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Abstract 

Climate change, primarily driven by CO2 emissions from energy and non-energy sectors, 

necessitates effective mitigation strategies. This study develops a stochastic diffusive model to 

capture the complex dynamics of CO2 concentration, human population growth, and energy 
production. The objectives are to enhance the predictive accuracy of existing models by 

incorporating diffusion effects and stochastic variability, offering insights for sustainable 

environmental policies. A novel numerical scheme, an extension of the Euler-Maruyama algorithm, 
is proposed to solve stochastic time-dependent partial differential equations governing the model. 

The scheme's consistency and stability are rigorously analyzed in the mean square sense. Findings 

reveal that increasing emission rate coefficients in energy and non-energy sectors exacerbates CO2 

levels, emphasizing the need for stringent controls. The proposed scheme demonstrates superior 

accuracy to the non-standard finite difference method, establishing its efficacy in modeling complex 

environmental processes. This research contributes a robust computational tool to improve existing 
predictive models, aiding decision-making for long-term ecological sustainability. By addressing 

uncertainties in the environmental process, the work advances the understanding of interactions 

between population growth, energy production, and CO2 emissions, offering a significant 
improvement over the traditional modeling approach. The novelty lies in integrating stochastic 

dynamics with diffusion to better inform CO2 reduction strategies. 
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1- Introduction 

Effective mitigation measures to address the growing levels of CO2 in the atmosphere and their consequences on 

climate change have been an area of extensive research. We must have a deep understanding of the dynamic interplay 

of CO2 emissions, the size of the population, and the energy we use to deal with this complex situation. The ways to 

establish the relationships between these three entities are dealt with in this paper. We first illustrate the nature of this 

relationship using a math model, which tries to conceptualize the system's fundamental complexity. 

A suggested plan for using a differential equation model to analyze variations of CO2 levels, population size, and 

energy usage over time. This model is developed based on the conventional differential equations controlling the shift 

of CO2, population, and energy consumption. It also has some significant parameters in its equation, including growth 

rates, carrying capacity, mortality rates, and the efficacy of mitigation strategies over time. The need for energy is rising 

and will remain as long as the population keeps expanding. Carbon dioxide, a greenhouse gas, is added to the atmosphere 

due to the combustion of fossil fuels, which provide a large amount of the world's energy. Reduced carbon dioxide 

emissions from the energy sector are essential to achieving our goal of reducing the impact of climate change. 
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Mathematical models are increasingly used as potent tools to explain complex real-world processes (problems) clearly 

and concisely. Researchers have organized and thoroughly examined the relevant field in the last several decades. A 

mathematical equation can model a real-world process for future planning, prediction, etc. Mathematical tools can create 

various management strategies for studying, controlling, and eliminating infectious diseases. Over the past few decades, 

mathematical modeling and mathematical biology have been increasingly popular among scholars thanks to the many 

practical applications of these fields. Tian et al. [1] presented a mathematical model employing extended Monod growth 

kinetics and impulsive state feedback control, grounded in the design principles of a continuous bioprocess for regulating 

biomass concentration. The goal of establishing and investigating piecewise chemostat models with two thresholds is to 

keep the concentration of microorganisms within an acceptable range [2]. Both deterministic and stochastic models have 

been established to elucidate the macroscopic kinematics of chemical processes [3]. Zhao et al. [4] examined a chemostat 

model incorporating time delay and periodically pulsed input. When the impulsive effect duration is smaller than a 

critical value, we demonstrate that a periodic solution devoid of microorganisms is globally desirable. 

Researchers have used ordinary calculus to represent real-world phenomena mathematically in a sequential fashion, 

and this is a crucial point to note. Fractional calculus drew academics because conventional models based on integrals 

or ordinary derivatives failed to describe practical issues adequately. Many of the features of mathematical models still 

defy satisfactory explanations by classical calculus. Thus, non-integer order derivatives can shed light on memory and 

inheritance in a more comprehensive way. In this case, previous studies were examined to provide an extensive 

introduction, background material, and critical conclusions regarding the utilization of these derivatives [5-8]. The 

complete range of a function is shown by its real or complex order derivatives. With one notable exception, the spectrum 

includes the corresponding integer counterpart. The number of degrees of freedom provided by fractional differential 

operators is more than that of integer orders. Furthermore, previous studies [9–12] are cited for the extensive usage of 

this field in addressing a wide range of practical issues. 

Inspired by the uses mentioned above of operators, we look into the energy sectors' CO2 emissions. The growth of a 

nation's energy sector is indicative of its overall socioeconomic status. As the world's population and economy expand, 

so does the energy industry. Between 2010 and 2040, global energy use is anticipated to increase by 56% [13]. According 

to reports, eighty percent of the world's energy comes from burning fossil fuels, such as coal, gas, oil, etc. [14]. In 2017, 

the United States was responsible for fifteen percent of the total greenhouse gas emissions produced worldwide, as stated 

in the U.S. Environmental Protection Agency [15]. The energy demand is directly proportional to the growth in the 

population. As a result, most nations meet their energy needs with nuclear power or fossil fuels, allowing their economies 

to grow steadily. However, fossil fuels are the main culprits since they release massive amounts of CO2 into the 

atmosphere, increasing air pollution and decreasing oxygen levels. The rationale above is responsible for the recent 

climate change that has caused numerous destructions in the form of massive floods and earthquakes. Growing 

populations drive up primary energy demand, but affordable and reliable energy is critical to improving people's quality 

of life and driving economic expansion. Access to energy is a crucial factor in population growth. Improvements in 

energy quality and quantity made possible by technological advancements contributed to the Industrial Revolution, 

increasing productivity and the human population. Power consumption is another factor that affects population carrying 

capacity. Energy consumption and the population's carrying capacity are being raised by the development of new energy 

sources and technologies [16]. As a result of climate change, people are more likely to get sick from various sources, 

including contaminated food and water, extreme heat, and pollution. Reducing the harmful impacts of global warming 

requires significantly reducing CO2 emissions from energy use [17]. Emami et al. [18] and Weng et al. [19] provide more 

relevant literature on transportation-related CO₂  emissions and their effects on energy resources. 

Despite the availability of several mitigation strategies to reduce CO₂  emissions from the energy sector, the sector's 

continuous growth makes it challenging to achieve the mitigation targets. Reducing environmental CO2 levels is 

becoming more difficult as the human population rises. Numerous statistical, semi-statistical, and empirical models are 

used to study energy management and CO2 emission reduction on a national and regional scale. Qualitative analytical 

models can show how mitigation methods reduce energy sector carbon dioxide emissions. Previous studies [20-22] are 

used to cite studies investigating different mathematical models in this area.  

The sustainable development of the urban power sector encounters tremendous obstacles due to the limitations 

imposed by traditional energy supplies and environmental space. When it comes to lowering the use of conventional 

energy resources and enhancing the mitigation of CO2 emissions, renewable energy generation, and carbon capture and 

storage (CCS) are appealing technologies. 

