the limma R package 

for the microarray dataset. 

2) Shared DEG Identification: We identified the shared significant DEGs between LC and CLDs by overlapping 

the DEGs obtained from the datasets of LC and CLDs. 

3) Enrichment Analysis: We conducted pathway and Gene Ontology analyses on the shared significant DEGs to 

reveal shared biological pathways and functional categories. 

4) Construction of PPI Network and Identification of Key Hub Genes: Using Cytoscape and the Cyto-Hubba plugin, 

we constructed a PPI network around the shared genes to identify highly connected hub proteins. We applied 

four algorithms (degree, EPC, MCC, and MNC) and identified shared hub genes. 

5) Utilization of TCGA Data: mRNA sequencing data for lung cancer (LC) was sourced from the TCGA Genome 

Data Analysis Center, encompassing 510 cases and gene expression profiles for 20,510 genes. 

6) Data Preprocessing: We categorized normal, tumor, and control samples using the TCGA barcode. We removed 

samples with missing values and lower read counts (counts < 100) and normalized the data using the FPKM 

method. 

7) Identification of shared Gene FPKM: FPKM values for shared genes between LC and CLDs, as well as hub 

genes, were extracted from the LC dataset. 

8) Survival Analysis: Univariate and multivariate Cox Proportional Hazard regression analyses were conducted to 

identify biomarker genes that significantly impact the survival of LC patients. 

9) Performance Assessment: Classification algorithms were applied to the extracted FPKM values of shared and 

hub genes to evaluate their effectiveness in prediction. We also performed ROC cure and heat map of key hub 

genes. 

10) Deployment: A machine learning-based prediction model was deployed to enable real-time prediction of LC 

progression using hub gene expression profiles. 

11) We also checked the expression level of significant genes from the HPA database. 

12) WGCNA Analysis: We performed WGCNA analysis on significant genes to explore correlations among them 

using the WGCNA package. 
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Figure 1. Flowchart of the research work. A to C. DEGs of each disease used in this study were identified, and then common 

genes between lung cancer (LC) and 5 CLD (Common Lung Diseases) were identified as well as a Gene- Disease association 

network of LC with 5 CLDs was built. D to E. Hub proteins and key pathways that are linked with comorbidity of LC with 5 

CLDs were identified using the PPI network, common pathway, and GO ontology analysis. F to G. Following that, LC RNAseq 

data was converted to FPKM and then to Z score values, after that, mRNA of shared genes were identified, and next, the 

mRNA data and clinical data were combined by utilizing patient IDs, allowing for the integration of molecular and clinical 

information to gain a comprehensive understanding of LC and its associated factors. H. Univariate, and multivariate, Cox 

Proportional Hazard regression analyses were conducted to identify biomarker genes that significantly impact the survival 

of LC patients. We utilized TCGA’s mRNA data to procure and process LC information, identifying shared and hub genes. 

K. These genes underwent assessment via classification algorithms. I, J and L. Concurrently, we performed survival analysis 

of significant genes, WGCNA Analysis to unveil inter-gene correlations and also checked the expression level of significant 

genes. M. Identified significant Hub proteins through validation. This comprehensive investigation shed light on the intricate 

relationships among LC and CLDs, augmenting our comprehension of their intricate interplay. 

2-1- Materials 

For investigating the association of LC and significant lung diseases at the molecular level, we used seven gene 

expression microarray datasets with accession numbers GSE89039 and GSE136043 (LC), GSE62525 (tuberculosis), 

GSE35716 (Pneumoniae), GSE43696 (Asthma), GSE24206 (Idiopathic Pulmonary Fibrosis), and GSE76925 (COPD) 

obtained from the NCBI (http://www.ncbi.nlm.nih.gov/geo/). In this study, we applied standard statistical procedures, 

including filtering, normalization, and Student’s unpaired t-test using the Limma package, to analyze transcriptomics 

datasets and identify differentially expressed genes (DEGs) based on a threshold of |logFC| >= 1 and p−value < 0.05. 

There were eight LUAD samples and eight normal samples in the GSE89039 dataset and in the GSE136043 dataset, the 

number of LUAD samples is 5 and normal samples is 5. The information on datasets used in this study is given in Table 

1. 

Table 1. Dataset descriptions of used LC and CLDs diseases 

Diseases Name GSE Number Case Control 

Lung Cancer GSE89039 Lung carcinoma tissue: 8 Non-cancerous lung Tissues: 8 

Gray lung cancer GSE136043 Lung cancer tissues: 5 Non-tumor tissues:5 

Tuberculosis (TB) GSE62525 Active TB: 14 and latent TB:14 Healthy Subject: 14 

Gray pneumonia GSE35716 Bacterial pneumonia: 10 Healthy controls (n=18) 

Asthma GSE43696 Severe asthmatic (SA) patients: 38 Normal control (NC): 20 

Gray Idiopathic pulmonary fibrosis (IPF) or chronic fibrosing (CF) GSE24206 Idiopathic pulmonary fibrosis: 17 Healthy controls: 6 

COPD GSE76925 COPD case: 111 Healthy controls: 40 

http://www.ncbi.nlm/
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For further analysis to obtain the significant genes, we used the mRNA data of LC that we obtained from the TCGA 

genome data analysis centre (http://gdac.broadinstitute.org/). We acquired the anonymised clinical data and mRNAseq 

data for LC (Lung Adenocarcinoma, TCGA, PanCancer Atlas) from the cBioPortal to investigate a specific topic of 

interest, survival analysis of LC on clinical and genetic determinants. The clinical dataset we used for our analysis 

contained 566 cases and 57 features. Out of these, 510 cases had mRNA gene expression data available, which included 

information on 20510 genes. We picked 3 crucial clinical factors patients ID, Overall Survival and Overall Survival 

status. Additionally, we identified significant genes associated with LC and lung diseases. We studied only one outcome 

variable, which was LC-specific survival, using the aforementioned data. By matching the patient IDs in both clinical 

and mRNA expression datasets, we discovered 510 patients with data available in both sets, and we used the same 3 

clinical variables described above. We computed z-scores for RNAseq data using the process that was described in the 

work of Hossain et al. [26]. Utilizing the TCGA barcode, we categorized samples into normal and tumor groups. The 

sample type is indicated by the two digits at positions 14-15 of the barcode. Normal samples are denoted by digits ranging 

from 10 to 19, tumor samples from 01 to 09, and control samples from 20 to 29. We remove the missing value samples 

and lower the read count (total read count < 100). We then normalized the modified dataset with the FPKM method for 

the performance evaluation of the significant genes with classification algorithms and WGCNA analysis. To identify 

samples with gene expression that was either over-expressed or under-expressed, we used z-score values. We considered 

a sample to be altered if its z-score was equal to or greater than a particular threshold value (e.g., z=2). Accordingly, we 

defined altered samples as those with z-scores greater than or equal to 2, and normal samples as those with z- scores less 

than 2. 

