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Abstract 

This study introduces CacheCraft, a novel approach for heterogeneous Content Store (CS) capacity 

allocation in Named Data Networking (NDN). Traditional NDN allocates CS capacity uniformly 

across routers, assuming equal storage requirements for all nodes. However, user content preferences 
and traffic patterns vary significantly, necessitating a more tailored allocation strategy. Additionally, 

the complexity of network topologies exacerbates the challenge, as static and homogeneous CS 

allocations lead to inefficiencies, increased latency, and reduced cache effectiveness in dynamic and 
dense networks. CacheCraft addresses these challenges by leveraging the PageRank algorithm to 

calculate the centrality of each node in the network. This centrality value determines the proportion 

of CS capacity assigned to each node, optimizing storage for nodes with higher traffic and strategic 
importance. The use of PageRank ensures scalable and reliable centrality computation, even in 

complex topologies. The performance of CacheCraft is validated across diverse network scenarios, 

including topologies of varying complexity, using metrics such as Cache Hit Ratio (CHR), average 
latency, and time complexity. Experimental results demonstrate that CacheCraft achieves an average 

improvement of 7.8% in CHR and a 5.6 ms reduction in latency compared to state-of-the-art 

methods. Moreover, CacheCraft maintains algorithmic computational efficiency, making it suitable 

for real-world deployment in complex and dynamic NDN environments. These findings highlight 

CacheCraft as a robust and scalable solution for optimizing NDN performance through adaptive and 

efficient CS capacity allocation.  
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1- Introduction 

The rapid growth of internet users has compelled service providers to anticipate increasing demands to ensure reliable 

quality of service (QoS) [1, 2]. As more devices connect to the network, the volume of data requested and transmitted 

grows exponentially [3, 4]. Traditional internet architectures, being host-centric, are inadequate for managing the 

complexity of future networks. These architectures rely heavily on location-based data retrieval, creating significant 

bottlenecks and increasing latency when multiple users request identical content [5]. This limitation poses a considerable 

challenge in maintaining the quality of experience (QoE) for users in high-demand environments [6, 7].  

To address these challenges, Named Data Networking (NDN) has emerged as a promising paradigm for the future 

internet. Unlike traditional approaches, NDN adopts a content-centric or information-centric methodology, which is 
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particularly well-suited for environments such as the Internet of Things (IoT), multimedia content delivery, and ad hoc 

networks [3, 5]. Its in-network caching mechanism is a game changer, as it reduces latency, improves QoE, and lowers 

operational costs. By caching previously accessed content at NDN routers, NDN minimizes dependency on original data 

sources, enabling faster content delivery [8]. For example, multimedia applications in NDNs can deliver cached content 

with reduced buffering and quicker load times, meeting the growing demand for high-quality streaming and real-time 

services [9, 10]. 

A fundamental challenge in NDN is determining “WHERE” to store content and “WHAT” content to cache [11]. 

Accurate caching decisions directly impact network performance, especially in large-scale networks with complex and 

dynamic topologies [12, 13]. While caching replacement policies, such as least recently used (LRU) policies, influence 

content eviction processes, caching placement strategies (CPSs) have a more significant effect on enhancing network 

performance [14, 15]. Therefore, optimizing the CPS in the NDN, with an emphasis on topology awareness, is crucial. 

The effectiveness of a caching placement strategy is heavily influenced by the underlying network topology [16]. On-

path caching strategies, such as Content Cache Everywhere (CEE), store content along the path from the data source to 

the user [15]. While effective in static networks, these strategies become less efficient in dynamic topologies, such as 

those found in IoT or mobile networks, where access paths frequently change [17]. Cached content on outdated paths 

becomes underutilized, reducing overall system efficiency. Conversely, off-path caching strategies store content at 

alternative nodes, offering greater adaptability but at the cost of greater complexity because of the need for optimal 

location analysis [18, 19]. 

Topology-aware caching strategies provide promising solutions by leveraging network topology characteristics to 

identify strategically essential nodes [20, 21]. Centrality metrics, such as betweenness centrality and closeness centrality, 

can effectively prioritize nodes for caching on the basis of their connectivity and role within the network [1]. However, 

these metrics are often computationally expensive, particularly in large-scale and dynamic networks [6, 22, 23]. In 

contrast, PageRank centrality offers a scalable and computationally efficient alternative, balancing node importance with 

network connectivity [24, 25]. For example, in networks such as the Palapa Ring, PageRank centrality has been shown 

to increase caching efficiency while reducing computational overhead, making it highly suitable for real-world 

implementations. 

