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Abstract 

This paper presents the development and evaluation of a dynamic gain controller utilizing neural 

networks to enhance trajectory tracking performance in the NAO humanoid robot. The proposed 

controller employs a differential kinematic model and dynamically adjusts its gains using a 
backpropagation algorithm, eliminating the need for manual gain tuning and simplifying the robot's 

setup process. Experimental validation was conducted in a simulated environment using 

CoppeliaSim, with the NAOqi library facilitating integration. The analysis results demonstrate that 
the dynamic controller using a neural network provides better trajectory tracking accuracy than the 

traditional kinematic controller. Adaptability of the dynamic controller, which adjusts gain 
parameters in real-time, contributes to improved robustness and precision across various trajectory 

types. These findings demonstrate the potential of dynamic, self-tuning controllers in enhancing the 

performance, efficiency, and versatility of humanoid robots in complex navigation tasks. 

Keywords:  

NAO; ANN;  

Kinematic Controller;  

Coppelia Sim. 

 

Article History: 

Received: 28 November 2024 

Revised: 19 March 2025 

Accepted: 25 March 2025 

Published: 01 April 2025 
 

 

 

1- Introduction 

Humanoid robots resemble the shape and structure of the human body and are designed to move and operate in 

different environments, mimicking the behavior of a human being. They are considered one of the most advanced forms 

of robotics, as they use advanced technology to have a more natural and human experience [1]. For a humanoid robot to 

effectively perform tasks, such as navigating a work environment, it must maintain static stability. This condition is 

satisfied when the center of gravity lies within the polygon created by the contact points of its feet with a surface [2]. 

Bipedal locomotion in humanoid robots requires a complex interaction of mechanical features and the control system. 

This nonlinear, dynamic process is characterized by minor oscillations that arise not from the intended trajectory but 

rather from data measurement artifacts [3]. The locomotion of a humanoid robot can be influenced by factors such as 

stability, energy consumption, and task duration. Therefore, it is essential to develop effective and versatile solutions to 

improve its movement [4]. 

Artificial intelligence (AI) is increasingly integrated into embedded systems, including humanoid robots, enabling 

them to perform autonomous tasks [5]. The potential of AI in humanoid robotics holds great promise for improving 

quality of life, particularly in assistance, healthcare, and various other applications, as highlighted in Obrenovic et al. 

[6]. By integrating AI, these robots can execute tasks with great precision and flexibility, potentially gaining widespread 
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acceptance across different sectors. As AI technology progresses, humanoid robots' capabilities will grow, presenting 

fresh solutions and opportunities to improve human well-being and societal operations [7]. Overall, AI in humanoid 

robots has the potential to improve quality of life and well-being. In Podpečan [8], the NAO robot used in the study 

primarily moves to engage children in various activities, such as motor development games, theatre performances, and 

artificial intelligence applications. In Venkataswamy et al. [9], a humanoid doctor uses an artificial intelligence platform 

in the cloud to get a diagnosis of each individual's disease in real time. However, it does not explicitly mention whether 

a kinematic or dynamic model is used, and it also does not specify the exact controllers used for the NAO robot, but the 

use of built-in modules such as custom-developed modules for facial expression recognition are mentioned. 

The NAOqi library allows various software modules to communicate with each other, allowing commands made in 

the Python programming language to be executed and controlled by the humanoid robot [10]. It works as a black box 

ready for use. In particular, this library provides an API that allows controlling the robot's movement and accessing its 

sensors and actuators, among other functionalities [11]. The kinematic model, corresponding to a mobile robot, and the 

NAOqi library are indirectly related in the programming of the NAO robot. In the context of mobile and humanoid 

robots, controlling trajectory tracking is a widely studied and strongly researched task. Mobile robot controllers often 

rely on mathematical models that accurately describe the robot's behavior. However, the complexity of these models and 

the numerous variables involved can lead to significant challenges. Model uncertainty and non-linearity are two common 

issues that arise, and the severity of these challenges depends on the system's complexity [12]. 

A variety of intelligent control methods are currently under investigation, encompassing the application of artificial 

intelligence, fuzzy logic, genetic algorithms, and other approaches. The primary objective is to overcome the challenges 

of mobile and humanoid robotics, such as navigating complex, unpredictable environments autonomously. Additionally, 

researchers are working to calibrate controllers based on the robot's specific terrain and desired trajectory, as these factors 

significantly impact performance [13, 14]. Artificial Neural Networks (ANN) are highly effective in approximating 

nonlinear systems and processes, even with limited data. This capability makes them ideal for designing controllers that 

address uncertainty and nonlinearities in robot models, significantly enhancing trajectory tracking for both mobile and 

humanoid robots [2]. 

In recent studies, artificial intelligence (AI) has emerged as a critical component in dynamic control systems. Asai et 

al. [15] proposed utilizing artificial neural networks (ANN) for sensor-equipped automatons. Similarly, Chen et al. [16] 

suggested an adaptive ANN to approximate the unknown dynamics of mobile robots, incorporating a Lyapunov barrier 

to regulate the speed of the robot. Mohareri et al. [17] took an online approach to tune controller parameters, leveraging 

ANNs to capture the characteristics of the direct model. Some studies also explore offline learning phases for neural 

networks. For example, Yildirim et al. [18] designed a controller using a neural network predictor; however, this 

approach demands extensive training data to optimize gain values and minimize errors. Another method, described in 

Mohamed & Hamza [19], builds an ANN controller based on the PID. A learning algorithm identifies the PID parameters 

to reduce trajectory-tracking errors, but this requires significant effort to optimize gain values for each controller. ANN 

Additionally, Benbouabdallah & Qi-dan [20] propose a fuzzy logic controller grounded in the Takagi-Sugeno 

methodology. Their approach calculates velocities to satisfy control objectives and employs a genetic algorithm to 

optimize fuzzy controller inputs, improving trajectory tracking performance. However, conducting this process offline 

raises concerns about time efficiency. In Farhat et al. [21], a NAO humanoid robot's trajectory control is achieved using 

an NDO-based FTSM controller, which enhances trajectory tracking even under disturbances. Finally, Bai et al. [22] 

described dual-arm humanoid robot control, where fuzzy logic and adaptive techniques enable precise, coordinated 

actions in response to control inputs. A key limitation in previous studies is the reliance on an experimental training 

phase to map system inputs to outputs, which can compromise accuracy if insufficient. 