2-2- Methods 

2-2-1- Significant DEGs Identification 

We analyzed these datasets to find genes that were differently expressed in patients compared to normal samples. To 

normalize the datasets, we first use the Limma package in R to conduct the log2 transformation using combinatorial 

statistical approaches. To determine significant genes, the raw p-values were adjusted using the Benjamini-Hochberg 

method, and significance was assessed with an unpaired Student’s t-test. A threshold of absolute log2 fold change value 

as at least 1 and an Adjusted p − value < 0.05 were set. 

2-2-2- Diseasome Network Construction 

We started by identifying DEGs for each of the disorders, and then we looked for genes that were shared by LC and 

five major lung diseases. After that, we used the concordant genes to create the LC diseasome network with five CLDs. 

For the diseasome network, topological and neighbourhood-based benchmark [27, 28] approaches were utilized, which 

were more suited to our networks. Using Cytoscape, we created the LC diseasome network [27]. 

2-2-3- Construction of PPI Networks and Identification of Hub Genes 

The STRING database (https://string-db.org/) was used to obtain the protein-protein interactions of the overlapped 

DEGs of LC with CLDs [27, 29]. To ensure comprehensive analysis, we utilized interaction data from the STRING 

database, which incorporated information from PubMed abstracts, co-expression patterns, gene fusions, and genomic 

neighborhood associations. Furthermore, a combined interaction score with a medium confidence threshold (> 0.4) was 

applied as the cut-off value. For clearer visualization, the protein-protein interaction (PPI) network was displayed using 

Cytoscape (v3.9.1) in combination with the Cyto-Hubba plugin [27, 30]. Notably, Cyto-Hubba was instrumental in 

identifying highly connected hub proteins by applying algorithms such as degree, edge percolated component (EPC), 

maximal clique centrality (MCC), and maximum neighborhood component (MNC) [31]. The top 20 nodes with the 

degree, EPC, MCC, and MNC were chosen, and the hub proteins were determined by taking the intersection of the four 

algorithms.  

2-2-4- Hub Genes Expression Levels Validation using the HPA Database  

      The HPA database was used to confirm the protein expression levels of hub genes in normal tissues and lung cancer 

tissues through immunohistochemistry (IHC) testing [32]. 

2-2-5- Machine Learning Models for Important Proteins Identification and Survival Predictions 

The analysis conducted on patients with LC involved several techniques. Firstly, the product-limit estimator was used 

to estimate the survival function. Subsequently, the log-rank test was performed to determine if there were any significant 

differences between the two groups, namely patients with altered gene expression and those with unaltered gene 
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expression. Finally, Cox Proportional Hazards regression models were used to identify significant genes and clinical 

factors. The study used important clinical variables described in the data collection section, as well as significant shared 

genes associated with LC and common lung diseases. Each gene’s Z-score value was converted to either an altered or 

normal category, depending on whether it exceeded the threshold value of Z-score (z > 2), as described in the data 

section. The analysis then proceeded to perform univariate analysis (examining each gene individually) and multivariate 

analysis (examining all genes simultaneously). We use the Cox proportional hazards (Cox PH) model for the above two 

analyses. The Cox Proportional Hazards (Cox PH) model is a regression model used to analyze the relationship between 

survival times and one or more predictor variables. 

The formula for the univariate Cox PH model is: 

ℎ(𝑡|𝑥) = ℎ0(𝑡) ⋅ 𝑒
𝛽𝑥  (1) 

where h(t|x) represents the hazard function for an individual with covariate values x, h0(t) is the baseline hazard function, 

and β is the estimated coefficient for the predictor variable x. 

The formula for the multivariate Cox PH model is: 

ℎ(𝑡|𝑥1, 𝑥2, . . . , 𝑥𝑝) = ℎ0(𝑡) ⋅ 𝑒
𝛽1𝑥1+𝛽2𝑥2+...+𝛽𝑝𝑥𝑝  (2) 

where h(t|x1, x2, ..., xp) represents the hazard function for an individual with covariate values x1, x2, ..., xp, h0(t) is the 

baseline hazard function, and β1, β2, ..., βp are the estimated coefficients for the predictor variables x1, x2, ..., xp 

respectively. 

2-2-6- Performance Evaluation of the Significant Genes with Classification Algorithms 

The study evaluated the reliability of the identified shared genes of LC with five CLDs by using four popular 

classification algorithms, namely Bayesian Network, support vector machine (SVM), random forest (RF), and Logistic 

Regression. For this purpose, mRNA data of LC were normalized with the FPKM method and then the shared gene’s 

normalized values of LC samples and normal samples. 

We used 10-fold cross-check validation for the four algorithms. The aim was to determine the effectiveness of these 

hub genes in classifying different disease states using machine-learning techniques. The study used two performance 

measures to evaluate the effectiveness of the identified shared genes, which were accuracy, and area under the ROC 

curve (AUC). Furthermore, the best-performing classification model, based on accuracy and AUC, was deployed as a 

real-time prediction tool. This tool allows for the classification of LC progression by leveraging the expression profiles 

of significant hub genes. 