Even though existing centrality-based caching strategies, such as PBCE [26] and DCAM [27], have made progress in 

optimizing cache placement and performance metrics, they often assume homogeneous cache size allocation, which fails 

to address the varying traffic demands of real-world networks. On the other hand, methods such as C3CPS [28] and 

betweenness-centrality-based approaches [29] introduce significant computational overhead, making them impractical 

for large-scale or dynamic topologies. These challenges highlight the need for an adaptive, scalable caching framework 

capable of dynamically allocating cache sizes on the basis of real-time network dynamics—a gap that this study seeks 

to fill. 

This study proposes CacheCraft, a topology-aware caching framework that leverages PageRank centrality to optimize 

content store (CS) capacity allocation. By dynamically allocating heterogeneous CS capacities and strategically caching 

popular content, CacheCraft ensures efficient resource utilization and improved network performance. Unlike existing 

approaches, CacheCraft integrates topology awareness into caching decisions, prioritizing nodes on the basis of both 

connectivity and traffic dynamics. The key contributions of this research include the following: 

 A systematic approach that integrates placement, size dimensioning, and replacement processes is developed to 

optimize content storage and enhance NDN performance. 

 An adaptive caching strategy that leverages PageRank centrality for efficient and scalable allocation of CS 

capacity on the basis of node significance is introduced. 

 Improving centrality metrics to address the challenges posed by large-scale and dynamic topologies, ensures 

enhanced adaptability and performance. 

 Validating CacheCraft’s effectiveness via real-world topologies, including the GARR, Palapa Ring, and Tiscali. 

 Conducting comprehensive simulations on the ICARUS platform to evaluate the impact of content popularity, 

topology complexity, and cache capacity, benchmarking CacheCraft against state-of-the-art techniques. 

The remainder of this paper is organized as follows: Section 2 provides an overview of the theoretical foundation, 

discusses existing caching mechanisms, and highlights the limitations of current approaches, culminating in a 

comparative analysis and the introduction of CacheCraft. Section 3 presents a detailed explanation of the proposed 

topology-aware dynamic caching allocation mechanism, including parameter definitions and quota computation 

methods. Section 4 outlines the experimental setup, evaluates the performance through various metrics, and discusses 

the results. Finally, Section 5 concludes the study and suggests directions for future work. 
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2- Literature Review 

2-1- Basic Theory and Formulas 

The centrality value serves as a reference for determining the cache capacity size of each node. Nodes with higher 

centrality values are assigned to larger cache capacities to ensure optimal resource utilization. This section outlines 

commonly used centrality algorithms that form the foundation of network analysis [30, 31]: 

a. Uniform Centrality 

Cache capacities are distributed evenly across all nodes by dividing the total cache capacity by the number of available 

nodes, assuming uniformity in network importance. 

b. Degree Centrality 

Degree centrality ranks nodes on the basis of their connectivity. Nodes with more direct connections are assigned 

proportionally larger cache capacities [32].  

c. Betweenness Centrality 

Betweenness centrality measures the extent to which a node lies on the shortest path between other nodes [33]: 

𝐵𝐶 (𝑖) = ∑
𝜎(𝑠,𝑡|𝑖)

𝜎(𝑠,𝑡)𝑠,𝑡 ∈ 𝑖   (1) 

where 𝜎 (𝑠,𝑡) is the number of shortest paths between nodes 𝑠 and 𝑡, and 𝜎(𝑠,𝑡∣i) is the number passing through node i. 

Formula 1 is used to determine the centrality value of cache nodes in the topology. This value is then used to allocate 

the size of the cache capacity proportionally. 

d. Eigenvector Centrality 

The centrality value of a node depends not only on the number of neighbouring nodes, but also on its centrality value. 

Equation 2 is used to calculate the centrality of eigenvector [30]. 

𝐸𝐶(𝑖) =
1

𝜆
∑ 𝐴𝑖𝑗𝐸𝐶(𝑗)𝑛

𝑗=1   (2) 

Let 𝐸𝐶(𝑖) be the eigenvector centrality (EC) for node i, Aij be the connection between node i and node j, λ be the 

largest eigenvalue of A, 𝐸𝐶(𝑗) be the EC of node j and n is the total number of nodes. To calculate EC, it is necessary 

to find the value of the largest eigenvector λ and the associated vector of eigenvectors. With simple rearrangement we 

can express it as an eigenvector equation in Equation 3 by defining the vector 𝐸𝐶⃗⃗⃗⃗  ⃗ = (𝐸𝐶(1), 𝐸𝐶(2), 𝐸𝐶(3)… ). 