This work addresses the issue by proposing an online learning phase for the controller, enabling dynamic adjustments 

based on the error between current and target positions to improve trajectory tracking and overall performance. In this 

work, we use ANN to develop and self-tune the controller in real-time. The ANN architecture is modeled as a multilayer 

perceptron, employing the backpropagation algorithm to minimize errors and improve the precision of humanoid 

trajectory tracking. An adaptable kinematic controller can significantly enhance trajectory tracking by dynamically 

adjusting its parameters to account for uncertainties and variations in the robot's dynamics and environment. Unlike 

fixed-gain controllers, adaptable controllers can modify their behavior in real time, reducing trajectory errors and 

improving overall performance. This adaptability is particularly beneficial for humanoid robots, such as the NAO, where 

unmodeled dynamics, sensor noise, or external disturbances can affect tracking accuracy [23]. By integrating learning 

mechanisms, such as artificial neural networks, these controllers can estimate and compensate for nonlinearities, making 

them highly effective in complex, real-world scenarios. The ability to self-tune ensures robust performance even under 

varying conditions, a critical requirement for applications involving dynamic or unpredictable environments. 

The effectiveness of the proposed controller is assessed through standard metrics, including ISU, IAE, and ISE. Its 

performance in trajectory tracking is compared to that of a non-self-tuning kinematic controller, showcasing improved 

system behavior across multiple scenarios. 
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The structure of the paper is as follows: Section 2 presents the mathematical model of the mobile robot. Section 3 

provides a brief introduction to the fundamentals of neural networks. Section 4 focuses on the design and implementation 

of the ANN-based controller. The experimental results are analyzed in Section 5, while Section 6 concludes with a 

summary and key observations. 

2- Tracking Trajectory of Humanoid Robots 

Path-following controllers, traditionally based on robot kinematics, are effective in well-defined environments. 

However, in scenarios with varying dynamic properties, considering the robot's dynamics becomes essential. While 

precise trajectory tracking is the primary goal, uncertainties and disturbances can lead to errors in robot motion. 

Humanoid robots often exhibit periodic oscillations during trajectory following due to the displacement point's location 

in the chest and the influence of leg movements. This characteristic is reflected in the robot's control signals. The 

proposed dynamic controller addresses these challenges by adapting to unknown system dynamics [24-26]. This allows 

the robot to stay on the reference trajectory within a given time limit, while reducing tracking errors. 

2-1- Human Robot Model 

The humanoid robot is a differential mobile robot and is non-omnidirectional. This type of robot is commonly chosen 

for studying control methods because of its rapid response and non-linear dynamics [27]. Figure 1 illustrates a standard 

representation of a mobile robot. The point C denotes the center of the axle connecting the right and left wheels, while 

G indicates its center of gravity. Notably, C also functions as the control point. The space relating the C point and the 

center of the wheel axle is denoted by L, and r is the wheel’s radius. The space involving the wheels is d. The linear 

velocity is represented by v, the angular velocity by ω, and the robot's orientation by θ. 

  

(a) (b) 

Figure 1. a) Geometry of the Robot; b) NAO robot orientation [28] 

Given the configuration of the robot at a specific time 𝑡𝑘, represented by [𝑥𝑘  𝑦𝑘  𝜑𝑘], and the known velocities 𝑢𝑘  

and 𝜔𝑘, the Euler integration method is applied to approximate the subsequent configuration of the robot at a time 𝑡𝑘 

[29]. This estimation is accomplished by determining the robot's position and orientation using its current state and the 

velocities applied. 

[

𝑥𝑘
𝑦𝑘
𝜑𝑘
] = [

𝑥𝑘−1
𝑦𝑘−1
𝜑𝑘−1

] + [

cos 𝜑𝑘
sin𝜑𝑘
0

−𝑎 sin𝜑𝑘
𝑎 cos𝜑𝑘

1
] [
∆𝑆
∆𝜑
]  (1) 

with △ 𝑆 =  𝑢𝑘𝑇𝑠 , △ 𝜑 = 𝑇𝑠  𝜔𝑘 ,  𝑇𝑠  =  𝑡𝑘  −  𝑡𝑘−1 , the sampling time is 𝑇𝑠. 

Rossomando et al. [30] proposed a cascade controller approach for humanoid robots, integrating both kinematic and 

dynamic models. Their work assumed an unknown dynamic model and utilized a neural network-based method to control 

it. 

2-2- Kinematic Controller 

The kinematic controller, derived from the robot's kinematic model as presented in Equation 2, focuses on the point 

coordinates [𝑥, 𝑦] . Employing a proportional (P) control approach, as described in SoftBank Robotics [31], the control 

law is: 
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[
𝑢𝑟𝑒𝑓(𝑡𝑘)

𝜔𝑟𝑒𝑓(𝑡𝑘)
] = [

cos 𝜃 (𝑡𝑘) sin 𝜃 (𝑡𝑘)

−
1

𝑎
sin 𝜃 (𝑡𝑘)

1

𝑎
cos 𝜃 (𝑡𝑘)

] × [

𝑥𝑟(𝑡𝑘)−𝑥𝑟 (𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑥 𝑒𝑥(𝑡𝑘)

𝑦𝑟(𝑡𝑘)−𝑦𝑟 (𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑦 𝑒𝑦(𝑡𝑘)

]  (2) 

The output of the kinematic controller is [𝑢𝑟𝑒𝑓 𝜔𝑟𝑒𝑓]
𝑇
. For stability the gains of the controller are 𝑘𝑥 > 0 , 𝑘𝑦 > 0. 

Errors are 𝑒𝑥(𝑡𝑘)  =  𝑥𝑟(𝑡𝑘)  −  𝑥(𝑡𝑘), 𝑒𝑦(𝑡𝑘)  =  𝑦𝑟(𝑡𝑘)  −  𝑦(𝑡𝑘) with 𝑥𝑟(𝑡𝑘) and 𝑦𝑟(𝑡𝑘) the reference coordinates. We 

consider, 𝑢𝑟𝑒𝑓(𝑡𝑘) =  𝑢(𝑡𝑘), 𝜔𝑟𝑒𝑓 =  𝜔(𝑡𝑘) for our proposal of kinematic controller.  