2-2-7- Weighted Gene Co-expression Networks Construction 

The endeavour to unravel clustering trends between shared genes identified from the LC and CLDS led us to employ 

the WGCNA package [24] in R. This approach facilitated the identification of weighted gene co-expression networks 

interlinking these genes. To embark on this journey, we initially addressed the prospect of outlier samples. By 

constructing a sample cluster dendrogram using the hclust function in R for both datasets, potential outlier samples were 

pruned. Subsequently, the pickSoftThreshold function within R guided us in exploring numerous soft thresholding 

powers (β) across R2, eventually pinpointing the value of β that yielded the highest R2. 

The process further involved the construction of an adjacency matrix and a Topological Over- lap Matrix (TOM), 

leveraging the transformed gene expression matrix. This matrix was pivotal in encapsulating the interconnectedness of 

the genes. Additionally, the Dissimilarity of TOM (dis-sTOM) was harnessed, affording a network heatmap plot that not 

only visually captured the relationships but also facilitated subsequent analytical endeavours. This concerted approach 

within the WGCNA framework illuminated the underlying co-expression patterns among the common genes, offering 

valuable insights into their potential functional collaborations and interactions. 

2-2-8- Pathways and Ontology Analysis for Common DEGs of LC and Significant Lung Diseases 

We used the Enrichr bioinformatics tool (http://amp.pharm.mssm.edu/Enrichr/) and the KEGG pathways database to 

perform pathway and gene ontology analysis to learn more about the molecular pathways of LC that overlap with 

tuberculosis (TB), Asthma, IPF, COPD and Pneumonia. We used adjusted p−value < 0.05 as the threshold Adjusted p-

value for significant enrichment results. 

http://amp.pharm.mssm.edu/Enrichr/
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3- Results and Discussion 

3-1- Results 

3-1-1- Infectome and Diseasome Analysis 

We conducted a comprehensive global transcriptome analysis to examine gene expression patterns in lung cancer 

(LC) patient tissues, comparing these with those of normal subjects. 

We used two datasets of LC and found 1652 differentially expressed genes (DEGs) (765 down- regulated, 887 up-

regulated) in GSE136043 and 4028 DEGs (2659 up-regulated, 4028 down- regulated) in GSE89039. Next, a cross-

comparison analysis was conducted between the two LC datasets, which identified 681 significant differentially 

expressed genes (DEGs), comprising 197 down-regulated and 484 up-regulated genes. 

To observe the association of LC with the other 5 lung diseases, we have collected microarray raw data associated 

with each disease. After several rounds of statistical analysis, we identified the most significantly over- and 

underexpressed genes for each disease. Our analyses revealed a considerable number of differentially expressed genes: 

1977 (421 downregulated and 1556 upregulated) in TB, 1277 (441 downregulated and 836 upregulated) in Pneumonia, 

643 (54 downregulated and 589 upregulated) in COPD, 155 (51 downregulated and 104 upregulated) in Asthma, and 

819 (440 downregulated and 379 upregulated) in IPF. 

We also performed cross-comparative analysis to find the common significant genes between each disease and LC. 

We observed that LC shares 36, 10, 17, 18, and 78 significant genes with common LDIs TB, asthma, pneumonia, COPD, 

and IPF, respectively. To identify statistically significant connections between these infections and diseases, we 

constructed an infectome-diseasome relationship network focused on LC. In this network, two diseases were considered 

comorbid if they shared one or more associated genes (Figure 2). Notably, 2 significant genes, BTNL9 and AFF3, are 

commonly dysregulated among LC, TB, and IPF; 3 significant genes, CXCL13, COL10A1 and SOX7 are commonly 

dysregulated among LC, COPD, and IPF; and 9 significant genes, LRRN3, LBH, SH2D1B, SOBP, ZC3H12B, RASIP1, 

KCNQ3, SALL4 and STYK1, are commonly dysregulated among LC, TB, and ARDS; 1 significant gene(DNASE1L3) 

is commonly dysregulated among LC, TB, and asthma; and 1 significant gene(NAPRT) is commonly dysregulated 

among LC, TB, and IPF. Interestingly, only 1 gene (VGLL3) is common among LC, asthma and IPF. However, 1 gene 

(DSEL) plays an important role and is differentially expressed among LC, TB, IPF and COPD; and 1 gene (ANKRD22) 

among LC, Pneumonia, and TB. 

 

Figure 2. Diseasome network of LC with TB, pneumonia, asthma, COPD and IPF. Sky blue is used for shared over- 

expressed genes in LC and other diseases, whereas red colour is used for LC and other diseases. A. Up network and B. 

Down network. 

3-1-2- WGCNA Analysis of Common Genes 

We conducted WGCNA analysis on 122 common DEGs among lung cancer and CLDs datasets, and our results 

revealed that the significant genes are grouped, as depicted in Figure 3. The sample cluster dendrogram in Figure 3-A 

illustrates a robust clustering pattern within the dataset and indicates the absence of outlier samples. To identify modules 



Emerging Science Journal | Vol. 9, No. 2 

Page | 923 

through WGCNA, we determined the optimal soft thresholding power (=9) based on scale-free topology criteria (Figure 

3-B). Using this power value, we constructed a co-expression network and identified four modules with the Dynamic 

Tree Cut technique, employing deepS plit = 2 and minClusterS ize = 10 parameters. These modules contained 28, 10, 

37, and 43 genes in the blue, brown, grey, and turquoise mod- ules, respectively. Additionally, three modules (comprising 

8, 48, and 62 genes in the blue, grey, and turquoise modules) were identified using the Auto-merged algorithm. The 

module dendro- gram plots for both the Dynamic Tree Cut and Auto-merged algorithm are presented in Figure 3-C. 

Figure 3-D displays the network heatmap of all genes within these three modules identified through the Auto-merged 

algorithm. Figure 3 confirms that the 122 genes selected through statistical models exhibit a similar nature within the 

lung cancer and CLDs datasets. 