Several academics have proposed solutions to lower the power sector's CO2 emissions. One example is the study of 

Beér [23], who stated that increasing plant efficiency, both new and old, is a crucial practical instrument for lowering 

CO2 emissions from fossil fuel power stations shortly. Liu et al. [24] state that renewable energy sources have the 

potential to decrease carbon dioxide emissions significantly and are crucial in China's attempts to control greenhouse 

gas emissions from the power system. Carbon Capture and Storage (CCS) in the electricity industry was proposed by 

Jin et al. [25] and Yoro & Sekoai [26] as a viable technique for lowering greenhouse gas emissions in light of concerns 
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about climate change. The ongoing process of the sociotechnical transition towards smart grids is contended by Mesarić 

et al. [27]. Smart grids can reduce energy consumption and mitigate carbon by avoiding electricity waste. This is made 

possible by improving performance reliability and customer responsiveness and encouraging more efficient decisions 

by both customers and the utility provider [28]. A novel energy system that incorporates thermal, gas, and electrical 

networks was suggested by Shi et al. [29] and is known as an energy systems integration (ESI) operational scheduling 

model. 

Stochastic modeling is extensively employed in illness research because it yields more thorough insights than 

deterministic models. Unlike deterministic models, which can only use inputs to make predictions, stochastic models 

take outputs into account. To understand how epidemics spread, scientists have proposed using stochastic equations [30-

33]. Scholars have also looked at the dynamic features of delays by including them in population interaction models [34-

36]. 

There are two primary categories of mathematical models: deterministic and stochastic. Advances in both theory and 

computation have resulted from combining stochastic and deterministic models. Many people find deterministic models 

more straightforward to work with than stochastic ones. 

Nevertheless, when assessing knockoffs, stochastic models offer a degree of impracticality. Unpredictable events 

often involve noise and random fluctuations, which is why stochastic models are used [37-42]. The fact that these models 

faithfully portray biological and natural events gives them a leg up over competing models [43-46]. Aspects of the 

engineering and natural science fields can be better understood with the help of stochastic models. They can be used to 

analyze rate changes, evaluate the effects of economic risks, and address difficulties [47, 48]. Furthermore, we can use 

them to study the unpredictable nature of healthcare systems. Deterministic methods, in contrast, are easier to grasp yet 

inaccurate.  

Identifying Gaps in the Literature: The majority of the research on CO2 reduction strategies is based on deterministic 

models that ignore the fact that environmental systems are inherently uncertain. Although there are stochastic models, 

they usually only include certain parts of the equation, such as CO2 emissions or population dynamics, not how these 

elements interact with energy production. Also, in real-world situations, the geographic dispersion of CO2 across regions 

is greatly influenced by the effects of diffusion, which are mostly ignored in most research. Stochastic differential 

equations, including randomness and diffusion, are difficult to solve using traditional numerical methods like the Euler-

Maruyama algorithm. Also, many models ignore these variables' unpredictable and dynamic character in connection to 

energy dynamics and population expansion by treating energy and non-energy sector emissions independently or 

assuming constant emission rates. Current models for long-term CO2 reduction plans are not as accurate or applicable 

due to these constraints. 

Proposing Our Approach to Fill These Gaps: To fill these gaps, our research suggests a full stochastic diffusive 

model that takes into consideration CO2 concentration, population dynamics, energy generation, spatial diffusion, and 

stochastic uncertainty. Our model better captures the dynamic interplay between the energy and non-energy sectors' 

emission rates by including random fluctuations in both rates. Moreover, the model incorporates diffusion, an important 

but sometimes ignored phenomenon in earlier research, enabling more precise predictions of CO2 dispersion. To 

guarantee precise predictions, we enhance the stability and accuracy of the Euler-Maruyama approach for complicated 

stochastic differential equations. Thanks to this adjustment, we are better equipped to deal with the difficulties caused 

by diffusion and unpredictability. Furthermore, our model is the first to integrate stochastic dynamics, diffusion, and 

emissions from the energy sector into a unified framework. This makes it a more accurate and trustworthy tool for 

predicting CO2 levels and directing successful reduction strategies, which in turn helps ensure ecological sustainability 

in the long run. 

Our work primarily revolves around advancing a sophisticated numerical technique that may be seen as an expansion 

of the widely recognized Euler-Maruyama approach. Stochastic time-dependent partial differential equations are 

commonly used in environmental modeling to portray complex systems' uncertainties and random fluctuations 

accurately. The suggested approach can effectively handle stochastic equations and demonstrates consistency and 

stability in the mean square sense. This makes it a trustworthy and accurate foundation for simulations. 

We modified a previous mathematical model that included diffusion and random fluctuations to better represent the 

relationship between CO2 concentration, population dynamics, and energy production. Incorporating stochastic 

components and diffusion effects into simulations of environmental processes helps us comprehend their dynamic 

interactions, allowing us to simulate real-world events more accurately. 

We may test our computing method by solving the updated mathematical model and comparing the results to a non-

standard finite difference method. The assessment examines numerical precision and energy and non-energy sector 

emission rate coefficients on carbon dioxide concentration. According to our results, the stochastic scheme is more 

accurate and reliable than the non-standard finite difference method. 
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2- Proposed Computational Scheme 

The numerical technique consists of two stages: the predictor stage, also known as the first stage, identifies the 

solution at any time level, while the second stage identifies the solution at the (𝑛 + 1)𝑡ℎ time level, taking into account 

the known solution at the 𝑛𝑡ℎ level. To propose a scheme, consider the Equation. 

𝜕𝑓

𝜕𝑡
= 𝑑1

𝜕2𝑓

𝜕𝑥2 + 𝐺(𝑓)  (1) 

The initial phase of the scheme for Equation 1 is expressed as:  

𝑓�̅�
𝑛+1 = 𝑓𝑖

𝑛 + 𝑐Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

  (2) 

where Δ𝑡 is a time step size.  

Now, the second phase of the scheme is indicated by the following: 

𝑓𝑖
𝑛+1 =

1

3
(2𝑓𝑖

𝑛 + 𝑓�̅�
𝑛+1) + 𝑎Δ𝑡

𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ 𝑏Δ𝑡
𝜕𝑓̅

𝜕𝑡
|
𝑖

𝑛+1

  (3) 

Now, substituting Equation 2 into Equation 3 it is obtained: 

𝑓𝑖
𝑛+1 =

1

3
(3𝑓𝑖

𝑛 + 𝑐Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

) + 𝑎Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ 𝑏Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ 𝑏𝑐(Δ𝑡)2 𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

  (4) 

Re-write Equation 4 as: 

𝑓𝑖
𝑛+1 = 𝑓𝑖

𝑛 +
𝑐

3
Δ𝑡

𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ (𝑏 + 𝑎)Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ 𝑏𝑐(Δ𝑡)2 𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

  (5) 

The Taylor series expansion for 𝑓𝑖
𝑛+1 is given as: 

𝑓𝑖
𝑛+1 ≈ 𝑓𝑖

𝑛 + Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+
(Δ𝑡)2

2

𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

+ 𝑂((Δ𝑡)3)  (6) 

By using a Taylor series expansion 6 into Equation 5 it yields:  