3- Artificial Neural Networks ANNs 

Artificial intelligence, particularly neural networks, significantly enhances the trajectory tracking capabilities of 

humanoid robots such as NAO. By employing machine learning techniques, we can design dynamic controllers that 

adapt to varying conditions and uncertainties in real-time. This adaptive nature is crucial for achieving precise and robust 

trajectory tracking, as it allows the controller to learn and improve its performance over time. The ability to automatically 

tune controller gains eliminates the need for extensive manual calibration, making the robot setup process more efficient 

and less prone to human error. Consequently, AI-driven controllers offer a promising avenue for advancing the field of 

robotics and enabling more sophisticated and autonomous behaviors in humanoid robots. 

ANN is adept at approximating nonlinear systems. Their adaptive nature helps reduce uncertainty in such systems by 

fine-tuning internal parameters [10, 29]. ANN have diverse applications, including system control, computer vision, and 

pattern recognition. The Multi-layer Perceptron (MLP) is especially well-suited for system control [15]. ANN learning 

focuses on modifying synaptic weights to reduce a defined objective function, typically achieved by employing the 

backpropagation algorithm [1, 8]. In observed learning, the desired output corresponding to a specific input dataset is 

pre-determined. This process is guided either by automated systems or direct human intervention [30]. 

The MLP, a widely used neural network architecture, excels at filtering noise, approximating nonlinear systems, and 

serving as a universal approximator [1, 8]. Its ability to organize neurons into multiple hierarchical levels is a key feature. 

However, the nonlinear nature of its components presents challenges in terms of interpretability. 

The scheme of a MLP is shown in Figure 2. Each connection between neurons is characterized by synaptic weights. 

The network consists of three primary layer types: the input layer, which receives signals and transmits them to the next 

layer; hidden layers, where neurons nonlinearly process received patterns; and the output layer, which generates the 

network's response to the input values.  

 

Figure 2. MLP 

For a MPL with 𝑐 layers, 𝑐 −  2 hidden layers and 𝑞 =  1, 2,3 . . . , 𝑐. 
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Neurons in the input layer are activated as follows: 

𝑎𝑖
1 = 𝑥𝑖   

∀ 𝑖 = 1,  2 , . . 𝑛1 
(3) 

In the input layer, 𝑎𝑖
1 represents the neuron 𝑖, 𝑥𝑖 is the input vector of the ANN and 𝑛1 is the number of neurons in 

the layer 1.  

In the hidden layer, 𝑎𝑖
𝑞
 is calculated as follows: 

𝑎𝑖
𝑞
= 𝑓 (∑ 𝑤𝑗𝑖

𝑞−1
𝑎𝑗
𝑞−1

+ 𝜃𝑖
𝑞𝑛𝑞−1

𝑗=1
)  

∀ 𝑖 = 1,  2 , . . . 𝑛𝑞 𝑎𝑛𝑑 𝑞 = 2,… , 𝑐 − 1  
(4) 

In this neural network architecture, the start of the neuron 𝑗 in layer q is denoted by 𝑎𝑖
𝑞
. This activation is calculated 

based on the activations of neurons j in the preceding layer 𝑞 −  1, 𝑎ⱼ(𝑞 − 1), the weights connecting these neurons 

𝑊𝑗𝑖
𝑞−1

, and a threshold value 𝜃𝑖
𝑞
.  

The activation function, f, used in this context is a hyperbolic tangent function, defined by Equations 5 and 6.  

Its derivative, necessary for the backpropagation algorithm, is given by Equation 6. 

f(x) = tanh(x) =
1−e−x

1+e−x
  (5) 

f ′(x) = sech2(x) = 1 − tanh2(x)  (6) 

3-1- Backpropagation Algorithm (BP) 

Backpropagation is a supervised learning algorithm that adjusts synaptic weights to minimize the mean squared error 

between the desired and actual outputs [31]. The error signal is propagated backward through both the hidden and output 

layers [8]. Consequently, the learning process is formulated as an optimization problem of the following type: 

𝑀𝑖𝑛𝑊𝐸  (7) 

where 𝐸 is the error function. 𝑊 denotes the synaptic weights of the neural network. 

Equation 5 expressed the error function as: 

𝐸(𝑡𝑘) =
1

2
∑(𝑦𝑑𝑖(𝑛) − 𝑦𝑖(𝑛))

2

𝑛𝐶

𝑖=1

 (8) 

where 𝑦𝑑𝑖(𝑛) is the required output value and 𝑦𝑖(𝑛) is the output value of the network for pattern 𝑛 at the time 𝑡𝑘. 

To minimize Equation 9, the stochastic gradient descent method is employed to propagate errors backward through 

the network. This method iteratively adjusts each weight parameter 𝑤 to reduce the error 𝐸(𝑡𝑘).  

The learning law is as follows: 

𝑊(𝑡𝑘) =  𝑊(𝑡𝑘 − 1) − 𝛼
𝜕𝐸(𝑡𝑘)

𝜕𝑊
  (9) 

where 𝛼 represents the learning rate, typically in the range [0,1], which determines the extent to which each weight is 

adjusted during updates. The selection of 𝛼 in this study is heuristic [32]. Higher 𝛼 values may prevent finding a local 

minimum and could lead to non-convergence of the algorithm, while lower 𝛼 values may converge to a local minimum 

but could result in longer processing times. 

Finally, the BP is defined as: 

𝑊𝑘𝑗
𝑞(𝑡𝑘) =  𝑊𝑘𝑗

𝑞 (𝑡𝑘 − 1) − 𝛼 𝛿𝑖
𝑞−1(𝑡𝑘) 𝑎𝑘

𝑞(𝑡𝑘);   

 ∀ 𝑖 = 1,2, … , 𝑛𝑐 ;    𝑗 = 1,2, … , 𝑛𝑐−1 ;    

q = 1,2, … , c − 2  

(10) 

The term 𝛿 ais defined for neuron 𝑖 in layer 𝑞 +  1 for pattern 𝑛, where 𝑎𝑘
𝑞
(𝑛) represents the initiation of neuron 𝑘 in 

layer 𝑞 for pattern 𝑛, as follows:  

𝛿𝑖
𝑞−1(𝑡𝑘) = 𝑓′(∑ 𝑊𝑘𝑗

𝑞
𝑎𝑘
𝑞
+ 𝜃𝑗

𝑞𝑛𝑞
𝑘=1

)∑ 𝛿𝑖
𝑞+2(𝑡𝑘)

𝑛𝑞+1
𝑖=1

 𝑊𝑗𝑖
𝑞
  (11) 
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Equation 11 requires the derivative of the activation function, which is provided in Equation 6. Where 𝑊𝑘𝑗
𝑞

 is the 

vector of weights. 

