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Abstract 

The supply chain for perishable products faces significant challenges in monitoring and maintaining 

product quality. These products are particularly vulnerable to environmental dynamic conditions 
and variations in distribution and transportation. To address these challenges, leveraging the Internet 

of Things (IoT) and quality inference techniques during transportation can provide valuable insights 

for both consumers and producers. The objective of the research is to develop a model for inferring 
the quality of perishable products using an IoT sensor dataset to monitor perishable product quality 

continuously. This research applied a hybrid approach combining a Fuzzy Inference System (FIS), 

clustering models, and genetic algorithms to infer the product quality during supply chain 
distribution with IoT sensors. The result shows that the hybrid FIS model, which employs Gaussian 

membership functions and fuzzy c-means clustering for rule generation, achieves a high accuracy 

with an R²: 0.873. This research contributes to improving the model by employing genetic 
algorithms in optimizing the inference model by activating only five out of seven rules. The model 

optimization achieves optimal computation time while aiming to preserve model accuracy. 

However, test results indicate that the combination of rules has not yet significantly enhanced the 

model's accuracy, though it holds potential for future development. 
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1- Introduction 

Quality is a key attribute that consumers consider when evaluating a product, especially food. Food has a low 

tolerance for quality deviations and must meet all consumer requirements to justify its value; therefore, it is called 

perishable products. Quality management for all products, including food and other perishable products, must focus on 

consumer satisfaction [1] with guarantees in the highest safety and quality. Meanwhile, perishable product distribution 

is often overlooked, despite its complexity, uncertainty, and high risk of loss [2], although it has a significant impact on 

food quality and safety. With advancements in technology and science, issues related to product quality and safety losses 

should be minimized. 

Perishable products face more complex challenges in maintaining quality. Perishable products such as vegetables, 

milk, and meat tend to deteriorate over time before reaching consumers [3, 4]. Poor quality management and control of 

perishable products lead to consumer disappointment, loss of trust in producers, and potential health risks. Producers, 

on the other hand, are the first to be affected by the quality, reliability, and safety of food products. They need to ensure 
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that products are transported to consumers under various uncertain environmental conditions. Ultimately, if quality is 

not well maintained, it launches non-conformance costs of quality, impacting producers due to the loss of consumer 

trust. Moreover, maintaining the quality of perishable products is highly challenging and cannot be considered fixed and 

linear, as the quality is significantly influenced by storage conditions, handling time, and transportation facilities [2, 5]. 

Perishable products experience the most significant quality degradation during retail storage (15%) and transportation 

(35%) [6, 7]. Previous studies have estimated perishable product quality based on degradation models [2]. While 

theoretical predictions of quality degradation are accurate, moreover, practical implementation requires a system that 

can monitor product quality throughout transportation and provide this information to all stakeholders. Furthermore, 

earlier research has proposed solutions for monitoring perishable product quality through RFID-based traceability during 

transportation and distribution [8-10]. However, these solutions have not fully addressed the problem, as they only 

provide location information without detailing the product's quality level. Producers have made efforts to minimize and 

monitor this degradation using traceability systems, but this information has typically been available only to producers 

[11]. The key issue of asymmetric information in the supply chain remains unresolved because such systems only offer 

information to producers, not to other supply chain stakeholders. 

Previous research has explored the design of tracing and tracking systems for products using various Internet of 

Things (IoT) devices. Li et al. [12] and Srinivas et al. [13] agree on the potential for more extensive use of IoT combined 

with machine learning in supply chain management. Several prior studies have also confirmed the use of IoT in supply 

chains, both with prescriptive and predictive approaches. Wang [14] utilizes IoT and ANFIS-based machine learning for 

demand volume prediction in e-commerce supply chains. Upon review, IoT has already been widely applied in various 

supply chains and holds significant potential for further implementation. However, challenges arise with perishable 

products, as their quality is highly dependent on environmental conditions during transportation and distribution to 

customers. 

The monitoring of perishable product quality through IoT has also been explored in various previous studies. The use 

of IoT and machine learning for the supply chain of perishable products was employed by Jauhar et al. [15], where 

machine learning was used to predict consumer demand based on inventory levels and customer characteristics. Pal & 

Kant [16] introduced the term "Internet of Perishable Logistics" (IoPL), but still focused on prescriptive approaches and 

optimization. In addition to these two studies that emphasized prescriptive approaches, other research related to IoT use 

in the supply chain of perishable products has also been conducted. For instance, Mohammadi et al. [17] applied IoT for 

inventory management of perishable products using evolutionary algorithms, Sathiya et al. [18] developed an IoT system 

for monitoring the quality of perishable products using the ANFIS algorithm, and Selukar et al. [19] focused on using 

IoT for inventory management of perishable products to prevent losses due to opportunity cost for producers. 

Based on the previous research, IoT has been widely utilized in the supply chain, including perishable products 

management. However, most studies focus on optimization or prescriptive approaches to minimize risks related to costs 

and quality. Predictive approaches, on the other hand, are still quite limited, even though they have the potential to detect 

risks earlier and monitor product quality throughout the supply chain during transportation, which can benefit both 

producers and consumers. The use of predictive models for perishable products is still underexplored, despite its 

promising potential, as demonstrated by Hu et al. [20] in vaccine quality management. Additionally, combining 

predictive and prescriptive approaches through hybrid methods should be considered for product quality in enhancing 

model reliability. 

The use of IoT for monitoring perishable product quality should be a key focus, as it offers an effective means to 

intervene and infer the desired quality levels for perishable products according to consumer expectations. IoT is a highly 

effective control tool for monitoring product shelf life, given that product quality is not linear with time and is heavily 

dependent on storage conditions, making it challenging to monitor and predict quality [4]. Therefore, it is important to 

recognize that product quality is not solely a function of time or temperature but also requires accurate attention to 

environmental conditions and their impact on quality, such as the potential bacterial growth in the product. The use of 

IoT and sensors, along with environmental monitoring during transportation, can also provide recommendations for 

producers to maintain product quality under optimal conditions. Additionally, IoT can help minimize the quality gap in 

e-commerce products during short transportation times, thereby enhancing customer satisfaction [21]. 