𝐴𝐸𝐶⃗⃗⃗⃗  ⃗ =  𝜆𝐸𝐶⃗⃗⃗⃗  ⃗  (3) 

e. Closeness Centrality 

Closeness centrality quantifies the proximity of a node to all other nodes in the network. The node's ability to 

disseminate information throughout the topology is demonstrated [34, 35]. Equation 4 presents the mathematical 

expression for closeness centrality. In this equation, n represents the total number of nodes in the network, CC(i) is the 

closeness centrality at node i, and d(i, j) represents the shortest distance between nodes i and j [29]. 

𝐶𝐶(𝑖) =  
𝑛−1

∑ 𝑑(𝑖,𝑗)𝑛
𝑗=1,𝑗≠𝑖

  (4) 

f. PageRank Centrality 

PageRank centrality, a variant of eigenvector centrality developed by Google [36, 37], ranks nodes on the basis of 

their connectivity and influence within the network. Unlike other centrality measures, it incorporates both direct and 

indirect connections, making it well- suited for dynamic network environments. The mathematical expression is [38]: 

𝑃𝑅𝑘(𝑖) = {

1

𝑛
 ,                                                   𝑘 = 1 

(1−𝑑)

𝑛
+ 𝑑 𝑥 ∑

𝑃𝑅𝑘−1(𝑗)

𝐿(𝑗)
, 𝑘 > 1𝑗 ∈ 𝑅𝑁

  

k = {1, 2, 3, - .., kmax} 

(5) 

where 𝑘 is the iteration number, 𝑖 is the current node, 𝑃𝑅𝑘(𝑖) is the PageRank centrality at iteration 𝑘, 𝑛 is the number of 

nodes, 𝑅𝑁 is the set of neighbors of node 𝑖, 𝐿(𝑗) is the number of links of node 𝑗, and 𝑑 is the damping factor (ranging 
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from 0 to 1). 𝑑 represents the probability of the user accessing new content randomly. The closer d is to 1, the greater 

the probability of the user accessing new content randomly. This mechanism allows reliable centrality calculations by 

predicting user behavior across the network.  

By integrating traffic flow and topological influence, PageRank centrality addresses the limitations of traditional 

centrality metrics, ensuring that caching placement decisions are both scalable and efficient. 

2-2- Overview of Named Data Networking (NDN) 

Named Data Networking (NDN) represents a transformative shift from traditional host-centric internet architectures 

to content-centric networking, where content is accessed by its name rather than its location [11, 39]. One of NDN’s 

core innovations is in-network caching, which allows routers to temporarily store content along the delivery path. This 

mechanism reduces latency, enhances the quality of experience (QoE), and optimizes bandwidth usage [11, 40]. 

However, the default caching strategy in NDN, known as Cache Everything Everywhere (CEE) [41], while simple, 

suffers from significant drawbacks. CEE replicates content indiscriminately across all routers, leading to redundant 

content storage, inefficient use of cache resources, and increased bandwidth consumption. These limitations highlight 

the need for more sophisticated caching mechanisms that optimize cache placement and resource allocation while 

minimizing redundancy. 

Figure 1 illustrates the broader in-network caching mechanisms, comprising four interconnected processes: cache 

placement, cache size dimensioning, content placement, and cache replacement. These processes encompass diverse 

strategies to address bandwidth consumption, resource allocation, and content eviction. 

 

Figure 1. Overview of In-Network Caching Mechanisms and CacheCraft's Selected Approaches 

The proposed framework, CacheCraft, selectively employs specific mechanisms from each process to optimize 

caching performance in dynamic and complex network environments: 

 Cache placement: Implements a topology-aware centrality- path strategy, prioritizing nodes on the basis of their 

centrality within the network topology to increase efficiency. 

 Cache size dimensioning: This method adopts heterogeneous allocation, aligning the cache capacity with node 

significance to address traffic variability. 

 Content placement: This uses a reactive approach, dynamically adjusting content placement in response to demand 

patterns. 

 Cache replacement: This method relies on the LRU policy to manage content eviction efficiently, ensuring high 

cache hit ratios. 

While Figure 1 highlights the full spectrum of in-network caching strategies, CacheCraft’s targeted selection 

demonstrates its suitability for real-world deployment, balancing computational efficiency with improved network 

performance. 