 

Figure 3. Correlation analysis using WGCNA for the common significant genes in LC and CLDs. This analysis aimed 

to understand the genetic interplay between lung cancer (LC) and common lung diseases (CLDs). Key findings include 

the identification of 122 common differentially expressed genes (DEGs) through WGCNA analysis, revealing robust 

clustering patterns and the absence of outlier samples (3-A). Optimal soft thresholding power (=9) was determined for 

module identification based on scale-free topology criteria (3-B), resulting in the identification of four modules 

containing distinct gene sets (blue, brown, grey, and turquoise) through both Dynamic Tree Cut and Auto-merged 

algorithms (3-C). A network heatmap (3-D) confirms the similarity in nature of the identified genes within LC and 

CLDs datasets. 

3-1-3- PPI Network Construction and Hub Genes Identification 

We identified 122 significant common DEGs among CLDs and LC. The STRING database [27] was used to 

obtain the PPI (shown in Figure 4-A) of the overlapped 122 DEGs of LC with CLDs. Next, the PPI network was 

displayed using Cytoscape and Cyto-Hubba plug-in was used to identify the hub proteins. To enhance the 

dependability of the hub genes, we combined the outcomes of four algorithms (Degree (Figure 4-B), EPC (Figure 

4-C), MCC (Figure 4-D), and MNC (Figure 4-E) in our analysis. For each algorithm the top 20 proteins were chosen 

(see Table 2), after that we identified shared 6 hub proteins (SPTBN1, KCNA4, SCN7A, KCNQ3, GRIA1, and 

SDC1). 
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Figure 4. PPI Network for Shared Significant genes of LC and Significant lung diseases. A. PPI network of significant genes 

B. 20 hub proteins identification using Degree, EPC, MCC and MNC algorithms (B to E, respectively) 

Table 2. Top 20 genes of four algorithms (Degree, EPC, MCC, and MNC) 

MCC MNC DEGREE EPC 

RECK SDC1 KCNA4 CXCL13 

Gray C11orf80 VGLL3 SCN7A SDC1 

CCDC85A ARHGAP6 KCNQ3 SDC2 

Gray ANLN TSPAN12 SPTBN1 HS6ST2 

SSL4 LGR4 GRIA1 CD24 

Gray SPTBN1 KCNA4 ANLN HHIP 

KCNA4 SCN7A ST6GALNAC3 PID1 

Gray SCN7A KCNQ3 GFPT1 LPL 

KCNQ3 SPTBN1 SALL4 LEPR 

Gray TBX5 GRIA1 ABCB1 SPP1 

COL10A1 DOCK4 COL10A1 COL10A1 

Gray SPP1 SDC2 SPP1 GPISPB1 

LEPR HS6ST2 LEPR LRRN3 

Gray LPL CXCL13 LPL ANLN 

PID1 ABCB1 PID1 SPTBN1 

Gray ABCB1 CES1 SDC1 KCNA4 

PIP5K1B ANKRD22 HHIP SCN7A 

Gray GRIA1 GFPT1 PIP5K1B KCNQ3 

ST6GALNAC3 CCDC85A RECK TTN 

Gray GFPT1  CCDC85A GRIA1 
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3-1-4- Protein Expression Levels of Hub Genes in HPA Database 

The HPA database did not contain any immunohistochemical information regarding KCNQ3. Figure 5 shows the 

protein expression levels of several hub genes (SPTBN1, KCNA4, SDC1, GRIA1, and SCN7A) obtained from HPA 

database. It is interesting to note that the SDC1 gene was not detected in normal lung tissues but was highly expressed 

in lung cancer tissues. On the other hand, SCN7A showed low expression levels in normal lung tissues as well as in lung 

cancer tissues. Interestingly, GRIA1 was not detected in both normal lung tissues and lung cancer tissues. However, in 

the case of the SPTBN1 gene, high expression was found in normal lung tissues and medium expression in lung cancer 

tissues. KCNA4 gene expression was not detected in normal lung tissues and medium expression in lung cancer tissues. 

 

Figure 5. Immunohistochemistry images of hub genes in normal lung tissues and LUAD tissues were obtained from the HPA 

database. The images included protein representations of SPTBN1, KCNA4, SDC1, GRIA1, and SCN7A (labelled as A-E), 

with HPA standing for Human Protein Atlas. 

These findings may have implications for understanding the molecular mechanisms underlying lung cancer and 

identifying potential targets for therapeutic interventions. However, it is important to note that these results are based on 

immunohistochemical data from the HPA database and may not necessarily reflect the protein expression levels in all 

cases of lung cancer. Further studies are needed to confirm these findings and determine their clinical significance. 

3-1-5- Survival Prediction of the Significant Genes that were Common in LC and Commonly Lung Diseases (CLDs) 

The analysis is crucial for understanding the genetic and clinical factors influencing patient survival in LC prognosis. 

The study obtained RNA-seq data and clinical information related to LC from the cBioPortal. This comprehensive 

dataset allows for a focused exploration of the impact of these factors on patient outcomes using machine learning 

techniques, particularly in the context of survival prediction for the significant genes common to LC and CLDs, thus 

potentially identifying novel genes with prognostic relevance. We identified 122 significant shared genes of LC with 

CLDs. We obtained 510 patients with 122 shared genes’ mRNA values and three clinical variable values, described in 

the data section. The datasets included information from 566 cases, with 57 different features. Specifically, 510 cases 
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had gene expression data, which consisted of 20,440 gene expression values. After comparing 122 genes commonly 

associated with LC and 5 CLDs, only 122 genes had mRNA data available. Out of the 57 clinical features, only three 

were selected for analysis. We then integrated the clinical and RNA-seq data using patient IDs and utilized machine 

learning techniques to examine how these factors influenced patient survival in LC prognosis. 