Monitoring the quality of perishable products offers valuable opportunities to improve information sharing across the 

supply chain. IoT technology, in particular, enhances profitability, but it needs further development to infer any 

recommendations and valuable information [22]. IoT can provide data that helps all stakeholders understand the 

environmental conditions affecting perishable goods [23]. To boost supply chain efficiency, it is essential to have a 

model and system that can clearly interpret the quality of perishable products based on environmental conditions captured 

by data collection through IoT with complete prescriptive and predictive analytics. Previous research has indeed 

extensively utilized IoT in supply chains, but it has been limited to prescriptive analytics that merely display data, without 

fully leveraging predictive analytics using machine learning approaches to optimize quality. 
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Using IoT for product quality monitoring has been limited to temperature and humidity, which are used to infer 

product shelf life and quality [2, 8, 24]. The quality of perishable products cannot be assessed solely based on temperature 

or humidity. Various environmental factors can affect product quality during storage and transportation, including 

environmental conditions and gas constants [25, 26], activation energy [25], and bacterial contamination [4, 27-29]. In 

fact, the gas conditions within storage environments during transportation are a major factor influencing product loss, 

quality, and nutritional content [30]. Additionally, the shelf life of perishable products, which is linearly related to 

quality, is also significantly affected by microbes, storage temperature, and time [31]. 

Related to perishable product quality with uncertain environmental conditions prediction with machine learning, 

several algorithms have been developed for some models for monitoring the quality of perishable products, including 

fuzzy logic and neural networks [32], XGBoost algorithms for detecting and tracking the positions of perishable goods 

[24], and fuzzy logic for evaluating perishable product quality [25]. Advanced research has also proposed methods for 

quality detection using image processing techniques, such as Convolutional Neural Networks (CNNs) and their 

optimizations [33]. Additionally, mathematical approaches have been employed to optimize the dynamic quality of 

perishable products throughout the supply chain [4]. Furthermore, optimization models for vehicle routing problems and 

evolutionary algorithms have been used to minimize transportation costs and maximize product quality [34]. 

Among various optimization techniques, machine learning, and artificial intelligence, fuzzy logic has advantages in 

handling fuzzy and uncertain information commonly encountered in real-world applications [21]. Fuzzy logic also 

integrates well with other machine learning and artificial intelligence techniques to enhance model performance, as 

demonstrated in real-world scenarios. However, the use of fuzzy logic and data-based fuzzy inference models is still 

limited when it comes to integrating with advanced techniques to improve model performance. A fuzzy inference system 

alone cannot sufficiently enhance model accuracy. To improve accuracy, optimization, and faster inference processes, a 

hybrid model is needed to support practical and targeted decision-making. A quantitative approach to monitoring and 

predicting quality is essential for perishable products [22]. Data collected from IoT can provide a basis for developing 

precise algorithms to quantitatively predict the quality of perishable products, but it is crucial that this process should be 

carried out efficiently.  

This research contributes by designing an efficient algorithm for predicting the quality of perishable products based 

on environmental conditions collected through sensors/IoT. A quantitative prediction approach combined with 

transparent and easily understandable information can enhance the accuracy and efficiency of the supply chain system. 

Therefore, this study proposes a hybrid model to improve the accuracy and efficiency of processing data obtained from 

sensors. The fuzzy inference model that was firstly proposed by Zadeh [35] is combined with clustering models to design 

inference models and rules curated through IoT. Furthermore, the developed hybrid model is optimized to enhance its 

efficiency and accuracy with the use of evolutionary algorithms and genetic algorithms. 

The objective of this research is to design a hybrid inference model for determining the quality of perishable products. 

The developed hybrid model combines clustering techniques with a data-driven fuzzy inference system. Additionally, 

the model is optimized using evolutionary algorithms to enhance both accuracy and efficiency in inferring the quality of 

perishable goods. This study seeks to address research gaps by advancing models and algorithms for controlling and 

inferring the quality levels of perishable products, aiming for high performance and accuracy with efficient operations. 

This paper is organized as follows: Section 2 details the research method used for model development, including data 

collection, preprocessing, and model evaluation and optimization. Section 3 presents the experimental result of the model 

development in any scenarios and employs the model performance with relevant metrics. Section 4 concludes the paper, 

summarizes the key findings, and provides potential further research. 

2- Material and Methods  

2-1- Research Stage  

The research process is illustrated in Figure 1. This study consists of three main parts: data pre-processing and 

clustering, inference modelling, and model optimization. Data pre-processing is a crucial step to ensure that the acquired 

data is clean and ready for further processing. Data clustering is employed to determine data clusters, which will later be 

used to design the number of fuzzy rules for inference system design. The second part involves fuzzy inference modeling 

for developing a system to predict perishable product quality. The combination of clustering approaches with a fuzzy 

inference system is adopted to predict product quality. This modeling also develops two types of membership functions: 

triangular and gaussian. The final part focuses on model optimization to enhance the performance of predictions. Genetic 

algorithms are used in model optimization to define which fuzzy rules should be retained within an optimal number of 

rules. The following sections will describe the details of each process and stage in this research. 
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Figure 1. Research stage 

2-2- Data Acquisition and Preprocessing  

The challenges in implementing IoT in the e-commerce supply chain industry include data acquisition and the high 

potential for errors. In line with the research objective of developing a product quality prediction model for e-commerce, 

the data acquired in this study consists of meat quality and environmental condition data collected using various types 

of sensors. This data is sourced from previous research [27, 36] and has been publicly published here: 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XNFVTS.  

The data set consists of twelve types of beef cuts, with environmental conditions monitored using relevant sensors. 
There are eleven types of gas sensors used to measure the storage environment of the meat every second over a period 

of 2,220 seconds. Each observation also includes the meat quality level, measured using the total viable count (TVC). 
This data represents the storage conditions of perishable products during transportation and distribution. The data can be 
used to develop algorithms that could later be implemented in the real world. As a prototype, the tenderloin beef cut is 
proposed as an experiment for the development and evaluation of the hybrid fuzzy quality monitoring model. 