The network thresholds are defined by: 

𝜃𝑗
𝑞−1(𝑡𝑘) =  𝜃𝑗

𝑞−1(𝑡𝑘 − 1) − 𝛼 𝛿𝑖
𝑞−1(𝑡𝑘)   

 ∀  𝑗 = 1, 2,3… , 𝑛𝑐−1;  𝑞 = 2,3… , 𝑐 − 2  
(12) 

where 𝜃𝑗
𝑞−1

 represents the thresholds for the layer  𝑞 −  1 corresponding to the pattern 𝑛. 

4- Controller Design 

Conventional tracking control systems for humanoid robots often face challenges due to model uncertainties, 

variations in plant parameters, and external disturbances. Combined with the intrinsic complexity of humanoid dynamics, 

these factors demand a controller that can ensure reliable performance without requiring explicit compensation [15]. 

Figure 3 illustrates the proposed neural network architecture, which effectively addresses these challenges by employing 

an ANN-based controller to drive the system toward the required trajectory. 

 

Figure 3. Control Architecture 

Figure 4 illustrates the architecture of the proposed controller, which operates as a sequential process built around a 

neural network inspired by a kinematic controller. During online operation, the backpropagation (BP) algorithm is 

employed to minimize the positional error between the humanoid robot's current position and the target trajectory. This 

iterative method dynamically updates the neural network parameters, facilitating continuous optimization and improving 

the controller's overall performance. 

 

Figure 4. Methodology Flowchart 

The neural network architecture was designed based on the kinematic controller’s control laws. By deriving the 

control law from Equation 13, we obtained the following: 

𝑢 (𝑡𝑘) = cos 𝜃 (𝑡𝑘) (
𝑥𝑟(𝑡𝑘)−𝑥𝑟 (𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑥 𝑒𝑥 (𝑡𝑘)) + sin 𝜃 (𝑡𝑘) (

𝑦𝑟(𝑡𝑘)−𝑦𝑟 ( 𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑦 𝑒𝑦(𝑡𝑘))  (13) 

𝜔(𝑡𝑘) = −
1

𝑎
sin 𝜃 (𝑡𝑘) (

𝑥𝑟(𝑡𝑘)−𝑥𝑟 (𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑥 𝑒𝑥(𝑡𝑘)) +

1

𝑎
cos 𝜃 (𝑡𝑘) (

𝑦𝑟(𝑡𝑘)−𝑦𝑟 (𝑡𝑘−1)

𝑇𝑠
+ 𝑘𝑦 𝑒𝑦( 𝑡𝑘))  (14) 
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The ANN, developed based on Equations as 14 and 15, follows an MLP architecture. Its design is derived from the 

kinematic controller of the mobile robot (see Figure 5). 

 

Figure 5. Architecture of the ANN designed 

The inputs are directly connected to the first layer, with no gains, thus 𝑤11
1 = 𝑘𝑥 , 𝑤22

1 = 𝑘𝑦 . This simplified structure 

based in a P controller for a mobile robot, eliminates the need for thresholds in the first hidden layer. 𝑘𝑥 and 𝑘𝑦, are the 

weights of the ANN, which are adapted to minimize position error and ensure rapid convergence to the desired reference. 

The hyperbolic tangent activation function (Equation 4) is employed to saturate the control signals, 𝑢 and 𝜔, preventing 

actuator overload. 

In the input layer, the neurons’ activation is: 

𝑎1
1 = 𝑒𝑥 (𝑡𝑘)  (15) 

𝑎2
1 = 𝑒𝑦 (𝑡𝑘)  (16) 

With q = 2, the hidden layer shows the relationships: 

𝑍1
2  = 𝑘𝑥 𝑒𝑥 (𝑡𝑘)   (17) 

𝑍2
2  = 𝑘𝑦 𝑒𝑦 (𝑡𝑘)  (18) 

In the hidden layer, the neurons’ activation is calculated using Equation 4: 

𝑎1
2 = 𝑓(𝑍1

2) = 𝑡𝑎𝑛ℎ  (𝑘𝑥  𝑒𝑥(𝑡𝑘)) (19) 

𝑎2
2 = 𝑓(𝑍2

2) = 𝑡𝑎𝑛ℎ  (𝑘𝑦  𝑒𝑦(𝑡𝑘)) (20) 

The weights in the hidden layer are computed as: 

𝑊11
2 = cos 𝜃   (21) 

𝑊12
2 = −

1

𝑎
sin 𝜃   (22) 

𝑊21
2 = sin 𝜃   (23) 

𝑊22
2 =

1

𝑎
cos 𝜃   (24) 

The thresholds are obtained by: 

𝜑1
3(𝑡𝑘) = (

𝑥𝑟(𝑡𝑘)−𝑥𝑟 (𝑡𝑘−1)

𝑇𝑠
) cos 𝜃 (𝑡𝑘) + (

𝑦𝑟(𝑡𝑘)−𝑦𝑟 (𝑘−1)

𝑇𝑠
) sin 𝜃 (𝑡𝑘)  (25) 

𝜑2
3(𝑡𝑘) = −

1

𝑎
𝑠𝑖𝑛𝜃(𝑡𝑘) (

𝑥𝑟(𝑡𝑘)−𝑥𝑟 (𝑡𝑘−1)

𝑇𝑠
) +

1

𝑎
𝑐𝑜𝑠𝜃(𝑡𝑘) (

𝑦𝑟(𝑡𝑘)−𝑦𝑟 (𝑡𝑘−1)

𝑇𝑠
)  (26) 
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Using the Equation 5, in the layer 𝑞 =  3, the neurons’ activation is: 

𝑢(𝑡𝑘) = 𝑎1
3 = tanh(𝑜𝑢(𝑡𝑘))  (27) 

𝜔(𝑡𝑘) = 𝑎2
3 = tanh(𝑜𝜔(𝑡𝑘))  (28) 

From: 

𝑜𝑢 (𝑡𝑘) = 𝑐𝑜𝑠𝜃(𝑡𝑘)  𝑓(𝑍1
2) + 𝑠𝑖𝑛𝜃 (𝑡𝑘) 𝑓 (𝑍2

2) + 𝜑1
3 (𝑡𝑘)  (29) 

𝑜𝜔 (𝑡𝑘) = −
1

𝑎
𝑠𝑖𝑛𝜃(𝑡𝑘)  𝑓(𝑍1

2) +
1

𝑎
𝑐𝑜𝑠𝜃 (𝑡𝑘) 𝑓 (𝑍2

2) + 𝜑2
3 (𝑡𝑘)  (30) 

The controller is designed to guarantee that the robot's actual position closely matches the desired trajectory, 

minimizing tracking errors in both axes (𝑥, 𝑦). The gains in the controller (𝑘𝑥,𝑘𝑦) are dynamically modified using the 

backpropagation algorithm. This iterative process iteratively refines the gains until the difference relating the robot's 

current path and the needed trajectory is virtually eliminated. 