𝑓𝑖
𝑛 + Δ𝑡

𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+
(Δ𝑡)2

2

𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

= 𝑓𝑖
𝑛 + (𝑎 + 𝑏 +

𝑐

3
)Δ𝑡

𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

+ 𝑏𝑐(Δ𝑡)2 𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

  (7) 

By comparing coefficients of Δ𝑡
𝜕𝑓

𝜕𝑡
|
𝑖

𝑛

 and (Δ𝑡)2 𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

on both sides of Equation 7 it yields: 

1 = 𝑎 + 𝑏 +
𝑐

3
1

2
= 𝑏𝑐             

 }  (8) 

By solving a linear Equation 8 𝑏 and 𝑐 can be found as: 

𝑏 =
1

2𝑐
, 𝑎 = 1 −

𝑐

3
−

1

2𝑐
  (9) 

So, the values of 𝑎 and 𝑏 depend on the value of 𝑐. There are several options to choose the value of 𝑐. Therefore, the 

time discretization of Equation 1 is: 

𝑓�̅�
𝑛+1 = 𝑓𝑖

𝑛 + 𝑐Δ𝑡 (𝑑1
𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

+ 𝐺(𝑓𝑖
𝑛))  (10) 

𝑓𝑖
𝑛+1 =

1

3
(2𝑓𝑖

𝑛 + 𝑓�̅�
𝑛+1) + Δ𝑡 {𝑎 (𝑑1

𝜕2𝑓

𝜕𝑡2|
𝑖

𝑛

+ 𝐺(𝑓𝑖
𝑛)) + 𝑏 (𝑑1

𝜕2𝑓̅

𝜕𝑡2|
𝑖

𝑛+1

+ 𝐺(𝑓�̅�
𝑛+1))}  (11) 

Let the second-order central difference formula for the spatial term the fully discretized scheme be written as: 

𝑓�̅�
𝑛+1 = 𝑓𝑖

𝑛 + 𝑐Δ𝑡(𝑑1𝛿𝑥
2𝑓𝑖

𝑛 + 𝐺(𝑓𝑖
𝑛))  (12) 

𝑓𝑖
𝑛+1 =

1

3
(2𝑓𝑖

𝑛 + 𝑓�̅�
𝑛+1) + Δ𝑡 {𝑎(𝑑1𝛿𝑥

2𝑓𝑖
𝑛 + 𝐺(𝑓𝑖

𝑛)) + 𝑏 (𝑑1𝛿𝑥
2𝑓�̅�

𝑛+1 + 𝐺(𝑓�̅�
𝑛+1))}  (13) 

Now consider the partial differential Equation as: 

𝑑𝑓 = 𝑑1𝜕𝑥𝑥𝑓𝑑𝑡 + 𝐺(𝑓)𝑑𝑡 + 𝜎𝑓𝑑𝑊  (14) 

where 𝑊(𝑡) is a Wiener process. 
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The difference Equation when the proposed scheme discretizes Equation 14 is given as: 

𝑓𝑖
𝑛+1 =

1

3
(2𝑓𝑖

𝑛 + 𝑓�̅�
𝑛+1) + Δ𝑡 {𝑎(𝑑1𝛿𝑥

2𝑓𝑖
𝑛 + 𝐺(𝑓𝑖

𝑛)) + 𝑏 (𝑑1𝛿𝑥
2𝑓�̅�

𝑛+1 + 𝐺(𝑓�̅�
𝑛+1))} + 𝜎𝑓𝑖

𝑛Δ𝑊  (15) 

where Δ𝑊~𝑊𝑛+1 − 𝑊𝑛 is approximated by Normal distribution 𝑁(0, Δ𝑡), and the first stage is the same as for the 

deterministic model. 

Theorem 1: The proposed computational scheme 12 and 15 is consistent in the mean square sense for Equation 14 

with 𝐺 = 0.  

Proof: Let 𝐹 be the smooth function and 𝐿(𝐹)𝑖
𝑛, 𝐿𝑖

𝑛(𝐹) are continuous and discrete operators, then:  

𝐿(𝐹)𝑖
𝑛 = 𝐹((𝑛 + 1)Δ𝑡, 𝑖Δ𝑥) − 𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) − 𝑑1 ∫ 𝐹𝑥𝑥(𝑠, 𝑖Δ𝑥)𝑑𝑠

(𝑛+1)Δ𝑡

𝑛Δ𝑡
− 𝜎 ∫ 𝐹(𝑠, 𝑖Δ𝑥)𝑑𝑊(𝑠)

(𝑛+1)Δ𝑡

𝑛Δ𝑡
  (16) 

𝐿𝑖
𝑛𝐹 = 𝐹((𝑛 + 1)Δ𝑡, 𝑖Δ𝑥) − 𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) −

Δ𝑡

(Δ𝑥)2
[𝑑1 (𝑎 + 𝑏 +

𝑐

3
) (𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) − 2𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥)) + 𝑏𝑐(𝐹(𝑛Δ𝑡, (𝑖 + 2)Δ𝑥) − 4𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) + 6𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)) − 4𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 2)Δ𝑥)] − 𝜎𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) (𝑊((𝑛 + 1)Δ𝑡) − 𝑊(𝑛Δ𝑡))  

(17) 

It is obtained by subtracting Equation 17 from Equation 16 and applying the square of expected value for the absolute 

value of difference. 

𝐸|𝐿(𝐹)𝑖
𝑛 − 𝐿𝑖

𝑛𝐹|2 = 𝐸 |−𝑑1 ∫ 𝐹𝑥𝑥(𝑠, 𝑖Δ𝑥)𝑑𝑠
(𝑛+1)Δ𝑡

𝑛Δ𝑡
+

Δ𝑡

(Δ𝑥)2
((𝑎 + 𝑏 +

𝑐

3
) 𝑑1𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) − 2𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) +

𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) + 𝑏𝑐(𝐹(𝑛Δ𝑡, (𝑖 + 2)Δ𝑥) − 4𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) + 6𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)) − 4𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥) + 𝐹(𝑛Δ𝑡, (𝑖 −

2)Δ𝑥) ) − 𝜎 ∫ 𝐹(𝑠, 𝑖Δ𝑥)𝑑𝑊(𝑠)
(𝑛+1)Δ𝑡

𝑛Δ𝑡
+ 𝜎𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) (𝑊((𝑛 + 1)Δ𝑡) − 𝑊(𝑛Δ𝑡))|

2

  

(18) 

Equation 18 can be reduced to the following inequality:  

𝐸|𝐿(𝐹)𝑖
𝑛 − 𝐿𝑖

𝑛𝐹|2 ≤ 2𝑑1
2𝐸 |∫ 𝐹𝑥𝑥(𝑠, 𝑖Δ𝑥)𝑑𝑠

(𝑛+1)Δ𝑡

𝑛Δ𝑡
−

Δ𝑡

(Δ𝑥)2
{(𝑎 + 𝑏 +

𝑐

3
) (𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) − 2𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥)) − 𝑏𝑐(𝐹(𝑛Δ𝑡, (𝑖 + 2)Δ𝑥) − 4𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) + 6𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)) − 4𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 2)Δ𝑥)}|
2

+ 2𝜎2𝐸 |∫ 𝐹(𝑠, 𝑖Δ𝑥)𝑑𝑊(𝑠)
(𝑛+1)Δ𝑡

𝑛Δ𝑡
+ 𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)𝑑𝑊(𝑆)|

2

  

(19) 

By using the following inequality: 

𝐸 |∫ 𝑔(𝑠, 𝑗)𝑑𝑊(𝑆)
𝑡

𝑡∘
|
2𝑚

≤ (𝑡 − 𝑡∘)
𝑚−1[𝑚(2𝑚 − 1)]𝑚 ∫ 𝐸[|𝑔(𝑠, 𝑗)|2𝑚]𝑑𝑠

𝑡

𝑡∘
  (20) 

The following inequality can be obtained using inequality 20 into 19. 