Given the large number of dimensions in the data, with eleven attributes and 2,220 samples, significant effort is 
required to minimize the curse of dimensionality. A correlation-based approach is proposed to evaluate the attributes 
against the TVC data as the target variable. A simple correlation approach is suggested to ensure that minimal 
information is lost from the original data while still having an impact on the target data. Suppose 𝑥 represents an attribute 

and 𝑦 represents the target data; 𝑥̂ and 𝑦̂ as the average of attribute and target data respectively, then the Pearson 
correlation is described by Equation 1. 

𝑟 =
∑(𝑥𝑖−𝑥)(𝑦𝑖−𝑦̂)

√∑(𝑥𝑖−𝑥)
2∑(𝑦𝑖−𝑦̂)

2
  (1) 

2-3- Hybrid Inference System Development 

Fuzzy modelling was first proposed by Zadeh [35] and has since evolved into various models to support decision-

making in the real world. One of the fuzzy models that applied research is the fuzzy inference system (FIS) with the 

Mamdani model [37, 38]. The development of an FIS model consists of several stages: crisp input, fuzzification, rule 
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generation, defuzzification, and crisp output. One of the challenges in designing an FIS model is the difficulty in creating 

fuzzy rules. The number of rules that need to be formulated grows exponentially with the number of input variables [39-

41], making the decision-making system less agile and less reliable for real-world applications. 

This research adopts a clustering approach to design the FIS model. The hybrid FIS and clustering model aims to 

create a more computationally efficient model while maintaining high accuracy. Two clustering models are adopted for 

rule design: the fuzzy c-means clustering model and the k-means clustering model. 

2.3.1. Data Clustering Model 

Data input is used to design fuzzy rules through clustering. Clustering is a supervised algorithm that needs to 

determine the number of clusters. The silhouette method is used for analysing the number of clusters. The optimal 

number of clusters is determined by the maximum silhouette score. Let S(xi) be the silhouette score for data xi, a(xi) be 

the average distance of xi to the data within its own cluster, and b(xi) be the average distance of xi to the data in the 

nearest neighbouring cluster. According to Shutaywi & Kachouie [42], the silhouette score can be seen in Equation 2. 

𝑠(𝑥𝑖) =
𝑏(𝑥𝑖)−𝑎(𝑥𝑖)

max{𝑏(𝑥𝑖),𝑎(𝑥𝑖)}
  (2) 

The k-means clustering method aims to maximize similarity within clusters and maximize variability between 

clusters. The number of clusters in k-means are determined using the silhouette method. In line with its goal of 

minimizing variability within clusters, the k-means clustering model can be described according to Sinaga and Yang 

[43] as shown in Equation 3. The variable j represents the distance of data x to the cluster centre, xj is the data point j, µi 

is the centre of cluster I, k is the number of clusters determined through the silhouette method, and Ci is the cluster i. 

min 𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝐶𝑖
𝑘
𝑖=1   (3) 

The Fuzzy c-means (FCM) clustering is an improvement over the k-means clustering method which was first 

introduced by Bezdek et al. [44]. This fuzzy approach uses membership function parameters to determine the degree of 

belonging of a data point within a cluster. Fuzzy c-means has algorithmic characteristics with k-means but uses a fuzzy 

approach to primarily reduce errors in the placement of data points within clusters. Similar to k-means, fuzzy c-means 

aims to minimize the distance of data points to the cluster center (j). According to Izakian & Abraham [45], the process 

of determining the cluster center (zj) in c-means is iterative and depends on the membership function value (𝜇𝑖,𝑗
𝑚 ) and 

vector data i (𝑥𝑖) for all N number dataset, also m fuzziness level, as shown in Equation 4 dan 5. 

𝑧𝑗 =
∑ 𝜇𝑖,𝑗

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝜇𝑖,𝑗
𝑚𝑁

𝑖=1

  (4) 

𝜇𝑖𝑗 =
1

∑ (
‖𝑥𝑗−𝜇𝑖‖

‖𝑥𝑗−𝜇𝑘‖
)

2
𝑚−1

𝑐
𝑘=1

  
(5) 

2.3.2. Fuzzy Inference System Modelling  

The most complex part of developing an inference system is defining fuzzy rules. The number of fuzzy rules depends 

on the number of input variables and linguistic levels, which makes the computational process very complex [46]. Using 

a clustering model to determine rules in an FIS makes the model simpler, more accurate, and speeds up the computational 

process. 

Fuzzy rules consist of antecedent and consequent parts. In setting rules within a hybrid clustering and FIS model, the 

antecedent and consequent parts are extracted from the cluster centres obtained using Equations 2-5. The cluster centres 

are transformed into membership functions for further processing with fuzzification. There are two types of membership 

functions used in this inference model: Gaussian and Triangular membership functions. Let cj be the cluster centre 

obtained from the k-means or FCM algorithm, and x be the input variable. For gaussian membership function, it needs 

cluster centre (c) from FCM and standard deviation of each cluster (𝜎). While for the triangular fuzzy numbers, itu define 

the membership function with lower (a), medium (b) and upper (c) number to represent the membership function. The 

membership functions for cluster j in gaussian and triangular membership function can be seen in Equations 6 and 7, 

respectively. 

𝜇𝑗(𝑥) = 𝑒𝑥𝑝 (−
(𝑥−𝑐𝑗)

2

2𝜎𝑗
2 )  (6) 

𝜇𝑗(𝑥) =

{
 
 

 
 
0                 𝑖𝑓 𝑥 ≤ 𝑎𝑗
𝑥−𝑎𝑗

𝑏𝑗−𝑏𝑗
𝑖𝑓   𝑎𝑗 < 𝑥 ≤ 𝑏𝑗

𝑐𝑗−𝑥

𝑐𝑗−𝑏𝑗
𝑖𝑓   𝑏𝑗 < 𝑥 ≤ 𝑐𝑗

0                 𝑖𝑓 𝑥 > 𝑐𝑗

  (7) 
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If xi is the input variable, y is the single output variable of the fuzzy inference system, and cj  is the cluster centre 

obtained from the clustering algorithm, then the form of the fuzzy rule is as follows: 

If x1 near c1 AND x2 near c1 AND x3 near c1 … AND xi near c1 then y near c1 

If x1 near c2 AND x2 near c2 AND x3 near c2 … AND xi near c2 then y near c1 

If x1 near ci AND x2 near ci AND x3 near ci … AND xi near cj then y near ci 

The specifications of the model applied for the development of the FIS-based data model for predicting meat quality 

in this study can be seen in Table 1. 