The total error in trajectory tracking is: 

𝐸 (𝑡𝑘) = (1/2) (𝑒  𝑥
2 + 𝑒  𝑦

2 )  (31) 

To minimize Equation 31, 𝑘𝑥 and 𝑘𝑦 are going to be adjusted. The learning is posed as: 

𝑀𝑖𝑛𝑘𝑥,𝑘𝑦𝐸  (32) 

From Equation 10, the learning laws are: 

𝑘𝑥 (𝑡𝑘) =  𝑘𝑥 (𝑡𝑘 − 1) − 𝛼  
𝜕𝐸(𝑡𝑘)

𝜕𝑘𝑥
  (33) 

𝑘𝑦 (𝑡𝑘) =  𝑘𝑦 (𝑡𝑘 − 1) − 𝛼  
𝜕𝐸(𝑡𝑘)

𝜕𝑘𝑦
  (34) 

It is necessary derivate to solve Equations 33 and 34: 

𝜕𝐸

𝜕𝑘𝑥
=
𝜕𝐸

𝜕𝑥
+
𝜕𝐸

𝜕𝑦
 (35) 

𝜕𝐸

𝜕𝑘𝑦
=
𝜕𝐸

𝜕𝑥
+
𝜕𝐸

𝜕𝑦
 (36) 

Using the chain rule for Equations 35 and 36 we have: 

𝜕𝐸

𝜕𝑘𝑥
=

𝜕𝐸

𝜕𝑥
[(
𝜕𝑥

𝜕𝑢

𝜕𝑢

𝜕𝑜𝑢

𝜕𝑜𝑢

𝜕𝑎1
2 +

𝜕𝑥

𝜕𝜔

𝜕𝜔

𝜕𝑜𝜔

𝜕𝑜𝜔

𝜕𝑎1
2)

𝜕𝑎1
2

𝜕𝑍1
2

𝜕𝑍1
2

𝜕𝑘𝑥
] +

𝜕𝐸

𝜕𝑦
[(
𝜕𝑦

𝜕𝑢

𝜕𝑢

𝜕𝑜𝑢

𝜕𝑜𝑢

𝜕𝑎1
2 +

𝜕𝑦

𝜕𝜔

𝜕𝜔

𝜕𝑜𝜔

𝜕𝑜𝜔

𝜕𝑎1
2)

𝜕𝑎1
2

𝜕𝑍1
2

𝜕𝑍1
2

𝜕𝑘𝑥
]  (37) 

𝜕𝐸

𝜕𝑘𝑦
=

𝜕𝐸

𝜕𝑥
[(
𝜕𝑥

𝜕𝑢

𝜕𝑢

𝜕𝑜𝑢

𝜕𝑜𝑢

𝜕𝑎2
2 +

𝜕𝑥

𝜕𝜔

𝜕𝜔

𝜕𝑜𝜔

𝜕𝑜𝜔

𝜕𝑎2
2)

𝜕𝑎2
2

𝜕𝑍2
2

𝜕𝑍2
2

𝜕𝑘𝑦
] +

𝜕𝐸

𝜕𝑦
[(
𝜕𝑦

𝜕𝑢

𝜕𝑢

𝜕𝑜𝑢

𝜕𝑜𝑢

𝜕𝑎2
2 +

𝜕𝑦

𝜕𝜔

𝜕𝜔

𝜕𝑜𝜔

𝜕𝑜𝜔

𝜕𝑎2
2)

𝜕𝑎2
2

𝜕𝑍2
2

𝜕𝑍2
2

𝜕𝑘𝑦
]  (38) 

Next, to solve Equations 37 and 38 we find the partial derivatives. 

Clearing 𝑒𝑥 from Equation 13 and substituting 𝑒𝑥(𝑡𝑘)  =  𝑥𝑟(𝑡𝑘)  −  𝑥(𝑡𝑘): 

𝑥(𝑡𝑘) = 𝑥𝑟(𝑡𝑘) −
𝑢(𝑡𝑘)

𝑘𝑥 cos 𝜃(𝑡𝑘)
+

sin 𝜃(𝑡𝑘)(𝑦𝑟(𝑡𝑘+1)−𝑦𝑟 (𝑡𝑘)+𝑘𝑦 𝑒𝑦(𝑡𝑘)𝑇𝑠)

𝑘𝑥 cos 𝜃(𝑡𝑘)𝑇𝑠
+

𝑥𝑟(𝑡𝑘+1)−𝑥𝑟 (𝑡𝑘)

𝑘𝑥𝑇𝑠
  (39) 

Clearing 𝑒𝑦 from Equation 13 and substituting 𝑒𝑦(𝑡𝑘) =  𝑦𝑟  (𝑡𝑘) −  𝑦(𝑡𝑘): 

𝑦(𝑡𝑘) = 𝑦𝑑(𝑡𝑘) −
𝑢(𝑡𝑘)

𝑘𝑦 𝑠𝑖𝑛 𝜃(𝑡𝑘)
+

𝑐𝑜𝑠 𝜃(𝑡𝑘)(𝑥𝑟(𝑡𝑘+1)−𝑥𝑟 (𝑡𝑘)+𝑘𝑥 𝑒𝑥(𝑡𝑘)𝑇𝑠)

𝑘𝑦 𝑠𝑖𝑛 𝜃(𝑡𝑘) 𝑇𝑠
+

𝑦𝑟(𝑡𝑘+1)−𝑦𝑟 (𝑡𝑘)

𝑘𝑦𝑇𝑠
  (40) 

Clearing 𝑒𝑥 from Equation 14 and substituting 𝑒𝑥(𝑡𝑘)  =  𝑥𝑟 (𝑡𝑘)  −  𝑥(𝑡𝑘): 