𝐸|𝐿(𝐹)𝑖
𝑛 − 𝐿𝑖

𝑛𝐹|2 ≤ 2𝑑1
2𝐸 |∫ 𝐹𝑥𝑥(𝑠, 𝑖Δ𝑥)𝑑𝑠

(𝑛+1)Δ𝑡

𝑛Δ𝑡
−

Δ𝑡

(Δ𝑥)2
{(𝑎 + 𝑏 +

𝑐

3
) (𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) − 2𝐹(𝑛Δ𝑡, 𝑖Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥)) − 𝑏𝑐(𝐹(𝑛Δ𝑡, (𝑖 + 2)Δ𝑥) − 4𝐹(𝑛Δ𝑡, (𝑖 + 1)Δ𝑥) + 6𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)) − 4𝐹(𝑛Δ𝑡, (𝑖 − 1)Δ𝑥) +

𝐹(𝑛Δ𝑡, (𝑖 − 2)Δ𝑥)}|
2

+ 2𝜎2 ∫ 𝐸|−𝐹(𝑠, 𝑖Δ𝑥) + 𝐹(𝑛Δ𝑡, 𝑖Δ𝑥)|2𝑑𝑠
(𝑛+1)Δ𝑡

𝑛Δ𝑡
  

(21) 

Thus, applying the limit when Δ𝑥 → 0, Δ𝑡 → 0 and (𝑛Δ𝑡, 𝑖Δ𝑥) → (𝑡, 𝑥) then:  

𝐸|𝐿(𝐹)𝑖
𝑛 − 𝐿𝑖

𝑛𝐹|2 → 0   

Hence, the proposed stochastic computational scheme is consistent in the mean square sense. 

Theorem 2: The proposed stochastic computational scheme is conditionally stable in mean square sense for Equation 

14 for 𝐺 = 0. 

Proof: The stability condition of the proposed strategy will utilize Fourier series analysis. To do that, consider the 

following transformations: 

𝑓�̅�
𝑛+1 = �̅�𝑛+1𝑒𝑖𝐼𝜓, 𝑓𝑖

𝑛+1 = 𝑃𝑛+1𝑒𝑖𝐼𝜓

𝑓𝑖±1
𝑛 = 𝑃𝑛𝑒(𝑖±1)𝐼𝜓, 𝑓𝑖

𝑛 = 𝑃𝑛+1𝑒𝑖𝐼𝜓   
 }  (22) 

where 𝐼 = √−1.  
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By using the corresponding transformations from Equation 22 into the first stage of the proposed scheme 12 with 

𝐺 = 0, it yields. 

�̅�𝑛+1𝑒𝑖𝐼𝜓 = 𝑃𝑛𝑒𝑖𝐼𝜓 +
𝑑1Δ𝑡

(Δ𝑥)2
(𝑒(𝑖+1)𝐼𝜓 − 2𝑒𝑖𝐼𝜓 + 𝑒(𝑖−1)𝐼𝜓)𝑃𝑛  (23) 

Dividing both sides of Equation 23 by 𝑒𝑖𝐼𝜓 that yields: 

�̅�𝑛+1 = 𝑃𝑛 + 𝑐
𝑑1Δ𝑡

(Δ𝑥)2
(𝑒𝐼𝜓 − 2 + 𝑒−𝐼𝜓)𝑃𝑛  (24) 

Using De Movier's Theorem, Equation 24 can be expressed as:  

�̅�𝑛+1 = 𝑃𝑛 + 2𝑑𝑑1𝑐(𝑐𝑜𝑠𝜓 − 1)  (25) 

where 𝑑 =
Δ𝑡

(Δ𝑥)2
. 

Similarly, by using relevant transformations from Equation 22 into Equation 15 with 𝐺 = 0 it yields. 

𝑃𝑛+1 =
1

3
(2𝑃𝑛 + �̅�𝑛+1) + 𝑑{2𝑎(𝑐𝑜𝑠𝜓 − 1)𝑃𝑛 + 2𝑏𝑑(𝑐𝑜𝑠𝜓 − 1)�̅�𝑛+1} + 𝜎𝑃𝑛Δ𝑊  (26) 

Upon substituting Equation 25 into Equation 26 that gives: 

𝑃𝑛+1 = [
2

3
+ 2𝑎𝑑(𝑐𝑜𝑠𝜓 − 1)] 𝑃𝑛 + (

1

3
+ 2𝑏𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 2𝑐𝑑1𝑑(𝑐𝑜𝑠𝜓 − 1))𝑃𝑛  (27) 

The amplification factor is given as: 

𝑃𝑛+1

𝑃𝑛 = �̅�  (28) 

where �̅� =
2

3
+ 2𝑎𝑑(𝑐𝑜𝑠𝜓 − 1)+ (

1

3
+ 2𝑏𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 2𝑐𝑑1𝑑(𝑐𝑜𝑠𝜓 − 1)). 

In the mean square sense, Equation 28 can be written as: 

𝐸 |
𝑃𝑛+1

𝑃𝑛 |
2

≤ 𝐸|�̅�|2 + 𝐸|σΔ𝑊|2  (29) 

Let |𝜎|2 = 𝜆 and assume that |�̅�| ≤ 1 the inequality 29 is expressed as:  

𝐸 |
𝑃𝑛+1

𝑃𝑛 |
2

≤ 1 + 𝜆Δ𝑡  (30) 

Therefore, the proposed stochastic computational scheme is conditional stable in the mean square sense. 