Table 1. Specification for the FIS based data model. 

No. Parameter Specification 

1 Membership function 
Triangular fuzzy number 

Gaussian fuzzy number 

2 Inference model Mamdani 

3 Rules operator AND 

4 Aggregation function Max 

5 Implication function Min 

6 Defuzzification model Centroid 

7 Evaluation RMSE; MSE; MAE; R2 

2.3.3. Model Optimization  

Perishable products supply chains require an efficient and accurate model to predict the quality level of products 

during transportation and distribution in real time. Model optimization is necessary to enhance model efficiency. The 

fuzzy inference system model which has high rule complexity based on the number of input variables and linguistic 

labels must be optimized. A model is proposed to optimize the number of fuzzy rules that have the highest fitness for 

quality output inference, thereby enabling the model to operate efficiently in all stages of supply chains operations. 

Previously, the development of data-driven FIS models involved creating rules based on clustering models. To 

improve the efficiency and accuracy of the model, this research proposes optimizing the FIS model using an evolutionary 

algorithm: the genetic algorithm (GA). The underlying logic in this model optimization is to use the most optimal number 

of rules to process input data efficiently for producing an accurate inference output for perishable product quality 

prediction. Previous research has also utilized GA for optimizing fuzzy models, such as Savrun & İnci [47], who 

optimized training data for the development of ANFIS models, and [48-50], who optimized membership functions within 

FIS using GA. Genetic algorithm (GA) is an optimization algorithm inspired by the principles of human evolution and 

fitness. GA employs a probabilistic approach to optimize models and find global optimal solutions. However, genetic 

algorithms are most efficient in vast and complex solution spaces, rather than in problems with narrow and simple 

solution spaces. Optimizing fuzzy rules while considering various factors of uncertainty with levels of linguistic labels 

face a complex issue, thus making it essential for optimizing the system to operate efficiently. In this context, optimizing 

the FIS model with GA is highly necessary. 

In FIS, there are three approaches to generating rules: (1) building rules based on expert opinion, (2) building rules 

based on data and providing data to adjust membership functions, and (3) building rules using linear and structured 

approaches. In this research, the Genetic Algorithm is applied to determine the most effective and efficient combination 

of rules which have been applied in FIS model to produce an accurate output prediction. 

In this research, the optimization of FIS using GA begins with chromosome representation. Chromosomes are 

represented by the rules (r) of the FIS that have been previously developed, and the length of the chromosome (M) 

corresponds to the number of rules specified in the FIS model. Chromosomes are illustrated in Equation 8. Each gene in 

the chromosome (rM) is represented by a binary number for rule testing. 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = {𝑟1, 𝑟2, … , 𝑟𝑀} (8) 

According to the GA framework, chromosomes can be altered to improve model accuracy. Several parameters are set 

in the randomly generated chromosome representation model as shown in Table 2. The model's output can be evaluated 

using the model fitness function. In this optimization model, the fitness function is the model with the lowest error rate 

compared to actual data. Therefore, in this case, the fitness function adopts the mean square error (see Equation 9). 
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Table 2. Model parameters for model optimization using GA 

No. Parameter Specification 

1 Number of populations 50 

2 Crossover probability 50% 

3 Individual mutation probability 20% 

4 Genetic mutation probability 5% 

5 Fitness model Mean Square Error 

2-4- Model Evaluation  

To ensure the model accurately predicts product quality, four evaluation metrics are proposed to assess the model. 

The models being evaluated are inference models with Gaussian and triangular fuzzy number membership functions. 

Evaluating the FIS models with triangular and gaussian membership functions is necessary to determine the most 

accurate model for optimization with the genetic algorithm. Furthermore, the performance of the optimization model 

with the genetic algorithm is also compared with that of the FIS models using gaussian and triangular membership 

functions. 

Let 𝑦𝑖̂ be the actual target data value, 𝑦𝑖  represents the value predicted by the gaussian or triangular inference 

engine model, and 𝑦𝑖̅ represents the average of the actual values. Thus, the metrics for evaluating the model with 

mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and R2 can be seen in 

Equations 9 to12, respectively. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (9) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1   (10) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (11) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)
2𝑛

𝑖=1

  (12) 

3- Results and Discussion  

3-1- Data Description and Preprocessing  

The data used in this study comes from previous research that has been publicly shared [27, 36]. The advantage of 

using public data is the transparency in model development, allowing for validation with subsequent research. The data 

set consists of eleven attributes with one target variable and includes a total of 2,220 samples. Each sample represents 

an observation taken every minute based on information captured by IoT-based sensors installed in the environment of 

perishable products, specifically tenderloin beef cuts in this case. This research assumes that IoT tools enable reading, 

collecting, and delivering data efficiently and accurately. The data collected from the sensor then analyses and predicts 

the perishable product quality based on the model development that is proposed in this research. A general statistical 

description of the collected data from public sources for this case is described in Table 3. 

Based on the data description, each attribute has its own uniqueness, as observed from its data distribution. Most of 

the data follows an almost normal distribution with skewness values close to zero. Generally, the data skewness is 

positive, except for MQ137, MQ5, and TVC. Negative skewness indicates that over time, the values collected by the 

sensors for each attribute are high, with outliers occurring at lower values. From the kurtosis description, it is interpreted 

that most of the data is negative, except for sensors MQ136, MQ138, MQ4, and MQ6. Negative kurtosis indicates few 

outliers, which is advantageous for further processing to produce accurate decisions. 