𝑥(𝑡𝑘) = 𝑥𝑟(𝑡𝑘) −
𝑐𝑜𝑠 𝜃(𝑡𝑘)(𝑦𝑟(𝑡𝑘+1)−𝑦𝑟(𝑡𝑘)+𝑘𝑦 𝑒𝑦(𝑡𝑘)𝑇𝑠)

𝑘𝑥 𝑠𝑖𝑛 𝜃(𝑡𝑘)𝑇𝑠
+

𝜔(𝑡𝑘) 𝑎

𝑘𝑥 𝑠𝑖𝑛 𝜃(𝑡𝑘) 
+

𝑥𝑟(𝑡𝑘+1)−𝑥𝑟 (𝑡𝑘)

𝑘𝑥𝑇𝑠
  (41) 

Clearing 𝑒𝑦 from Equation 14 and substituting 𝑒𝑦(𝑘) =  𝑦𝑟  (𝑡𝑘) −  𝑦(𝑡𝑘): 

𝑦(𝑡𝑘) = 𝑦𝑟(𝑡𝑘) −
𝑠𝑖𝑛 𝜃(𝑡𝑘)(𝑥𝑟(𝑡𝑘+1)−𝑥𝑟 (𝑡𝑘)+𝑘𝑥 𝑒𝑥(𝑡𝑘)𝑇𝑠)

𝑘𝑦  𝑐𝑜𝑠 𝜃(𝑡𝑘) 𝑇𝑠
−

𝜔(𝑡𝑘) 𝑎

𝑘𝑦 𝑐𝑜𝑠 𝜃(𝑡𝑘) 
+

𝑦𝑟(𝑡𝑘+1)−𝑦𝑟 (𝑡𝑘)

𝑘𝑦𝑇𝑠
  (42) 
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Obtaining the partial derivative: 

𝜕𝑥

𝜕𝑢
= −

1

𝑘𝑥 cos 𝜃
  (43) 

𝜕𝑦

𝜕𝑢
= −

1

𝑘𝑦 sin 𝜃
  (44) 

𝜕𝑥

𝜕𝜔
=

𝑎

𝑘𝑥 sin 𝜃 
  (45) 

𝜕𝑦

𝜕𝜔
= −

𝑎

𝑘𝑦 cos 𝜃 
  (46) 

From Equation 31: 

𝜕𝐸

𝜕𝑥
= −𝑒𝑥   (47) 

𝜕𝐸

𝜕𝑦
= −𝑒𝑦  (48) 

Replacing Equation 5 in Equations 27 and 28: 

𝜕𝑢

𝜕𝑜𝑢
= 𝑓′(𝑜𝑢) = 1 − tanh2(𝑜𝑢)  (49) 

𝜕𝜔

𝜕𝑜𝜔
= 𝑓′(𝑜𝜔) = 1 − tanh

2(𝑜𝜔)  (50) 

From Equations 29 and 30, it is obtained: 

𝜕𝑜𝑢

𝜕𝑎1
2 = cos 𝜃  (51) 

𝜕𝑜𝜔

𝜕𝑎1
2 = −

1

𝑎
sin 𝜃  (52) 

𝜕𝑜𝑢

𝜕𝑎2
2 = sin 𝜃  (53) 

𝜕𝑜𝜔

𝜕𝑎2
2 =

1

𝑎
cos 𝜃  (54) 

By Equation 5, the derivative of the activation function: 

𝜕𝑎1
2

𝜕𝑍1
2 =  1 − tanh2(𝑒𝑥𝑘𝑥)  (55) 

𝜕𝑎2
2

𝜕𝑍2
2 = 1 − tanh2(𝑒𝑦𝑘𝑦)  (56) 

The derivatives, from Equations 18 and 19 are:  

𝜕𝑍1
2

𝜕𝑘𝑥
= 𝑒𝑥  (57) 

𝜕𝑍2
2

𝜕𝑘𝑦
= 𝑒𝑦  (58) 

In general, the proposed approach uses a library to send control inputs to the robot and receive sensor data. By 

representing the NAO robot kinematics as a black box, the kinematic model of a mobile robot is used to compute 

positions and velocities based on the provided inputs. This abstraction simplifies and enhances the efficiency of both the 

controller design process and the simulation of trajectory tracking. 

This methodology is inherently generalizable to other robotic platforms, including humanoid robots and robots with 

different kinematic models, due to its modular structure and reliance on a neural network-based dynamic gain control. 

The neural network's ability to learn and adapt to different kinematic configurations enables the approach to 

accommodate a wide range of robots, from those with simpler motion dynamics to those with more complex 

mechanisms. 

However, generalizing this method to robots with significantly different motion dynamics or without dedicated 

control libraries for joint-level actuation presents challenges. In such cases, the absence of a predefined control interface 

may affect the implementation and performance of the kinematic or dynamic model. To address this, additional 

preprocessing layers or tailored neural network training may be required to ensure accurate trajectory tracking. 
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Despite these considerations, the adaptability of the proposed controller to diverse robot types highlights its potential 

for broader application, provided that necessary adjustments are made to account for variations in kinematic and dynamic 

properties. 

5- Experimental Tests 

CoppeliaSim Edu, a comprehensive robotic simulation platform, offers an integrated development environment for a 

wide range of robotics applications. Its strength lies in its ability to precisely simulate individual robot components, 

considering their kinematics, dynamics, and interactions with the environment. This granular control is achieved through 

various control mechanisms [31, 32]. MATLAB-based controllers are seamlessly integrated into CoppeliaSim via plug-

ins, enabling flexible and efficient simulation. Figure 6 illustrates the navigation interface of the corresponding software, 

including the NAO robot. 

 

Figure 6. NAO in CoppeliaSim 

The proposed neural network-based controller is implemented and tested on the NAO humanoid robot, a 

programmable and interactive platform developed by Aldebaran Robotics. NAO, widely used in research, education, 

and human-robot interaction applications, features 25 degrees of freedom: 5 in each leg, 5 in each arm, 2 in each hand, 

and 2 in the neck. Its advanced hardware enables real-time data acquisition, which is essential for ensuring precise 

trajectory tracking and maintaining system stability [24, 31].  

Our method employs an online learning mechanism that dynamically updates the neural network during operation, 

removing the need for offline training. The computational load of the neural network is minimal and carefully managed 

to align with the robot processing capabilities. This is achieved by optimizing the architecture, limiting the number of 

layers and neurons, and using efficient algorithms such as backpropagation. These measures ensure that the controller 

can dynamically adjust gains without introducing delays, maintaining real-time performance. 