We used the product limit estimator to construct survival curves for 122 genes. The survival curves were used to 

compare the survival patterns between the two groups, which were altered and normal (non-altered). Genes that showed 

a significant difference in their survival patterns between the two groups were included in the analysis. The significance 

of a gene’s role was determined by its p-value, which indicated the difference in survival pattern based on its expression 

level in the two categories. The analysis identified 27 genes (CASS4, EPB41L5, PKHD1L1, GNAZ, KCNA4, ANLN, 

LRRN3, TBX5, GRIA1, ST8SIA1, ADM2, CCK, SCN7A, P2RY14, TMEM106B, DNASE1L3, ADAMTS8, VEGFD, 

LBH, KCNQ3, LGR4, GPIHBP1, C1ORF21, PHACTR1, AFF3, and LEPR) that had a significant impact on patient 

survival. These genes had a lower p-value and their altered expression was associated with a lower likelihood of survival 

compared to the non-altered group, as demonstrated in Figures 6 and 7. The figures or graphs showed that the blue line 

represented altered gene expression, while the red line represented normal/unaltered gene expression. In Figure 6, 

ADAMTS8 showed the highest hazard ratio (HR) of 2.97, with a confidence interval (CI) of 1.1 to 8.02, indicating a 

significantly increased risk for individuals with this gene alteration within the analyzed set (ADM2, ADAMTS8, AFF3, 

ANLN, C1ORF21, CASS4, CCK, DNASE1L3, EPB41L5, GNAZ, and GPIHBP1). In contrast, both CKK and ADM2 

had CIs entirely below 1, suggesting these genes may have a protective effect on survival. These results highlight 

ADAMTS8 as a strong prognostic marker and CKK and ADM2 as possible protective factors. For Figure 7, GRIA1 

exhibited the highest hazard ratio (HR) of 4.5 with a confidence interval (CI) ranging from 1.44 to 14.08, underscoring 

its strong association with increased risk among the studied genes (GRIA1, KCNA4, KCNQ3, LBBH, LEPR, LGR4, 

LRRN3, PHACTR1, PKHD1L1, P2RY14, SCN7A, ST8SIA1, TBX5, TMEM106B, and VEGFD). In contrast, KCNQ3 

showed a lower HR of 1.37, with a CI of 1.01 to 1.84, suggesting a modestly increased risk but statistically significant 

association with survival. 

 

Figure 6. Survival curves of significant genes (ADM2, ADAMTS8, AFF3, ANLN, C1ORF21, CASS4, CCK, DNASE1L3, 

EPB41L5, GNAZ, and GPIHBP1) illustrating overall survival probabilities based on gene alteration status. Hazard ratios 

(HR) with 95% confidence intervals (CI) are shown for each gene, indicating the relative risk associated with altered 

expression. The inclusion of HR and CI values highlights the prognostic importance of these genes and their potential roles 

in influencing survival outcomes in disease progression. 



Emerging Science Journal | Vol. 9, No. 2 

Page | 927 

 

Figure 7. Survival curves for significant genes (GRIA1, KCNA4, KCNQ3, LBBH, LEPR, LGR4, LRRN3, PHACTR1, 

PKHD1L1, P2RY14, SCN7A, ST8SIA1, TBX5, TMEM106B, and VEGFD), illustrating overall survival based on gene 

alteration status. Hazard ratios (HR) and 95% confidence intervals (CI) are provided for each gene, showing the relative risk 

associated with gene expression changes. These insights into survival probability underscore the prognostic relevance of these 

genes in disease progression. 

3-1-6- Modeling the Hazard Risk on the mRNA Data 

To determine which genes are most significant for patient survival in LC, we utilized the Cox proportional hazards 

(PH) regression model to measure the relative likelihood of the risk of death for each gene separately (Univariate 

analysis) and simultaneously for all genes (multivariate analysis). Both univariate and multivariate analyses were 

conducted for the 122 genes. Tables 3 and 4 display only the genes with a p-value less than 0.05, along with their 

corresponding estimated coefficient (β), hazard ratio (HR), and p-value. From the univariate analysis, we identified 26 

genes (CASS4, EPB41L5, PKHD1L1, GNAZ, KCNA4, ANLN, LRRN3, TBX5, GRIA1, ST8SIA1, ADM2, CCK, 

SCN7A, P2RY14, TMEM106B, DNASE1L3, ADAMTS8, VEGFD, LBH, KCNQ3, LGR4, GPIHBP1, C1ORF21, 

PHACTR1, AFF3, and LEPR) with a p-value less than 0.05 (see Table 3). Additionally, in the multivariate analysis, we 

found 14 significant genes (VGLL3, ADM2, GNAZ, RNF182, CCK, CASS4, HHIP, ST8SIA1, CDH13, LEPR, ANLN, 

EPB41L5, GMDS, GRIA1, and PKHD1L1) (see Table 4). Among these, only nine genes (CASS4, EPB41L5, 

PKHD1L1, GNAZ, ANLN, GRIA1, ST8SIA1, ADM2, CCK, and LEPR) were significant in both univariate and 

multivariate analyses. 
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Table 3. Significant genes associated with lung cancer are identified while assessing the relative likelihood of death risk for 

each gene separately, considering their individual associations with the outcome variable. Statistical metrics (coef, Z-Score, 

P-values) quantify gene-level associations with patient survival in univariate analysis. 

Gene Name coef exp.coef P-Values 

CASS4 0.68 1.97 1.15E-04 

EPB41L5 0.63 1.89 4.13E-04 

Gray PKHD1L1 0.60 1.82 2.15E-03 

GNAZ 0.44 1.55 3.39E-03 

Gray KCNA4 0.73 2.06 5.68E-03 

ANLN 0.72 2.05 6.26E-03 

Gray LRRN3 0.91 2.48 8.05E-03 

TBX5 0.41 1.51 9.05E-03 

Gray GRIA1 1.50 4.50 9.85E-03 

ST8SIA1 0.38 1.46 1.15E-02 

Gray ADM2 -0.54 0.59 1.16E-02 

CCK -0.38 0.69 1.44E-02 

Gray SCN7A 0.52 1.68 1.79E-02 

P2RY14 0.37 1.45 1.81E-02 

Gray TMEM106B 0.35 1.43 1.85E-02 

DNASE1L3 0.39 1.47 2.31E-02 

Gray ADAMTS8 1.09 2.97 3.16E-02 

VEGFD 0.94 2.56 3.79E-02 

Gray LBH 0.31 1.36 3.81E-02 

KCNQ3 0.31 1.37 4.02E-02 

Gray LGR4 0.63 1.89 4.15E-02 

GPIHBP1 0.77 2.17 4.57E-02 

Gray C1ORF21 0.45 1.56 4.62E-02 

PHACTR1 0.57 1.77 4.76E-02 

Gray AFF3 0.45 1.57 4.84E-02 

LEPR 0.49 1.63 5.00E-02 

Table 4. Significant genes in Multivariate analysis. In multivariate analysis, significant genes associated with lung cancer are 

identified by simultaneously considering multiple variables, allowing for a comprehensive assessment of their combined 

impact on the risk of death, thus providing a thorough understanding of genetic factors influencing patient survival. Statistical 

metrics (coef, Z-Score, P-values) quantify gene-level associations with patient survival in multivariate analysis. 