The data description above is also very useful in the subsequent process for data preprocessing. Given that the data 

received is already clean, the next step in preprocessing is feature selection. At this stage, a simple Pearson correlation 

analysis is proposed to examine the correlation between the attribute data and the target data, which is TVC. The results 

of the correlation analysis can be seen in Figure 2. 
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Table 3. Data description 

No. Type Code Data Min Max Std Skewness Kurtosis 

1 Attribute MQ135 Ammonia, carbon dioxide, alcohol, benzene 9.86 20.69 3.073 0.395 -1.161 

2 Attribute MQ136 Hydrogen sulfide 3.73 14.36 2.299 1.186 1.178 

3 Attribute MQ137 Ammonia 7.11 22.5 4.302 -0.736 -0.590 

4 Attribute MQ138 Aldehydes, alcohols ketones 10.08 21.64 3.044 1.829 1.914 

5 Attribute MQ2 Methane, alcohol, LPG, hydrogen, smoke, propane, i-butane 3.79 8.95 1.223 0.684 -0.427 

6 Attribute MQ3 Alcohol, benzine, methane, hexane, LPG, carbon monoxide 10.83 21.63 2.944 0.692 -0.383 

7 Attribute MQ4 Methane  2.84 15.2 2.558 1.366 1.574 

8 Attribute MQ5 Hydrogen, LPG, methane, carbon monoxide, alcohol 6.68 21.67 3.240 -0.350 -0.683 

9 Attribute MQ6 Propane, LPG, iso-butane 9.2 34.25 2.855 0.256 2.615 

10 Attribute MQ8 Hydrogen 22.8 50.6 7.055 0.218 -1.356 

11 Attribute MQ9 Methane, carbon monoxide, and propane 8.16 13.5 1.694 0.361 -1.458 

12 Target TVC Total viable count 1.875 5.758 1.137 -0.975 -0.281 

 

Figure 2. Attribute correlation 

The threshold set for feature selection using Pearson correlation is ±0.5. It can be observed that most attributes and 

the target data, TVC, have correlations greater than 0.88, except for the data from sensor MQ6, indicating a strong 

correlation between the attributes and the target data. This will also strengthen accurate conclusions in the development 

of the inference system. As for the MQ6 attribute, it may be excluded from further analysis due to its correlation not 

meeting the threshold. Additionally, the data description shows that it has the highest positive skewness, indicating a 

high number of outliers. Excluding sensor MQ6 will also improve model accuracy as data noise is removed from the 

dataset. Ultimately, the dataset to be included in the analysis and subsequent model development consists of ten attributes 

and one target variable. An example of the data can be seen in Table 4. 

Table 4. Data head for model development  

No. TVC MQ135 MQ136 MQ137 MQ138 MQ2 MQ3 MQ4 MQ5 MQ8 MQ9 

1 1.876 17.11 11.63 7.14 19.2 7.58 19.18 12.7 7.99 37.22 11.71 

2 1.876 17.4 11.72 7.11 19.37 7.65 19.34 13.12 6.92 36.78 11.62 

3 1.876 18.55 13.46 7.64 21.04 8.88 21.14 15.07 7.06 41.05 12.92 

4 1.876 18.47 13.3 7.73 21.14 8.95 21.24 15.2 7.06 41.58 13.03 

… … … … … … … … … … … … 

2219 5.758 10.49 4.11 21.89 11.9 4.42 11.44 3.05 19.1 26.2 9.15 

2220 5.758 10.45 4.07 21.79 11.81 4.42 11.35 3.04 19.02 27.41 9.01 
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3-2- Hybrid Model Development 

The hybrid model is a combination of data clustering models using k-means and fuzzy c-means (FCM) to generate 

rules within a fuzzy inference system. K-means and FCM clustering models have different approaches to forming data 

clusters, so the accuracy of the output inference between these two clustering models will be evaluated. Managing FIS 

rule modeling with clustering has been proposed by previous research. Leonori et al. [51] proposed k-means for rule and 

membership function generation of FIS, which performs close to optimal solutions, while Barrios et al. [52] and İsen & 

Boran [53] provide FCM for rule generation of FIS and ANFIS models, which show satisfactory performance. The 

hybrid FIS model incorporating k-means and FCM represents an effort to optimize conventional FIS models, which have 

limitations and complexities in developing rule combinations. Complex rule combinations have been proposed by Phillis 

et al. [54] and Grigoroudis et al. [55], but the number of rules generated is exponential and reduces computational and 

inferential performance [56]. 

The conceptual framework for developing a hybrid FIS with clustering involves using the results of data clustering 

to design rules and infer the output. It is important to ensure that the available data is sufficient and then the hybrid FIS 

and clustering model have the potential to be applied. 

Determining the number of clusters in the development of this hybrid model is crucial, as it directly influences the 

number of rules that will be formed within the FIS. The number of data clusters is determined using the Silhouette 

Technique, following Equation 2. Based on the analysis, the Silhouette score for each number of clusters can be observed 

in Figure 3. The Silhouette analysis results indicate that the optimal number of clusters is seven, as they provide the 

highest silhouette score among others. This serves as the basic decision to define the number of clusters to develop a 

model using the k-means and FCM models. Consequently, the cluster centers for the FCM and k-means models can be 

found in Tables 5 and 6, respectively. The cluster center that is produced by FCM and k-means shows slightly different 

results for all attributes. For example, in the TVC cluster center, for each cluster in FCM and k-means, there are different 

values for each cluster and different distances between clusters. FCM and K-means approaches in developing cluster 

centers have confirmed that both models will produce different membership functions of FIS rule generation. 

 

Figure 3. Silhouette score 

Table 5. Cluster center from FCM model  

Cluster TVC MQ135 MQ136 MQ137 MQ138 MQ2 MQ3 MQ4 MQ5 MQ8 MQ9 

1 5.428 11.275 4.339 19.763 11.177 4.355 12.616 3.135 16.390 27.159 8.806 

2 2.252 18.941 11.410 8.865 20.529 7.829 20.766 11.037 8.647 42.402 12.931 

3 5.680 10.276 3.932 21.970 11.128 4.166 11.380 2.958 17.968 25.055 8.785 

4 3.355 17.991 7.632 12.156 15.115 6.532 17.707 7.000 10.308 43.825 12.841 

5 4.344 15.417 7.316 18.037 12.013 6.381 15.773 6.385 13.336 38.576 11.840 

6 5.001 13.953 6.400 17.643 11.325 5.519 14.895 4.804 14.339 34.052 10.405 

7 5.220 12.422 5.235 17.953 11.192 4.705 13.794 3.561 14.618 30.214 9.183 
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Table 6. Cluster center for K-Means model  