The maximum speed of the NAO robot, 0.6 km/h, helps ensure that the controller operates within feasible 

computational limits, preventing saturation of the processing cache or excessive power consumption. Energy efficiency 

is a critical consideration for small humanoid robots like NAO, and the controller is specifically designed to minimize 

unnecessary computations. By focusing on error correction at 20 ms intervals, the proposed approach keeps energy 

consumption within acceptable bounds, even during extended operations. This balance between real-time control and 

energy efficiency makes the method practical and effective for trajectory tracking in small humanoid robots. 

Empirical tests in the CoppeliaSim environment confirm that the real-time learning process does not negatively affect 

the robot responsiveness. Instead, it improves trajectory tracking by generating smoother control signals and enabling 

faster convergence to the desired path, even in the presence of disturbances. For robots with more degrees of freedom or 

more complex dynamics, additional optimization of the learning algorithm or hardware acceleration may be required to 

maintain similar performance. 
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Overall, the proposed method achieves a balance between adaptability, computational efficiency, and energy 

consumption. It is designed to operate efficiently within the NAO robot constraints while improving trajectory tracking 

performance in real time. 

The controller will be evaluated in the following trajectories: circular, square, and lemniscate (Equations 56, 57, and 

58, respectively). To assess the controller's performance, both graphical and numerical comparisons will be conducted 

(𝑥, 𝑦) = (0, 0)𝑚 is the starting point for all trajectories. 

{
𝑥𝑟𝑒𝑓(𝑘) =  cos(0.0167𝜋𝑘𝑇0)

𝑦𝑟𝑒𝑓(𝑘) =  sin(0.0167𝜋𝑘𝑇0)
  (59) 

{
 
 

 
 𝑥𝑟𝑒𝑓(𝑘) = (0.5 − 0.005𝑘𝑇0)∀𝑘𝑇0 𝜖 [0,200]; −0.5 ∀𝑘𝑇0 𝜖 [200,400];                 

(0.005 ∗ (𝑘𝑇0 − 400) − 0.5)∀𝑘𝑇0 𝜖 [400,600]; 0.5 ∀𝑘𝑇0 𝜖 [600,800];                

𝑦𝑟𝑒𝑓(𝑘) = 0.5  ∀𝑘𝑇0 𝜖[0,200]; (0.5 − 0.005 ∗ (𝑘𝑇0 − 200)) ∀𝑘𝑇0 𝜖 [200,400];

−0.5 ∀𝑘𝑇0 𝜖[400,600]; (0.005 ∗ (𝑘𝑇0 − 600) − 0.5)∀𝑘𝑇0 𝜖 [600,800];             

  (60) 

{
𝑥𝑟𝑒𝑓(𝑘) = sin(0.0143𝜋𝑘𝑇0)

𝑦𝑟𝑒𝑓(𝑘) = sin(0.0286𝜋𝑘𝑇0)
  (61) 

𝑘𝑥 = 1, 𝑘𝑦 = 1 , 𝛼 = 0.00004 are the initial parameters for ANN controller presented in Equations 13 and14. In 

addition, 𝑘𝑥 = 1, 𝑘𝑦 = 1 are the initial parameters for the conventional kinematic controller Equation 12. 

The gain values were determined through a heuristic method, balancing various trade-offs. Lower gains result in 

slower convergence to the desired trajectory, whereas higher gains can speed up convergence but may reduce tracking 

accuracy and compromise stability. Moreover, elevated gain values increase linear and angular velocities, which could 

place additional stress on the actuators. 

To determine the efficacy of the neural network-based kinematic controller, we will compare it to a conventional 

proportional kinematic controller. This choice is motivated by the widespread use of proportional controllers in 

trajectory-tracking literature. Many existing methods concentrate on addressing the dynamic within cascade structures, 

highlighting the exterior loop that controls kinematics. Our proposed neural network-based controller aims to improve 

upon this aspect. 

The comparison of controller performance will be based on performance indexes, numerical metrics used in control 

systems to evaluate effectiveness and guide parameter selection. Optimal performance is typically achieved by 

minimizing these indices. 

The ISE index (Equation 62) is a key metric for system tuning. Minimizing the ISE improves the performance and 

reduce the energy consumption required to reach the corresponding reference [33]. 

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
𝑡

0
  (62) 

IAE index (Equation 63), is employed in system calibration. Minimizing the IAE index ensures an adequate damping 

and transient response [25]. 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡

0
  (63) 

ISU index (Equation 64) quantifies the controller effort. Minimizing the ISU index reduces the energy consumption 

required by the controller [26]. 

𝐼𝑆𝑈 = ∫ 𝑢2(𝑡)𝑑𝑡
𝑡

0
  (64) 

Figure 7-a highlights the superior trajectory tracking performance of the ANN controller compared to the proportional 

controller, while Figure 7-b depicts the corresponding error. The ANN controller achieves smoother and less oscillatory 

behavior, leading to faster convergence, especially during the initial stages of the simulation. In contrast, as illustrated 

in Figure 8, the proportional controller produces significant and excessive fluctuations in the control signals for both 

velocities. These oscillations not only reduce tracking accuracy but also pose a risk to the longevity of the humanoid 

actuators. Moreover, the saturation of the linear velocity indicates that the humanoid is operating at its maximum speed 

limits. Although the oscillations diminish over time as the humanoid aligns with the desired trajectory, the ANN 

controller's stable and efficient control signals clearly outperform the proportional controller, offering improved tracking 

precision and enhanced actuator durability. 



Emerging Science Journal | Vol. 9, No. 2 

Page | 550 

  
(a) (b) 

Figure 7. a) Circular Trajectory; b) Tracking Error 

  
(a) (b) 

Figure 8. Velocity a) Linear; b) Angular 

Figure 9 illustrates the dynamic evolution of the controller gains as the humanoid navigates the trajectory, showcasing 

the real-time adjustments achieved through online learning. The ANN controller effectively reduces oscillations, 

resulting in smoother and more accurate trajectory tracking. This improvement stems from the controller's ability to 

automatically fine-tune the plant gains, enabling faster convergence to the desired path. As a result, the linear speed 

control signal remains within acceptable limits, avoiding saturation and ensuring optimal performance. 