Gene Name coef Z-Score P-Values 

Gray VGLL3 -1.17 -3.63 2.82E-04 

ADM2 -1.11 -3.14 1.72E-03 

Gray GNAZ 0.77 3.12 1.81E-03 

RNF182 -1.04 -3.01 2.61E-03 

Gray CCK -0.61 -2.90 3.72E-03 

CASS4 0.89 2.87 4.06E-03 

Gray HHIP -0.92 -2.77 5.62E-03 

ST8SIA1 0.59 2.50 1.24E-02 

Gray CDH13 0.80 2.44 1.49E-02 

LEPR 0.88 2.34 1.93E-02 

Gray ANLN 0.96 2.19 2.87E-02 

EPB41L5 0.57 2.17 2.99E-02 

Gray GMDS -0.47 -2.04 4.17E-02 

GRIA1 1.68 2.01 4.47E-02 

Gray PKHD1L1 0.67 2.00 4.54E-02 
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3-1-7- Performance Evaluation and Deployment of Significant Hub Genes 

We evaluated the effectiveness of hub genes in classifying different disease states using machine learning techniques. 

We measured the performance using two evaluation metrics: accuracy and area under the ROC curve (AUC). The 

analysis was conducted on two datasets: one containing 122 shared genes between LC and five CLDs and another 

comprising significant genes obtained from hub genes and those identified in univariate and multivariate analyses (see 

Table 5). mRNA expression data were normalized using the FPKM method, and gene values for LC samples and normal 

samples were used for model training and testing. 

Table 5. Performance evaluation of the common genes and significant genes 

 33 Significant genes 122 common genes 

Accuracy Train Accuracy Test Accuracy Train Accuracy Test Accuracy 

Bayesian Network 1.000 1.000 1.000 1.000 

Logistic Regression 1.000 0.995 1.000 0.993 

Random Forest 1.000 1.00 1.000 0.993 

SVM (Linear) 1.000 0.997 1.000 0.993 

Using a 10-fold cross-validation strategy, the results demonstrated high accuracy and effectiveness for the 

classification task. All machine learning models, including SVM, achieved excellent performance, as reflected in both 

train and test accuracies (see Table 5). The SVM algorithm displayed robust classification capabilities for both datasets, 

with high AUC values. The ROC curve (Figure 8) further illustrates the model’s ability to distinguish LC samples from 

normal samples effectively. These results validate the reliability of the shared and significant genes in predicting LC 

progression. Six key hub genes (SPTBN1, KCNA4, SCN7A, KCNQ3, GRIA1, and SDC1) were validated using the 

AUC values computed from ROC curves, utilizing the TCGA lung cancer dataset (see Figure 9). Figure 9-a. displays 

the ROC curve of six key candidate genes along with their corresponding AUC values for the TCGA lung cancer dataset: 

KCNA4 (AUC: 0.94, 95% CI: 0.935 to 0.985), GRIA1 (AUC: 0.99, 95% CI: 0.963 to 0.986), SCN7A (AUC: 0.98, 95% 

CI: 0.922 to 0.969), KCNQ3 (AUC: 0.82, 95% CI: 0.416 to 0.738), SPTBN1 (AUC: 0.98, 95% CI: 0.938 to 0.980), and 

SDC1 (AUC: 0.86, 95% CI: 0.708 to 0.809). Figure 9-b. Shows the heatmap of hub genes. Finally, the SVM model was 

deployed (see Figure 10) for real-world applications, enabling users to input gene expression profiles and receive 

immediate predictions of disease states. This deployment underscores the potential of machine-learning approaches to 

aid in clinical diagnostics and personalized treatment planning for lung cancer. The deployment of the machine learning 

model for lung cancer prediction using significant hub genes is available on GitHub for reproducibility and further 

analysis. Access it here: Lung Cancer Prediction (https://github.com/Ali-bd/Lung-Cancer-Prediction.git). 

 

Figure 8. ROC curve of Significant genes. ROC curves of significant genes were generated to assess the effectiveness of hub 

genes in predicting or detecting lung cancer from shared genes 
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Figure 9. ROC curve of Heatmap of 6 hub genes. ROC curves of significant genes were generated to assess the 

effectiveness of hub genes in predicting or detecting lung cancer from shared genes and Heatmap to see the correlation 

of these genes. 

 

Figure 10. Deployment of the machine learning model using SVM for lung cancer prediction. The system allows the input of 

normalized gene expression profiles (FPKM values) and provides predictions on disease states (LC or normal) based on the 

trained model. 

3-1-8- Pathway and Functional Correlation Analysis 

Considering 122 significant shared DEGs of LC with CLDs, we performed pathway analysis and gene ontology 

enrichment analysis using the Enrichr (KEGG pathway) database and biological process 

(http://amp.pharm.mssm.edu/Enrichr/enrich), respectively. We observed that 8 significant pathways were associated 

with the 122 significant DEGs shown in Figure 11-A. Significant pathways are vitamin B6 metabolism, neuroactive 

ligand-receptor interaction, drug metabolism, ABC transporters, glycosphingolipid biosynthesis, amino sugar and 

nucleotide sugar metabolism, malaria, and the cAMP signaling pathway. Genes associated with these pathways are 

presented in Figure 11-A. We also observed that 15 significant gene ontology groups (shown in Figure 11-B) are 

associated with the significant shared DEGs. 

http://amp.pharm.mssm.edu/Enrichr/enrich
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Figure 11. A. 8 Pathways associated with the significant Common DEGs between CLDs and LC. B. 15 Gene ontologies (BP: 

Biological Processes; MF: Molecular Functions; CC: Cellular Components) associated with the significant Common DEGs 

between CLD and LC. 