Cluster TVC MQ135 MQ136 MQ137 MQ138 MQ2 MQ3 MQ4 MQ5 MQ8 MQ9 

1 3.996 14.477 6.286 13.965 11.009 5.462 14.409 5.760 12.077 36.460 10.862 

2 5.654 10.380 3.964 21.746 11.101 4.182 11.507 2.972 17.860 25.283 8.781 

3 2.349 18.818 10.986 9.046 20.120 7.633 20.515 10.479 8.838 42.505 12.899 

4 4.404 15.444 7.396 18.405 12.045 6.445 15.860 6.416 13.480 38.620 11.883 

5 5.274 12.112 4.982 18.369 11.238 4.600 13.557 3.398 15.031 29.387 9.023 

6 3.477 17.868 7.423 12.577 14.637 6.479 17.397 6.795 10.558 43.815 12.831 

7 5.113 13.817 6.345 17.960 11.310 5.480 14.880 4.702 14.760 33.657 10.317 

For further interpretation, the differences of cluster centers with FCM and K-Means models are illustrated in Figure 
4. It can be observed that while both clustering models have the same number of cluster centers, their locations differ 
slightly between the two models. The cluster center defined by FCM and k-means will further determine the FIS 
membership function model and rule generation. For the prediction model, training and testing datasets are employed to 

test the FIS model with FCM and k-means model accuracy in predicting meat quality, as adopted as a model deployment 
case study. 

  

(a) (b) 

Figure 4. Cluster center illustrations for (a) FCM and (b) K-Means 

The FIS model is developed by crisp input, fuzzification, rule generation with related membership function, 
defuzzification, and crisp output. Normally, the rule generation with the related membership function stage of the FIS 
model is developed by the numbers of input attributes of the FIS. An exponential number of rules is generated by the 

number of attributes and linguistic labels of the attribute. Moreover, with the hybrid FIS-clustering model, the number 
of rules is generated using the cluster center of the FCM and k-means results. The cluster center results from FCM and 
K-Means with all attributes designed to support quality inference in the FIS. Unlike conventional FIS models developed 
based on expert opinions, the number of rules formed in the hybrid FIS-Clustering model is much more optimal. As a 
result, the system can achieve maximum performance and an efficient process in providing inferences based on input 
variables. According to the result of the number of clusters generated by the FCM or k-means model, the fuzzy rules 

generated by FIS and clustering models in this case are as follows: 

1. IF MQ135[cluster_1] AND MQ136[cluster_1] AND MQ137[cluster_1] AND MQ138[cluster_1] AND MQ2[cluster_1] AND MQ3[cluster_1] 

AND MQ4[cluster_1] AND MQ5[cluster_1] AND MQ8[cluster_1] AND MQ9[cluster_1] THEN TVC[cluster_1] 

2. IF MQ135[cluster_2] AND MQ136[cluster_2] AND MQ137[cluster_2] AND MQ138[cluster_2] AND MQ2[cluster_2] AND MQ3[cluster_2] 

AND MQ4[cluster_2] AND MQ5[cluster_2] AND MQ8[cluster_2] AND MQ9[cluster_2] THEN TVC[cluster_2] 

3. IF MQ135[cluster_3] AND MQ136[cluster_3] AND MQ137[cluster_3] AND MQ138[cluster_3] AND MQ2[cluster_3] AND MQ3[cluster_3] 

AND MQ4[cluster_3] AND MQ5[cluster_3] AND MQ8[cluster_3] AND MQ9[cluster_3] THEN TVC[cluster_3] 

4. IF MQ135[cluster_4] AND MQ136[cluster_4] AND MQ137[cluster_4] AND MQ138[cluster_4] AND MQ2[cluster_4] AND MQ3[cluster_4] 

AND MQ4[cluster_4] AND MQ5[cluster_4] AND MQ8[cluster_4] AND MQ9[cluster_4] THEN TVC[cluster_4] 

5. IF MQ135[cluster_5] AND MQ136[cluster_5] AND MQ137[cluster_5] AND MQ138[cluster_5] AND MQ2[cluster_5] AND MQ3[cluster_5] 

AND MQ4[cluster_5] AND MQ5[cluster_5] AND MQ8[cluster_5] AND MQ9[cluster_5] THEN TVC[cluster_5] 

6. IF MQ135[cluster_6] AND MQ136[cluster_6] AND MQ137[cluster_6] AND MQ138[cluster_6] AND MQ2[cluster_6] AND MQ3[cluster_6] 

AND MQ4[cluster_6] AND MQ5[cluster_6] AND MQ8[cluster_6] AND MQ9[cluster_6] THEN TVC[cluster_6] 

7. IF MQ135[cluster_7] AND MQ136[cluster_7] AND MQ137[cluster_7] AND MQ138[cluster_7] AND MQ2[cluster_7] AND MQ3[cluster_7] 

AND MQ4[cluster_7] AND MQ5[cluster_7] AND MQ8[cluster_7] AND MQ9[cluster_7] THEN TVC[cluster_7] 
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The rules in the hybrid FIS model with FCM and K-Means have the same structure, but the values at the cluster 

centers differ. The value of cluster_1 to cluster 7 of the aforementioned FIS rules is substituted by the cluster center of 

each attribute that is found by FCM and k-means in Tables 5 and 6, respectively. Consequently, using the cluster center 

of FCM and k-means for FIS rules, the output inferences will vary between the two models. For validation, the model 

will evaluate using related performance metrics. 

A conventional FIS model development employs three approaches to designing fuzzy rules: data-driven adjustment 

of membership functions, expert-based approaches and validation [57], and combinations of input variables [55]. Each 

of these approaches has its advantages and disadvantages. For instance, expert-based rule development is highly 

subjective to the knowledge of the experts, while the approach based on combinations of input variables requires 

generating rules exponentially, which can reduce model performance. Therefore, this study adopts a data-driven 

approach that is deepened with clustering. The clustering approach can extract specific information from the data, 

ensuring the system and rules are aligned with the data conditions, thereby improving the accuracy of model inference. 

Additionally, the clustering approach in FIS model development is highly efficient in rule formation while maintaining 

a prominent level of accuracy. 