 

Figure 9. Adaptive Kinematic Control with Neural Networks for Circular Trajectories 

Figure 10-a demonstrates the enhanced performance of the humanoid robot on a 1-meter square trajectory achieved 

using the ANN controller. Figure 10-b highlights the significant reduction in oscillations and the faster convergence 

achieved by the ANN controller compared to the proportional (P) controller. These advantages are particularly evident 

at the test's starting point and when navigating around corners. 
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(a) (b) 

Figure 10. a) Square Trajectory; b) Tracking Error 

As shown in Figure 11, the Proportional controller exhibits significant and excessive fluctuations in the control 

signals, which hinder the humanoid's ability to maintain effective control. 

  
(a) (b) 

Figure 11. Velocity a) Linear; b) Angular 

Figure 12 illustrates the dynamic adaptive gain adjustments of the controller as the robot follows its trajectory. The 

neural network-based kinematic controller successfully reduces oscillations, resulting in a smoother and more precise 

path. This improvement is due to the controller's capability to automatically optimize plant gains in real time, allowing 

the humanoid's trajectory to rapidly align with the desired path. 

 

Figure 12. Adaptive Gain Control Using Neural Networks for Square Trajectories 

Figure 13-a illustrates the humanoid's performance on a lemniscate trajectory, while Figure 13-b depicts the 

corresponding tracking error. Notably, the ANN controller achieves a significant reduction in oscillations within the 

angular velocity, as shown in Figure 14. Despite this improvement, it is important to emphasize that both controllers 

effectively track the trajectory. 
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(a) (b) 

Figure 13. a) Lemniscate Trajectory; b) Tracking Error 

  
(a) (b) 

Figure 14. a) Linear Velocity in Lemniscate Trajectory; b) Angular Velocity in Lemniscate Trajectory 

Figure 15 visually illustrates the dynamic adjustment of controller gains as the robot navigates its intended trajectory. 

These real-time adjustments highlight the adaptive capabilities of the control system, enabling it to respond effectively 

to changes in the operating conditions.  

 

Figure 15. Optimizing Neural Network Gains for Lemniscate Control 

This adaptability is crucial for handling the inherent nonlinearities and disturbances within the system, such as 

variations in the robot's workspace or unexpected perturbations. By dynamically fine-tuning the gains, the controller 

maintains stability and ensures that the trajectory tracking remains precise, even under challenging conditions. This 

behavior underscores the robustness of the control strategy and its ability to optimize performance while minimizing 

oscillations and maintaining the control signals within acceptable bounds. 
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In general terms, the traditional Proportional (P) controller and the ANN controller are both capable of tracking the 

chosen trajectory. However, when the robot deviates from the reference point, the advantages of the proposed ANN 

controller become evident. The ANN controller effectively minimizes oscillations, resulting in a smoother and more 

stable approach. These oscillations, particularly in linear and angular velocity, can negatively impact actuator 

performance if they become excessive. 

The neural network-based controller significantly reduces oscillations in angular velocity, producing smoother signals 

that remain within acceptable limits. This rapid convergence to the reference value represents a key advantage of this 

approach over traditional methods. 

Oscillations in linear velocity primarily arise from the system's inherent nonlinearities. While controllers can stabilize 

the system, mechanical and dynamic nonlinearities may still induce minor oscillations, especially near workspace 

boundaries or under varying operating conditions. Furthermore, interactions between axes in robots with multiple 

degrees of freedom can contribute to unintended oscillations, even with independent axis stabilization. 

Figure 16 provides a quantitative comparison of the ANN controller's performance against the conventional P 

controller. The ANN controller achieves a substantial improvement of over 10% in linear speed indexes, with even 

greater gains in angular velocity indexes, exceeding 100% on certain trajectories. These results validate the effectiveness 

of the proposed methodology. Although the quantitative improvements in the ISE and IAE indexes are relatively modest, 

the ANN controller delivers a notable qualitative enhancement in trajectory tracking accuracy. 

     
                                                           (a)                                                                                                                 (b) 

 
(c) 

Figure 16. Evaluation Indexes a) Circle, b) Square, c) Lemniscate 

6- Conclusion 

The present paper shows a neural network-based controller specifically designed for trajectory tracking in the NAO 

humanoid robot. The controller is rooted in a kinematic controller model and is structured as a multilayer perceptron. It 

employs an online self-tuning mechanism using backpropagation to dynamically adjust controller gains and minimize 

tracking errors. Unlike traditional approaches, this method eliminates the need for offline training. 
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Qualitative comparisons with the widely used Proportional (P) controller highlight the improved performance 

characteristics of the proposed neural network controller. The neural network controller exhibits significantly smoother 

operation and faster convergence to the reference trajectory, particularly during the initial stages of the simulation. These 

improvements result from the controller's ability to minimize trajectory errors and generate more stable control signals 

for both linear and angular velocity. This stability not only enhances tracking accuracy but also contributes to increased 

actuator durability, ensuring better long-term performance. 

The proposed method is designed for trajectory tracking of a single robot, but it is scalable to multi-robot systems 

with certain adaptations. Extending the approach would require addressing the combined dynamics and kinematics of 

the entire system, which increases complexity. If the NAOqi library supports simultaneous robot control, the method 

could leverage this capability as a black-box system to manage the position and velocity of each robot, streamlining 

implementation through centralized data acquisition and control. However, additional mechanisms for inter-robot 

communication, collision avoidance, and coordination would be necessary to ensure effective interaction among robots 

in shared workspaces. Modifying the neural network architecture to handle multiple inputs and outputs representing all 

robot states, combined with distributed control strategies, could further enhance scalability and maintain computational 

efficiency in multi-robot scenarios. 

6-1- Future Work 

The simulation results demonstrate the potential of the proposed neural network-based controller; however, real-

world scenarios introduce challenges. A key concern is the computational load, as real-time calculations may strain the 

robot's onboard processing capabilities, potentially affecting performance. In future work, the proposed controller will 

be implemented on the NAO robot to validate its adaptability and reliability under real-world conditions. Challenges 

such as sensor noise, communication delays, hardware constraints, and environmental factors like uneven terrain or 

external disturbances will be addressed through strategies including advanced filtering techniques, hardware-in-the-loop 

testing, and real-time optimization using external processors or hardware accelerators. Additionally, experiments on 

physical robots will assess the controller's robustness to dynamic interactions, and reinforcement learning or hybrid AI 

methods will be explored to enhance performance in complex environments. These efforts aim to ensure the method's 

practicality, efficiency, and robustness for diverse robotic applications. 
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