3-2- Discussion 

In this study, we have investigated lung comorbid diseases’ influence on lung cancer development and progression 

through integrated network analysis of gene expression and pathways relevant to lung cancer and commonly found lung 

disorders. We used a variety of bioinformatics techniques to decode multi-relational infectome, disease comorbidity, and 

diseasome linkages between LC and 5 CLD disorders. LC has 36, 10, 17, 18, and 78 important shared genes with TB, 

asthma, pneumonia, COPD, and IPF, respectively, according to the infectome-disease network. The WGCNA analysis 

provided valuable insights into the regulatory networks and coexpression patterns of common genes associated with LC 

and its comorbidities. This analysis highlighted potential molecular mechanisms underlying disease progression and 

identified key gene modules involved in LC pathogenesis. Furthermore, the performance evaluation of common genes 

using classification algorithms underscores their potential as diagnostic and predictive biomarkers for LC. By assessing 

their performance across various algorithms, we gained a comprehensive understanding of their utility in clinical 

practice. 

From the infectomediseasome analysis, we identified that LC most resembles pulmonary infections such as IPF and 

TB. After analyzing the PPI network constructed around the common DEGs between lung disorders and LC, we identify 

6 common hub proteins (SPTBN1, KCNA4, SCN7A, KCNQ3, GRIA1, and SDC1) using the four algorithms (degree, 

EPC, MCC, and MNC) in the Cytohubba plug-in and provide their potential significance in the pathogenesis of LC and 

its associated risk factors. The sharing of hub proteins between LC and other respiratory disorders, such as IPF, asthma, 

and TB, suggests common molecular mechanisms underlying these conditions. In particular, it was discovered that LC 

and IPF shared SCN7A, GRIA1, and SDC1; that asthma shared KCNA4; and that TB shared SPTBN1 and KCNQ3. 

Moreover, the outcomes of the univariate and multivariate studies shed new light on how these hub proteins function in 

the development of LC. While SCN7A, KCNA4, and KCNQ3 genes were significant only in the univariate analysis, 

GRIA1 was shown to be significant in both analyses. This suggests unique functions for SCN7A, KCNA4, and KCNQ3 

in determining disease prognosis and underscores the potential significance of GRIA1 as a major regulator in LC 

development and progression. In the survival analysis, GRIA1 exhibited the highest risk with an HR of 4.5 (95% CI: 

1.44 to 14.08), indicating a significant association with poorer survival. KCNA4 followed, showing an increased risk 

with an HR of 2.07 (95% CI: 1.24 to 3.45). KCNQ3 had a moderate effect on survival, with an HR of 1.37 (95% CI: 
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1.01 to 1.84). SCN7A presented an HR of 1.68 (95% CI: 1.09 to 2.58), also indicating increased risk. These genes 

highlight important prognostic markers, with potential applications in risk stratification and therapeutic targeting. The 

significance of these hub proteins’ functional role and their potential as therapeutic targets and diagnostic markers are 

underscored by these findings. SPTBN1-ALK fusion was identified by Gu et al. as a putative LC biomarker [33]. In 

individuals with gliomas, KCNA4 methylation rises as the tumor grade progresses and is linked to a bad prognosis [34]. 

Additionally, it is increased in patients with gastric cancer [35]. Nevertheless, the relationship between channel 

expression and KCNA4 hypermethylation, as well as the impact on cancer cells, remains unclear [36]. 

Liu et al. reported SCN7A as a potential biomarker of LC [37]. Underexpression of SCN7A has been associated with 

poor prognosis in LC patients [38]. SCN7A may inhibit lung cancer cell proliferation and migration, and its expression 

correlates with immune cell infiltration and immune checkpoint expression [38]. GRIA1 is a gene that is strongly 

correlated with the prognosis of LC [39]. GRIA1, also known as glutamate ionotropic receptor AMPA type subunit 1, is 

a protein-coding gene that encodes a subunit of the AMPA receptor, which is involved in synaptic plasticity and 

neurotransmission. Studies have shown that overexpression of GRIA1 is associated with poor prognosis in LUAD 

patients [39]. Al-Dherasi et al. reported GRIA1 as a potential signature of LC [40]. The nuclear translocation of SDC-1 

(Syndecan-1) can have different effects on different types of cells. In human B6FS fibrosarcoma cells, it was found to 

facilitate the elimination of mesenchymal and invasive characteristics, indicating that SDC-1 may act as a tumor 

suppressor [34, 41]. However, in human A549 lung cancer cells undergoing TGF-1-induced EMT (epithelial-

mesenchymal transition), loss of nuclear SDC-1 was associated with cell elongation and a switch from E-cadherin to N-

cadherin, which are markers of a more mesenchymal and invasive phenotype [41]. In lung cancer, syndecan-1 serves as 

a favorable indicator. This is because higher levels of syndecan-1 in lung cancer cells are linked with increased chances 

of survival [42, 43]. Moreover, as the histologic grade of lung cancer increases, the expression of syndecan-1 decreases 

[43]. Parimon et al. confirm that syndecan-1 expression could potentially serve as a predictive factor for the prognosis 

of lung cancer patients [44]. 