3- Mathematical Model 

The proposed scheme will be applied to solve a diffusive carbon dioxide model. Its ordinary differential equation 

model was studied in Verma et al. [49]. The ordinary differential equation model is given as: 

𝑑𝐶

𝑑𝑡
= −𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸  (31) 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐿
) + 𝛽1𝑁𝐸 + 𝛽2𝑁

2𝐸 − 𝜃(𝐶 − 𝐶∘)𝑁  (32) 

𝑑𝐸

𝑑𝑡
= (1 − 𝜇1)

𝛾𝑁𝐸

𝐾+𝑁
− 𝛾∘𝐸

2  (33) 

where 𝐶(0) ≥ 𝐶∘, 𝑁(0) ≥ 0, 𝐸(0) ≥ 0 and 𝐶 is used for the concentration of carbon dioxide 𝐶∘ is pre-industrial 𝐶𝑂2 

concentration, 𝜆1 is used for emission rate coefficients of CO2 in the non-energy sector, 𝜆2 represents emission rate 

coefficients of CO2 in the energy sector, the parameter 𝜇2 represents the efficiency of mitigation options to curtail the 

CO2 emission rate per unit of energy use, 𝑁 is used to represent the human population, 𝑟 is the intrinsic growth rate, 𝐿 is 

the carrying capacity of the population, 𝛼 represents the removal rate of atmospheric CO2 by the sinks of CO2, carrying 

capacity of the population due to energy use, 𝜃 is used for mortality rate coefficients of the population due to adverse 

impact imposed by enhanced CO2 level, 𝐸 represents the energy used, 𝛾 represents the growth rate of energy use, 𝐾 is 

used for the half-saturation constant, which represents the population at which the growth rate of energy use is half of 

its maximum level, 𝛾∘ represents the depletion rate of energy use, 𝜇1 represents the efficiency of mitigation options to 

reduce energy consumption by increasing energy efficiency and bringing behavioural changes in people. 

The equilibrium points can be obtained as:  
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0 = −𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸  (34) 

0 = 𝑟𝑁 (1 −
𝑁

𝐿
) + 𝛽1𝑁𝐸 + 𝛽2𝑁

2𝐸 − 𝜃(𝐶 − 𝐶∘)𝑁  (35) 

0 = (1 − 𝜇1)
𝛾𝑁𝐸

𝐾+𝑁
− 𝛾∘𝐸

2  (36) 

One of the equilibrium points is written as:  

𝐶∗ =
𝛼𝐶∘𝛾+𝐿𝜆1𝛾+𝐶∘𝐿𝜆1𝜃

𝛼𝛾+𝐿𝜆1𝜃
  

 𝑁∗ =
𝛼𝐿𝛾

𝛼𝛾+𝐿𝜆1𝜃
  

𝐸∗ = 0  

The system will remain stable if the eigenvalues of the following Jacobian matrix evaluated at the equilibrium point 

are negative. 

[
 
 
 
 

−𝛼 𝜆1 𝜆2(1 − 𝜇2 )
−𝛼𝐿𝛾𝜃

𝛼𝛾+𝐿𝜆1𝜃

−𝛼𝛾2

𝛼𝛾+𝐿𝜆1𝜃
+ 𝛾 (1 −

𝛼𝛾

𝛼𝛾+𝐿𝜆1𝜃
) − 𝜃 (−𝐶∘ +

𝛼𝐶∘𝛾+𝐿𝜆1+𝐶∘𝐿𝜆1𝜃

𝛼𝛾+𝐿𝜆1𝜃
)

𝛼2𝛽2𝐿2𝛾2

(𝛼𝛾+𝐿𝜆1𝜃)2
+

𝛼𝛽𝑙𝛾

𝛼𝛾+𝐿𝜆1𝜃

0 0
𝛼𝛾𝐿(1−𝜇1)

(𝛼𝛾+𝐿𝜆1𝜃)(𝐾+
𝛼𝐿𝛾

𝛼𝛾+𝐿𝜆1𝜃
)]
 
 
 
 

   

The diffusive stochastic model is proposed as: 

𝑑𝐶 = 𝑑1𝜕𝑥𝑥𝐶 + (−𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸) + 𝜎1𝐶𝑊(𝑡)  (37) 

𝑑𝑁 = 𝑑2𝜕𝑥𝑥𝑁 + (𝑟𝑁 (1 −
𝑁

𝐿
) + 𝛽1𝑁𝐸 + 𝛽2𝑁

2𝐸 − 𝜃(𝐶 − 𝐶∘)𝑁) 𝑑𝑡 + 𝜎2𝑁𝑊(𝑡)  (38) 

𝑑𝐸 = 𝑑3𝜕𝑥𝑥𝐸 + ((1 − 𝜇1)
𝛾𝑁𝐸

𝐾+𝑁
− 𝛾∘𝐸

2) 𝑑𝑡 + 𝜎3𝐸𝑊(𝑡)  (39) 

Subject to the boundary conditions: 

𝜕𝐶

𝜕𝑥
= 0,

𝜕𝑁

𝜕𝑥
= 0,

𝜕𝐸

𝜕𝑥
= 0  (40) 

The proposed diffusive stochastic model is a system of coupled partial differential equations (PDEs) that describes 

the dynamics of carbon dioxide concentration 𝐶, human population 𝑁, and energy production 𝐸 while incorporating 

diffusion effects, deterministic dynamics, and stochastic variations. Below is a detailed explanation of each equation and 

the associated boundary conditions: 

Carbon Dioxide Dynamics 𝑪 Equation 37: Diffusion term 𝑑1𝜕𝑥𝑥𝐶: Models the spatial dispersion of 𝐶𝑂2, accounting 

for its spread over the region. Here 𝑑1 is the diffusion coefficient. −𝛼(𝐶 − 𝐶∘): represents the natural decay or absorption 

of 𝐶𝑂2 to a pre-industrial carbon dioxide concentration 𝐶∘. 𝜆1𝑁: models the concentration of the population 𝑁 to 

𝐶𝑂2emissions. 𝜆2(1 − 𝜇2)𝐸 represents the energy production 𝐸 to 𝐶𝑂2 emission modulated by the efficiency factor 

(1 − 𝜇2 ). Stochastic term 𝜎1𝐶𝑊(𝑡): introduce randomness in the emission process modelled using a Wiener process 

𝑊(𝑡) with intensity 𝜎1 reflecting environmental uncertainties. 

Population Dynamics Equation 38: Diffusion term 𝑑2𝜕𝑥𝑥𝑁: models spatial mitigation or the spread of the 

population. 𝛾𝑁 (1 −
𝑁

𝐿
) represents the logistic growth of the population with 𝛾 as a growth rate and 𝐿 as a carrying 

capacity. 𝛽1𝑁𝐸 + 𝛽2𝑁
2𝐸: terms representing the impact of energy availability on population growth where 𝛽1 and 𝛽2 

are interaction coefficients. −𝜃(𝐶 − 𝐶∘)𝑁: reflects the adverse effects of 𝐶𝑂2 concentration on population growth where 

𝜃 quantifies this impact. Stochastic term 𝜎2𝑁𝑊(𝑡): accounts for random fluctuation in population dynamics due to 

unpredictable factors with intensity 𝜎2. 

Energy Production Dynamics Equation 39: Diffusion term 𝑑3𝜕𝑥𝑥𝐸: models the spatial diffusion of energy 

production activities. (1 − 𝜇1)
𝛾𝑁𝐸

𝐾+𝑁
: represents energy production influenced by the population with (1 − 𝜇1) accounting 

for energy efficiency and 𝐾 as population half-saturation coefficients. 𝜎3𝐸𝑊(𝑡) capture random variations in energy 

production processes with intensity 𝜎3. 

Boundary Conditions Equation 40: These Neumann boundary conditions specify that the flux of 𝐶𝑂₂, population, 

and energy production at the boundaries of the spatial domain is zero. Physically, this means there is no inflow or outflow 

at the domain edges, ensuring that the system's dynamics are self-contained within the specified region. 
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This comprehensive model facilitates a detailed comprehension of the interrelated dynamics of 𝐶𝑂₂, population, and 

energy 𝐸 within realistic environmental contexts, providing it a useful tool for analyzing and formulating reduction 

strategies. 