3-3- Hybrid FIS Model Evaluation 

A hybrid FIS and clustering model for predicting meat quality was evaluated using four main metrics: MAE, MSE, 

RMSE, and R². The model was evaluated with 500 datasets (>20%) taken from actual data to predict the consequent 

values (TVC). The FIS model for predicting the meat quality developed in a hybrid FIS-clustering model that combines 

membership functions type and clustering models: FCM and K-Means. 

The evaluation results suggest that the FIS-TFN model demonstrates superior R² values, whether using K-Means or 

FCM for rule development. A complete overview of the model evaluation results can be found in Table 7. For illustration, 

the comparison between actual data and the hybrid FCM-FIS model with the TFN model is presented in Figure 5. 

Table 7. Model evaluation results 

Metric 

FCM clustering model K-Means clustering model 

Gaussian 

inference model 

TFN inference 

model 

Gaussian 

inference model 

TFN inference 

model 

MAE 0.360 0.119 0.375 0.114 

MSE 0.173 0.316 0.199 0.035 

RMSE 0.416 0.178 0.446 0.446 

R2 0.873 0.974 0.853 0.961 

 

(a) Model FCM-FIS with gaussian 
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(b) Model FCM-FIS with triangular 

 
(c) Model KMeans-FIS with gaussian 

 
(d) Model KMeans-FIS with triangular 

Figure 5. FIS model evaluation using predicted vs actual data 
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Model evaluation indicates that the FIS model with TFN using either FCM or K-Means clustering demonstrates good 

performance. However, from Figure 5, it is evident that the FIS model with TFN has limitations in accommodating 

various data conditions that reflect dynamic real-world situations. Figure 5 shows that x-axis as the number of samples 

while y-axis as TVC as the output of meat quality prediction model using FIS. All four models employ five hundred data 

samples to evaluate the model’s accuracy and reliability. However, the TFN model with FCM or k-means model is only 

accurate to predict half of data samples. It is indicated that the TFN model is unable to process input variables to be an 

output consequence due to models’ limitations. TFN failures to process input variables to be an output consequence 

impacted the prediction model reliability and accuracy.  

Figure 5 shows that the FIS model with gaussian fuzzy numbers exhibits better reliability compared to the triangular 

model. The TFN model is unable to interpret all input variables for transformation into output variables. This system’s 

inadequacy can significantly impact decision-makers by failing to provide recommendations to enhance the quality of 

perishable products. Therefore, choosing the gaussian model over the TFN model can minimize system failures in 

predicting the quality of perishable products like meat due to environmental uncertainties. This has also been confirmed 

in previous research, which found that the gaussian model performs better than the triangular fuzzy number model [58, 

59]. 

3-4- Model Optimization and Comparison to Previous Model 

Despite the limitations of the TFN model to produce output consequences and the result of model evaluation as 

mentioned in Table 7, it is found that meat quality prediction may predict with the Gaussian FIS model with the FCM 

clustering model. However, the model has an opportunity to improve the performance in accuracy and also avoid 

overfitting and underfitting problems. Therefore, in this phase, the FIS model is optimized using Genetic Algorithms 

(GA) to determine the most optimal number of rules for predicting meat quality. The number of rules in the FIS model 

determines the process and output accuracy. Using GA, the number of rules is optimized using a mathematical model 

with the chromosome representation for FIS rules combination and optimization. According to the GA model, the length 

of the chromosome in this optimization model is seven, which reflects the seven FIS rules. In line with the GA approach, 

which evaluates the accuracy of the inference model through a fitness function, in this model the fitness function is 

defined by the combination of rules that perform the best performance will be identified. 

The fitness function in this optimization is the FIS rules combination that reflects the smallest Mean Square Error 

(MSE). The model being optimized reflects the rule combinations that were developed by the Hybrid Fuzzy Inference 

System and Clustering model. Therefore, the potential rule combinations will come from the seven rules, each of which 

can be either active or inactive (binary), resulting in 27=128 rule combinations to be evaluated. 

Genetic algorithms are effective at finding the best solutions for complex and combinatorial problems, as also found 

in this case. In this model, GA finds the best model with numbers of rules and combinations that have the best model 

performance. The genetic algorithm has been utilized to assess each possible combination of FIS-based clustering rules 

for model accuracy and computation time. Based on the GA parameters for model evaluation, ten types of rules 

combinations from 128 models with the smallest error tested on the raw data are presented in Table 8. 

Table 8. Rule combinations, error, and computation time  

Rules combination NUMBER 
Status of seven rules (0=NON-ACTIVE; 1 = ACTIVE) 

number of active rules MSE Computation time 
1 2 3 4 5 6 7 

127 1 1 1 1 1 1 1 7 0.204 82.238 

119 1 1 1 0 1 1 1 6 0.205 69.193 

126 1 1 1 1 1 1 0 6 0.218 69.488 

118 1 1 1 0 1 1 0 5 0.219 57.780 

111 1 1 0 1 1 1 1 6 0.227 69.297 

103 1 1 0 0 1 1 1 5 0.228 59.145 

110 1 1 0 1 1 1 0 5 0.240 59.993 

102 1 1 0 0 1 1 0 4 0.243 49.335 

115 1 1 1 0 0 1 1 4 0.349 61.429 

123 1 1 1 1 0 1 1 5 0.350 71.599 

The mapping of the rules number, model error, and computation time for all models using Genetic Algorithms is 

illustrated in Figure 6. The figure clearly shows the relationships between these three parameters in model evaluation, 

which indicate that as the number of rules increases, the model error decreases, while computation time increases. Using 

seven rules of the prediction model may improve the computation time; moreover, it will increase the model error (MSE). 
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This condition led to model prediction error that affects the wrong conclusion of perishable product quality. In other 

conditions, using only one rule, it may improve computation time, but the model error is still increasing. This research 

proposes to adopt a moderate approach by using five rules. Figure 6 illustrates that the model with five active rules 

decreases the model error efficiently with tolerable computation time. 

 

Figure 6. Model error vs. computation time in any rule combinations 

A higher number of rules enhances system complexity but helps in minimizing prediction errors. The GA has 

effectively optimized the model, proposing configurations with both optimal accuracy and efficient computation time. 

Based on these results, the number of active rules can be utilized for predicting the quality of perishable products. 

Specifically, five FIS rules with a Gaussian membership function and fuzzy c-means (FCM) clustering have proven 

suitable for further testing. 