The association of SPTBN1 gene expression with lung cancer has been previously reported in the literature by Gu et 

al. [33] and Zhai et al. [45]. Our findings are consistent with these studies, which showed the upregulation of SPTBN1 

expression in lung cancer tissues. Moreover, the prognostic value of SPTBN1 expression has also been demonstrated in 

other cancer types, including ovarian cancer, colorectal cancer, breast cancer, and gastric cancer [46-48]. Our study 

extends these findings to lung cancer and suggests that high expression of SPTBN1 may serve as a prognostic biomarker 

for lung cancer patients. In this study, several genes (CASS4, EPB41L5, PKHD1L1, GNAZ, ANLN, GRIA1, ST8SIA1, 

ADM2, CCK, and LEPR) were found to be significant in both univariate and multivariate analyses. Notably, CASS4, 

EPB41L5, PKHD1L1, ANLN, GRIA1, and CCK are shared with IPF, while ST8SIA1 and LEPR are linked to chronic 

obstructive pulmonary disease (COPD). Among these, only GRIA1 was shared among the six hub genes, underscoring 

its unique role as an independent prognostic marker within the network associated with lung cancer risk. Meanwhile, 

ADM2 and CCK, although significant in initial analyses, had confidence intervals below 1, suggesting they may not 

contribute to increased risk. Among them, the gene CASS4 overexpression promotes invasion in non-small cell lung 

cancer (NSCLC) by activating the AKT signaling pathway and inhibiting E-cadherin expression [49]. PKHD1L1 

expression is significantly lower in lung adenocarcinoma compared to normal tissues, and its decreased expression is 

associated with unfavorable overall survival [50]. Overexpression of ANLN at both RNA and protein levels is associated 

with poor prognosis and metastasis in LUAD patients [51, 52]. The ST8SIA1 gene is highly expressed across multiple 

cancers, including lung cancer, where its role in promoting tumor progression and metastasis highlights it as a potential 

target for cancer therapies [53]. Tang et al. [54] suggested that LEPR polymorphisms may serve as biomarkers for both 

risk assessment and disease progression in NSCLC, as they have been associated with increased susceptibility and 

metastasis risk. 

The pathway of interaction between neuroactive ligands and receptors in the brain is crucially involved in nicotine 

addiction, which significantly contributes to the development of lung cancer [55]. Additionally, the low expression levels 

of the enzyme pyridoxal kinase (PDXK), responsible for generating the bioactive form of vitamin B6, have been linked 

to poor disease outcomes in non-small cell lung cancer (NSCLC) patients. This finding underscores the critical role of 

vitamin B6 metabolism in sensitizing cancer cells to chemotherapy-induced apoptosis [56]. Furthermore, a recent study 

confirms the association between heightened vitamin B6 catabolism and an increased risk of lung cancer, attributed to 

inflammation and immune activation [57]. Similarly, the neuroactive ligand-receptor interaction pathway is connected 

to nicotine dependence, which remains a significant factor in the heightened risk of lung cancer development [55]. 

Moreover, the cAMP signaling pathway has demonstrated a strong correlation with lung cancer [58], while drug 

metabolism pathways also show a notable association with the disease [59]. In addition, glycosphingolipid (GSL) 

biosynthesis plays a pivotal role in lung cancer transformation and progression. Specific GSLs, such as -GalCer, 

NeuGcGM3, and GM2, have been identified as potential immunotherapy targets, influencing tumor growth, metastasis, 

and treatment resistance [60]. Finally, the dysregulated expression and activity of amino sugar and nucleotide sugar 

metabolism enzymes, including LAT1 (SLC7A5) and LAT2 (SLC7A8), as well as their associated regulatory factors, 

contribute to altered nutrient uptake and utilization in lung cancer. These findings highlight their significance as 

therapeutic targets [61]. 
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Although this study provides valuable insights into the molecular mechanisms underlying LC and its associated risk 

factors, it has several limitations. First, the analysis relied on publicly available transcriptomic data, which may vary in 

quality and may not fully represent the complexity of the disease. Second, the lack of experimental validation, such as 

qPCR, of the identified genes limits the robustness of the findings. Additionally, the retrospective nature of the study 

and the use of clinical data from public databases may introduce bias. Furthermore, the study focused on the analysis of 

gene expression data related to LC and common lung diseases (CLDs), which may not encompass all relevant conditions 

contributing to LC development. Despite these limitations, our integrated approach sheds light on the intricate interplay 

between lung cancer and common lung diseases, highlighting shared genetic mechanisms and pathways. Moving 

forward, transcriptomic and pathway-based personalized medicine holds promise for enhancing our understanding of 

disease mechanisms and opening new avenues for diagnosis, therapy, and prevention of disease comorbidities. 

4- Conclusion 

In conclusion, our study provides valuable insights into the molecular mechanisms underlying LC and its associated 

risk factors, shedding light on the intricate interplay between lung cancer and common lung diseases. In our analysis, it 

is observed that LC and IPF shared the highest number of common DEGs between them. So, a patient of IPF has a high 

possibility of becoming a patient of LC. Moreover, significant hub genes (SPTBN1, KCNA4, SCN7A, KCNQ3, GRIA1, 

and SDC1) and significant pathways associated with LC and commonly found lung disorders suggest their (i.e., hub 

genes and pathways) critical roles in LC development. Furthermore, we conducted WGCNA analysis on the identified 

common genes, unraveling intricate coexpression patterns and potential regulatory networks associated with LC and its 

related risk factors. The diagnostic and predictive potential of these genes was further validated through classification 

algorithms, revealing their capability to accurately distinguish LC cases from controls. The deployment of a predictive 

model based on these six genes highlights their clinical relevance, offering a tool to assess LC risk and progression in 

patients. This model can facilitate early detection and improve prognostic evaluations, paving the way for personalized 

therapeutic strategies. Through rigorous univariate and multivariate analyses, we explored the individual and combined 

effects of these genes on LC prognosis, enhancing our understanding of their clinical relevance. Moreover, we 

investigated the protein expression levels of the identified hub genes in the HPA database, shedding light on their 

potential functional roles in LC progression. These findings underscore the importance of an integrated bioinformatics 

and machine learning approach in uncovering disease relationships and driving personalized therapeutic strategies. By 

bridging the gap between molecular mechanisms and clinical applications, this study lays the foundation for precision 

medicine, offering new opportunities for improved diagnosis, targeted therapy, and prevention of LC and its 

comorbidities. 
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