Theorem 3: Consider a convex, bounded, and closed set 𝐵 in a Banach space 𝐿2((0, 𝑡) × Ω) and let 𝑉 be a continuous 

function such that 𝑓: 𝐵 → 𝐵. Then 𝑓 would have at least one fixed point if the image of the ball is pre-compact. 

To prove the existence of the solution, consider the first linear stochastic partial differential Equation 37. 

If 𝑓 is twice the differential with respect to 𝐿2- norm, Equation 37 can be expressed as a Volterra integral Equation. 

𝑓 = 𝑓∘ + ∫ 𝑑1𝜕𝑥𝑥𝐶 + (−𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸)𝑑𝜏
𝑡

0
+ 𝜎1𝐶𝑊(𝑡)  (41) 

Re-write Equation 41 in operator form as: 

𝑇 = 𝑓∘(𝑥) + ∫ 𝑑1𝜕𝑥𝑥𝐶 + (−𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸)𝑑𝜏
𝑡

0
+ 𝜎1𝐶𝑊(𝑡)  (42) 

To establish the existence of fixed-point operator 𝑓 the mentioned Theorem 3 will be applied. According to the 

Theorem, each subset is closed, bounded, and convex in the function space. For small random variation 𝑑𝑊 a fixed-

point operator will be integrated. The space 𝐿2[0, 𝜁], 𝜁 = |𝑡 − 0| will be adopted for best perturbation.  

Now a ball Βr(𝑓∘) is constructed which is closed, bounded, and convex, which is center at the given initial condition 

as 𝐿2function. 

Βr(𝑓∘) = {𝑓𝜖𝐿2[0, 𝜁], ‖𝑓 − 𝑓∘‖𝐿2[0,𝜁] ≤ �̅�}  (43) 

That gives ‖𝑓‖𝐿2[0,𝜁] ≤ �̅� + 𝑓∘ (44) 

Within infinite-dimensional space, the convex, closed and bounded subsets exist, rendering it non-compact. Theorem 

3 will be implemented if the following conditions are satisfied. 

(i) 𝑇: Βr(𝑓∘) → Βr(𝑓∘). 

(ii) 𝑇(Βr(𝑓∘)) is pre-compact. 

Now ‖𝑇 − 𝑓∘‖𝐿2[0,𝜁] = ‖∫ 𝑑1𝜕𝑥𝑥𝐶 + (−𝛼(𝐶 − 𝐶∘) + 𝜆1𝑁 + 𝜆2(1 − 𝜇2)𝐸)𝑑𝜏
𝑡

0
+ 𝜎1𝐶𝑊(𝑡)‖ _𝐿2[0,𝜁] 

(45) 

‖𝑇 − 𝑓∘‖𝐿2[0,𝜁] ≤ ∫ [𝑑1‖𝜕𝑥𝑥𝐶‖𝐿2[0,𝜁] + 𝛼‖𝐶‖𝐿2[0,𝜁] + 𝛼𝐶∘ + 𝜆1‖𝑁‖𝐿2[0,𝜁] + 𝜆2(1 − 𝜇2)‖𝐸‖𝐿2[0,𝜁]]𝑑τ +
𝑡

0

|𝜎1|‖𝐶‖𝐿2[0,𝜁] ∫ 𝑑𝑊
𝑡

0
  

(46) 

‖𝑇 − 𝑓∘‖𝐿2[0,𝜁] ≤ ∫ [𝑑1�̅� + 𝛼(�̅� + 𝑐1) + 𝛼𝑐∘ + 𝜆1(�̅� + 𝑐2) + 𝜆2|1 − 𝜇|(�̅� + 𝑐3)]𝑑𝜏 + |𝜎1|
𝑡

0
(�̅� + 𝑐1) ∫ 𝑑𝑊

𝑡

0
  (47) 

‖𝑇 − 𝑓∘‖𝐿2[0,𝜁] ≤ ∫ [𝑑1�̅� + 𝛼(�̅� + 𝑐1) + 𝛼𝑐∘ + 𝜆1(�̅� + 𝑐2) + 𝜆2|1 − 𝜇|(�̅� + 𝑐3)]𝑑𝜏 + |𝜎1|
𝑡

0
(�̅� + 𝑐1)(𝑊(𝑡) −

𝑊(0))  
(48) 

Since, 𝑊(𝑡) is a finite number, so: 

‖𝑇 − 𝑓∘‖𝐿2[0,𝜁] ≤ [𝑑1�̅� + 𝛼(�̅� + 𝑐1) + 𝛼𝑐∘ + 𝜆1(�̅� + 𝑐2) + 𝜆2|1 − 𝜇|(�̅� + 𝑐3)]𝜁 + |𝜎1|(�̅� + 𝑐1)𝛽1𝜁  (49) 

For self-mapping: 

[𝑑1�̅� + 𝛼(�̅� + 𝑐1) + 𝛼𝑐∘ + 𝜆1(�̅� + 𝑐2) + 𝜆2|1 − 𝜇|(�̅� + 𝑐3)]𝜁 + |𝜎1|(�̅� + 𝑐1)𝛽1𝜁 ≤ �̅�   

This implies 𝜁 ≤
�̅�

[𝑑1�̅�+𝛼(�̅�+𝑐1)+𝛼𝑐∘+𝜆1(�̅�+𝑐2)+𝜆2|1−𝜇|(�̅�+𝑐3)]+|𝜎1|(�̅�+𝑐1)𝛽1
. 

The following approach will be useful for establishing the pre-compactness of 𝑇: 

‖𝑇𝑖(𝑡) − 𝑇𝑖(𝑡1)‖𝐿2[0,𝜁] ≤ ∫ (𝑑1‖𝜕𝑥𝑥𝐶‖𝐿2[0,𝜁] + 𝛼‖𝐶‖𝐿2[0,𝜁] + 𝛼𝐶∘ + 𝜆1‖𝑁‖𝐿2[0,𝜁] + 𝜆2|1 − 𝜇|‖𝐸‖𝐿2[0,𝜁]𝑓)𝜁 +
𝑡1
𝑡

|𝜎1| ‖𝐶‖𝐿2[0,𝜁] ∫ 𝑑𝑊
𝑡1
𝑡

   

‖𝑇𝑖(𝑡) − 𝑇𝑖(𝑡1)‖𝐿2[0,𝜁] ≤ (𝑑1‖𝜕𝑥𝑥𝐶‖𝐿2[0,𝜁] + 𝛼‖𝐶‖𝐿2[0,𝜁] + 𝛼𝐶∘ + 𝜆1‖𝑁‖𝐿2[0,𝜁] + 𝜆2|1 − 𝜇|‖𝐸‖𝐿2[0,𝜁]𝑓)𝜁(𝑡1 −

𝑡) + |𝜎1|‖𝐶‖𝐿2[0,𝜁](𝑊(𝑡1) − 𝑊(𝑡))     