The optimized model is then evaluated using model evaluation metrics, including MAE, MSE, RMSE, and R², as 

shown in Table 9. For this test, rule combination number 118 is applied, with five active rules, deactivating rules number 

4 and 6, according to previous evaluation results. The evaluation results indicate that the optimized model does not show 

significant improvements, particularly in the R² metric. Nevertheless, the model can optimize the number of rules to 

achieve an acceptable level of error and R² with computation time suitable for real-world application. 

Table 9. Model evaluation and comparison 

Model Number of rules MAE MSE RMSE R2 

FCM-FIS Gaussian 7 0.360 0.173 0.416 0.873 

K-Means-FIS Gaussian 7 0.375 0.199 0.446 0.853 

Optimized rule FCM-FIS Gaussian 5 0.383 0.209 0.45 0.845 

In previous research, IoT systems for predicting meat quality have been utilized by various researchers for prediction 

and system development, such as Kaya et al. [26], and Deepa & Jayalakshmi [60] for sensor error mitigation, Wijaya & 

Afianti [61] for predicting meat quality using a classification approach, and Pulluri & Kumar [62] for using e-nose 

sensors to develop a meat quality monitoring system with classification. However, most of the studies mentioned above 

rely on classification machine learning models to assess product quality. 

To compare and evaluate the performance of the proposed model in this study, it is necessary to compare it with 

previous models that are relevant, specifically regression-based models. Previous research that predicts the quality of 

perishable products such as meat using regression models is still limited, despite the high accuracy required and the need 

for implementation in the industry. Two studies that serve as benchmarks for the performance of the proposed model in 

this research can be found in Wijaya et al. [27], and Wijaya et al. [63], which predict the total viable count (TVC) as a 

representation of meat quality using regression-based models. The performance comparison of previous models with the 

proposed model in this study can be seen in Table 10. 
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Table 10. Model performance comparison with RMSE and R2 

No Prediction model Sources RMSE R2 

1 NNR-non framework Wijaya et al. [27] 2.556 0.771 

2 NNR-framework Wijaya et al. [27] 0.519 0.953 

3 k-nearest neighbor Wijaya et al. [63] 0.4648 0.814 

4 Linear discriminant analysis Wijaya et al. [63] 0.6818 0.829 

5 Support vector regression Wijaya et al. [63] 0.6465 0.909 

6 Multi-linear programming Wijaya et al. [63] 0.6072 0.414 

7 Long short-term memory (LSTM) Wijaya et al. [63] 3.2622 0.958 

8 Discrete wavelets transform LSTM Wijaya et al. [63] 0.3835 0.971 

9 Optimized rule FCM-FIS Gaussian This research 0.450 0.845 

It can be observed that, based on Table 10, the proposed model in this study has a good R2 value with a low error rate, 

except for the LSTM and DWTLSTM models. In the model comparison above, it is shown that LSTM and DWTLSTM 

perform well, but the challenge is that these models are complex and result in longer computation times [63]. In contrast, 

the model proposed in this study, namely the FCM-FIS Gaussian model optimized with GA proposed an efficient and 

fast computation times, as elaborated in the previous section. Therefore, the proposed model in this study can be 

implemented more widely and efficiently in the industry. 

4- Conclusions and Recommendations 

Monitoring the quality of perishable products involves both challenges and advantages in maintaining a responsive 

and efficient supply chain. Although many quality monitoring models have been proposed, IoT technology offers 

promising opportunities for real-time information delivery. The challenges in monitoring perishable products are not 

only in implementing IoT technology during transportation but also in how to accurately process data and information 

to ensure decisions are well-informed and precise for both customers and producers. 

This research has successfully developed a hybrid model for evaluating the quality of perishable products such as 

meat. Public data has been utilized for model evaluation, making it useful for industries to provide quality information 

about perishable products to both producers and consumers during distribution and transportation processes. The hybrid 

model combining the Fuzzy Inference System (FIS) and clustering has accurately extracted information from data 

collected via IoT. Specifically, the FIS model with a Gaussian membership function and the Fuzzy C-Means (FCM) 

clustering model have proven capable of producing accurate and reliable predictions. Reliable in this context means that 

the model effectively identifies each input data and infers outputs with high accuracy. 

This research also proposes a hybrid optimization model to enhance the efficiency and accuracy of the model using 

genetic algorithms. The results show that optimizing seven rules in the hybrid FCM-FIS model to five rules using genetic 

algorithms did not significantly improve model accuracy, particularly in the R² metric. However, the use of the GA 

optimization model was successful in mapping and reducing model computation time while maintaining model accuracy. 

Therefore, the study concludes that for datasets on product quality and storage conditions for perishable goods collected 

via IoT, the hybrid FCM-FIS model can be used for real-time quality prediction. The hybrid FIS-Gaussian model with 

FCM achieved the best accuracy with an R² value of 0.875. Additionally, the research found that genetic algorithm 

optimization holds significant potential for improving model efficiency, especially in terms of computation time, system 

responsiveness, and maintaining model accuracy. 

Although this research utilizes public data, there are many further opportunities that can be explored. The model 

developed in this study is highly applicable to the supply chain of perishable product industries. The test results have 

shown that the algorithm can quickly and accurately predict the quality of perishable products based on the total viable 

count. For model implementation in industry, several aspects need to be considered: (1) the preparation of an IoT-based 

sensor system in accordance with the attributes demonstrated by the model, (2) the provision of a server for data storage 

and supporting real-time data processing, and (3) the implementation of the model to predict the quality of perishable 

products. Based on the research framework and supporting data from public sources, this model can certainly be utilized 

specifically for meat products. If applied to other types of products, the results of this study have also confirmed that the 

FIS-Clustering model framework, optimized with a genetic algorithm, can be further utilized. 

It can be observed that the algorithms in this research have been proposed and have identified the model with the best 

accuracy. Given the urgent need for IoT in perishable products to meet customer satisfaction, future research should 

focus on implementing the model for real-time quality monitoring of perishable products throughout the entire supply 

chain until the product reaches the consumer. More practical implementation is needed, particularly regarding how the 

model can be presented on a dashboard and how product quality can be tracked and traced in real time. 
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