‖𝑇𝑖(𝑡) − 𝑇𝑖(𝑡1)‖𝐿2[0,𝜁] ≤ (𝑑1‖𝜕𝑥𝑥𝐶‖𝐿2[0,𝜁] + 𝛼‖𝐶‖𝐿2[0,𝜁] + 𝛼𝐶∘ + 𝜆1‖𝑁‖𝐿2[0,𝜁] + 𝜆2|1 − 𝜇|‖𝐸‖𝐿2[0,𝜁]𝑓)𝜁(𝑡1 −

𝑡) + |𝜎1|‖𝐶‖𝐿2[0,𝜁](𝑡1 − 𝑡)   
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Now, when 𝑡 → 𝑡1 then 𝑇𝑖(𝑡) → 𝑇𝑖(𝑡1). Therefore, it is proven that 𝑇𝑖  has a uniformly convergent subsequence 𝑇𝑖𝑛
 

of 𝑇𝑖 . So 𝑇(Βr(𝑓∘)) is pre-compact. Thus, according to Theorem 3, a fixed point function must exist. �̃�𝑖of 𝑇𝑖  which is 

also the solution of Equation 37. 

4- Results and Discussion 

Stochastic partial differential equations can be solved using the proposed scheme. It is suggested that the method be 
used with two separate PDEs. The first part of the scheme is constructed for a deterministic partial differential equation, 
and the second part deals with the stochastic part of the stochastic partial differential equation. The whole scheme can 

find a solution to the stochastic partial differential equation. The consistency and stability of the scheme are provided in 
the mean square sense. The scheme is conditionally stable, which means there are restrictions on time and space step 
sizes and parameters involved in given differential equations. The scheme will give a stable solution if step sizes are 
properly chosen. Otherwise, there will be no solution for each time level. An extra iterative scheme is considered since 
the Neumann-type boundary conditions are employed on each end of the boundary. So, the convergence of the scheme 
depends on the iterative scheme as well.  

Figure 1 shows the flow chart of the presented methodology. Figure 2 compares three schemes for finding 
solutions to the deterministic diffusive model. The comparison is made with the non-standard finite difference method 
(NSFD) and the existing forward Euler method. The solution derived from the non-standard finite difference method 
exhibits minor discrepancies compared to the results obtained from the suggested and established Euler schemes. As 
demonstrated in Pasha et al. [50], the non-standard finite difference approach is only conditionally consistent, 
resulting in an issue with its order of accuracy. The non-standard finite difference method does not even provide an 

accurate first-order solution. Figure 3 compares the solutions of the deterministic and stochastic models obta ined by 
the constructed scheme. Figure 4 shows the effect of the diffusion coefficient of the carbon dioxide equation. It can 
be concluded that the concentration of carbon dioxide rises as the diffusion coefficient escalates. Since carbon dioxide 
spreads over spatial variables, its concentration declines over time. Therefore, Figure 5 shows that carbon dioxide 
grows. The effect of the emission rate coefficient of 𝐶𝑂2 from the non-energy sector on the concentration of carbon 
dioxide is displayed in Figure 5. The concentration of 𝐶𝑂2 rises in the atmosphere as the emission rate coefficient of 

𝐶𝑂2 from the non-energy sector grows. The higher coefficient means the increasing rate of carbon dioxide in the 
atmosphere. The next Figure 6 shows the effect of the emission rate coefficient of 𝐶𝑂2 from the energy sector on the 
concentration of 𝐶𝑂2 in atmosphere. The concentration goes up as the emission coefficient grows. Again, for the same 
reason, the coefficient increases mean a higher atmospheric concentration rate because of more carbon dioxide from the 
energy sector. The effect of population growth rate on population is shown in Figure 7. The population grows as the 
coefficient increases. Since the growth rate means more babies are born, the population increases; therefore, population 

growth graphs. The impact of the mortality rate coefficient on the population is depicted in Figure 8. Rising this 
coefficient means more people die, reducing the population, so the graph falls. The influence of the depletion rate of 
energy use on energy production is shown in Figure 9. The energy decreases as the depletion rate of energy use grows. 
A higher depletion rate means a decline in energy use, which brings down the graph. Figures 10 to 12 show the surfaces 
of concentration of carbon dioxide, human population, and energy production. These Figures 10 to 12 show how the 
variations in space and time affect the surfaces.  

 

Figure 1. Flowchart of the methodology 
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Figure 2. Comparison of three schemes for deterministic model using 𝒅𝟏 = 𝟎. 𝟑, 𝒅𝟐 = 𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 =

𝟎. 𝟏, 𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 = 𝟎. 𝟏, 𝝁 = 𝟎, 𝒓 = 𝟎. 𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎.𝟎𝟏 

 

Figure 3. Comparison of stochastic and deterministic solutions using 𝒅𝟏 = 𝟎.𝟑, 𝒅𝟐 = 𝟎.𝟏, 𝒅𝟑 = 𝟎.𝟑, 𝑪𝒐 = 𝟎. 𝟏, 𝜶 =

𝟎. 𝟏, 𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 = 𝟎. 𝟏, 𝝁 = 𝟎, 𝒓 = 𝟎. 𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏, 𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏, 𝑲 = 𝟏𝟎, 𝜸𝒐 =

𝟎. 𝟎𝟏, 𝝈𝟏 = 𝟎. 𝟎𝟕, 𝝈𝟐 = 𝟎.𝟏, 𝝈𝟑 = 𝟎.𝟏𝟓. 
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Figure 4. Effect of first diffusion coefficient on concentration of carbon dioxide using 𝒅𝟐 = 𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝝀𝟏 = 𝟎. 𝟏, 𝝀𝟐 =

𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝒓 = 𝟎. 𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎. 𝟎𝟏, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 = 𝟎. 𝟎𝟓, 𝝈𝟐 = 𝟎.𝟎𝟓, 𝝈𝟑 = 𝟎.𝟎𝟓 

 

Figure 5. Effect of emission rate coefficient of 𝑪𝑶𝟐 from non-energy sector on concentration of carbon dioxide using 𝒅𝟐 =

𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎. 𝟑, 𝝀𝟐 = 𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝒓 = 𝟎. 𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎.𝟎𝟏, 𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎. 𝟎𝟏, 𝝂 =

𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 = 𝟎.𝟎𝟑, 𝝈𝟐 = 𝟎.𝟎𝟑, 𝝈𝟑 = 𝟎. 𝟎𝟑. 
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Figure 6. Effect of emission rate coefficient of 𝑪𝑶𝟐 from energy sector on concentration of carbon dioxide using 𝒅𝟐 =

𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎. 𝟑, 𝝀𝟏 = 𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝒓 = 𝟎. 𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎.𝟎𝟏, 𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎. 𝟎𝟏, 𝝂 =

𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 = 𝟎.𝟎𝟑, 𝝈𝟐 = 𝟎.𝟎𝟑, 𝝈𝟑 = 𝟎. 𝟎𝟑. 

 

Figure 7. Effect of growth rate of population on population using 𝒅𝟐 = 𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎. 𝟑, 𝝀𝟏 =

𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝝀𝟐 = 𝟎.𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝜽 = 𝟎. 𝟎𝟏, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎.𝟎𝟏, 𝝈𝟏 = 𝟎. 𝟎𝟑, 𝝈𝟐 =

𝟎. 𝟎𝟑, 𝝈𝟑 = 𝟎. 𝟎𝟑. 
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Figure 8. Effect of mortality rate of population on population using 𝒅𝟐 = 𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎. 𝟑, 𝝀𝟏 =

𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝝀𝟐 = 𝟎.𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝒓 = 𝟎. 𝟎𝟏𝟗, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 =

𝟎. 𝟎𝟑, 𝝈𝟐 = 𝟎. 𝟎𝟑, 𝝈𝟑 = 𝟎.𝟎𝟑. 

 

Figure 9. Effect of depletion rate of energy use on production of energy using 𝒅𝟐 = 𝟎. 𝟏, 𝒅𝟑 = 𝟎. 𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 =

𝟎. 𝟑, 𝝀𝟏 = 𝟎. 𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝝀𝟐 = 𝟎.𝟏, 𝑳 = 𝟓, 𝜷𝟏 = 𝟎. 𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝒓 = 𝟎. 𝟎𝟏𝟗, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏,𝑲 = 𝟏𝟎, 𝜽 = 𝟎. 𝟎𝟏, 𝝈𝟏 =

𝟎. 𝟎𝟑, 𝝈𝟐 = 𝟎. 𝟎𝟑, 𝝈𝟑 = 𝟎.𝟎𝟑. 
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Figure 10. Surface plot for concentration of carbon dioxide using 𝒅𝟐 = 𝟎.𝟏, 𝒅𝟑 = 𝟎.𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎.𝟑, 𝝀𝟏 =

𝟎.𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝝀𝟐 = 𝟎.𝟏, 𝑳 = 𝟓,𝜷𝟏 = 𝟎.𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝒓 = 𝟎. 𝟎𝟏𝟗, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏, 𝑲 = 𝟏𝟎, 𝜽 = 𝟎. 𝟎𝟏, 𝜸𝒐 = 𝟎.𝟎𝟏, 𝝈𝟏 =

𝟎.𝟎𝟑, 𝝈𝟐 = 𝟎.𝟎𝟑, 𝝈𝟑 = 𝟎.𝟎𝟑. 

 

Figure 11. Surface plot for population using  𝒅𝟐 = 𝟎.𝟏, 𝒅𝟑 = 𝟎.𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎.𝟑, 𝝀𝟏 = 𝟎.𝟏, 𝝁 = 𝟎. 𝟎𝟏, 𝝀𝟐 =

𝟎.𝟏, 𝑳 = 𝟓,𝜷𝟏 = 𝟎.𝟎𝟏,𝜷𝟐 = 𝟎.𝟎𝟎𝟏, 𝒓 = 𝟎. 𝟎𝟏𝟗, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏, 𝑲 = 𝟏𝟎, 𝜽 = 𝟎. 𝟎𝟏, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 = 𝟎. 𝟎𝟑, 𝝈𝟐 =

𝟎.𝟎𝟑, 𝝈𝟑 = 𝟎.𝟎𝟑. 
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Figure 12. Surface plot for production of energy using  𝒅𝟐 = 𝟎.𝟏, 𝒅𝟑 = 𝟎.𝟑, 𝑪𝒐 = 𝟎.𝟏, 𝜶 = 𝟎. 𝟏, 𝒅𝟏 = 𝟎.𝟑, 𝝀𝟏 = 𝟎.𝟏, 𝝁 =

𝟎. 𝟎𝟏, 𝝀𝟐 = 𝟎.𝟏, 𝑳 = 𝟓,𝜷𝟏 = 𝟎.𝟎𝟏,𝜷𝟐 = 𝟎. 𝟎𝟎𝟏, 𝒓 = 𝟎. 𝟎𝟏𝟗, 𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏, 𝑲 = 𝟏𝟎, 𝜽 = 𝟎. 𝟎𝟏, 𝜸𝒐 = 𝟎. 𝟎𝟏, 𝝈𝟏 =

𝟎.𝟎𝟑, 𝝈𝟐 = 𝟎.𝟎𝟑, 𝝈𝟑 = 𝟎.𝟎𝟑. 

Table 1 shows the comparison of two schemes for finding 𝐿2 error of Equation 1 using 𝐺 = 0. Two different 

numerical schemes are used for finding this error. The second order central difference formula does the space 

discretization for proposed scheme. This Table 1 shows that the proposed scheme performs better than the existing non-

standard finite difference method. 

Table 1. Comparison of existing and proposed scheme for finding norm of error using 𝒅𝟏 = 𝟎.𝟏, 𝒄 = 𝟓𝟎𝟎,

𝑵𝒙(𝒈𝒓𝒊𝒅 𝒑𝒐𝒊𝒏𝒕𝒔) = 𝟓𝟎, 𝒕𝒇 = 𝟏 

∆𝒕 
𝑳𝟐  Error 

Proposed NSFD 

1 200⁄  0.1412 0.2433 

1 300⁄  0.1901 0.2350 

1 400⁄  0.2321 0.2571 

1 500⁄  0.2688 0.2852 

5- Conclusions 

This project aims to improve the computational resources for studying and modeling the stochastic diffusive 

dynamics of energy production, human population, and carbon dioxide concentration. The suggested numerical 

methodology, which expands the Euler-Maruyama method, helps solve stochastic time-dependent PDEs. In 

environmental systems with inherent uncertainties and random variations, the consistency and stability shown in the 

mean square sense enhance the scheme's trustworthiness and applicability. A giant leap forward in our ability to 

comprehend environmental processes has been made possible by updating an earlier mathematical model to include 

stochastic components and diffusion effects. Our model provides a more accurate depiction of the complicated 

dynamics influencing trends in CO2 concentration, population dynamics, and energy production patterns by 

considering these elements. These components interact in a complex and interconnected manner. A stochastic 

computational scheme has been constructed to handle time-dependent partial differential equations with the effects of 

random variations. The random terms in differential equations were based on Wiener processes. The Matlab command 

handles these Wiener process terms as a random number of Normal distributions. Our suggested stochastic scheme is 

numerically more accurate, as shown by a comparison with an existing non-standard finite difference method. 

Considering the accuracy order, the scheme's improved performance becomes more apparent, highlighting its promise 
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as a trustworthy tool for replicating real-world situations. The contribution of both energy and non-energy sectors to 

environmental outcomes can be better understood through research on the effect of emission rate coefficients on CO2 

concentration. The concluding points can be expressed as: 

• Compared to the current non-standard finite difference method, the suggested scheme achieved a higher level of 

accuracy. 

• The concentration of carbon dioxide was raised as emission rate coefficients of non-energy and energy sectors 

were grown.  

• The production of energy declines as the depletion rate of energy use is raised. 

Our research contributes to what is known to create more realistic and complicated environmental models in the face 

of climate change's various challenges. Researchers and policymakers can gain deeper insights into human activities' 

ecological impacts using the recommended computer method and enhanced mathematical model [51-53]. We develop 

robust models for stochastic and diffusive processes to enable sustainable environmental management and informed 

decision-making. 
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