2-3- Cache Placement Strategies 

2-3-1- On-Path and Off-Path Caching 

Traditional caching placement strategies are categorized as on-path and off-path caching. On-path caching, as 

implemented in the content cache everywhere (CEE) approach, stores content along the delivery path. While this ensures 

fast access for repeat requests, it suffers from inefficiency in dynamic topologies, such as mobile or IoT networks, where 

frequent path changes render cached data inaccessible. Conversely, off-path caching distributes content across alternative 

nodes, optimizing cache loads but at the cost of increased computational complexity in determining optimal locations 

[14, 20, 28, 42, 43]. 
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CacheCraft addresses these limitations through a topology-aware caching strategy, which combines the adaptability 

of off-path caching with the efficiency of dynamic placement. In real-world simulations, CacheCraft reduced the average 

latency by 6.8 ms compared with that of betweenness-based off-path strategies, demonstrating its ability to optimize 

performance even in dynamic topologies such as the Palapa Ring. 

2-3-2- Centrality-Based Caching Placement 

Centrality-based approaches have emerged as powerful tools for optimizing caching placement by leveraging network 

topology characteristics. Betweenness centrality, as demonstrated by Lal & Kumar [29], and He et al. [44], prioritizes 

nodes that lie on the shortest paths between others. While this approach improves CHR by up to 10% over uniform 

placement in smaller networks, its computational cost grows exponentially with network size, as seen in the Tiscali 

topology. Closeness centrality focuses on nodes with minimal cumulative distances to others, reducing latency by placing 

caches closer to end-users. Studies by Amadeo et al. [45], and Koide et al. [46] demonstrated latency reductions of up 

to 7 ms compared with uniform cache placement. However, their static computation of centrality values limits 

adaptability in dynamic environments. 

2-4- Cache Size Dimensioning (CSD) 

Cache size dimensioning (CSD) determines the optimal capacity of Content Stores (CS) at each node. Traditional 

methods often assume homogeneous cache sizes, as seen in studies by Rossi & Rossini [47], and Lal & Kumar [29]. 

While this simplifies implementation, it fails to account for variations in traffic demand, leading to inefficiencies in 

cache utilization. Uniform allocation resulted in up to a 30% increase in cache miss rates in GARR topologies due to 

congestion at high-traffic nodes. 

CacheCraft addresses these issues by employing heterogeneous CS allocation on the basis of PageRank centrality. 

Nodes with higher centrality values are allocated larger cache capacities, ensuring efficient storage of frequently accessed 

content. The simulation results show that CacheCraft achieves an average latency reduction of 5.6 ms compared to 

homogeneous strategies, making it particularly effective for diverse and large-scale network scenarios.  

2-5- Limitations of the Current Approach 

Despite advancements in caching strategies, several limitations persist: 

1. Redundancy in Centrality-Based Methods 

Centrality-based schemes such as CMBA [29] suffer from redundancy when nodes with identical centrality values 

store the same content, leading to inefficient resource use. CacheCraft eliminates this redundancy by incorporating 

PageRank’s ability to prioritize nodes on the basis of connectivity and influence, reducing content duplication by 15% 

compared with CMBA. 

2. Static Assumptions in Topology 

Strategies such as NICE [48] perform well in static networks but struggle with dynamic environments such as the IoT 

or mobile networks. CacheCraft’s dynamic adaptability allows it to achieve higher CHR and lower latency in scenarios 

with frequent topology changes, such as the Palapa ring network. 

3. Computational Complexity 

Betweenness and closeness centralities incur exponential computation times in large networks. For example, 

betweenness-based methods experience 50% greater processing times in Tiscali than CacheCraft does, which maintains 

efficiency through iterative PageRank calculations. 

2-5-1- Importances of Centrality Paths and Cache Size Dimensioning 

Centrality-based caching strategies have been widely adopted in networking paradigms, especially for their ability to 

prioritize strategically important nodes in cache placement. These methods leverage metrics such as betweenness, 

closeness, and custom centrality measures to optimize content delivery and reduce latency. Table 1 provides a detailed 

review of centrality-path-based caching strategies, focusing on their placement techniques, cache size dimensioning 

methods, and centrality approaches. 
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Table 1. Review of Centrality-Based Caching Strategies and Cache Size Dimensioning in Networking Paradigms 

References Name Scheme 
Cache 

Placement 

Cache Size 

Dimensioning 

Centrality 

Method 

Network 

Scenario 
Key Observation 

Luo & An (2017) 

[49] 
NCBIC Centrality-path Homogeneous Betweenness CCN 

Balances caching load among nodes but faces cache 

overload on central nodes. 

An & Luo (2018) 
[50] 

EEBINC Off-path Heterogeneous Betweenness CDN 
Focuses on minimizing energy consumption but suffers 
from high computational complexity. 

Lal & Kumar (2018) 

[29] 
CMBA Centrality-path Homogeneous Betweenness CCN 

Effective in static topologies but has limited adaptability 

to dynamic networks. 

Khan et al. (2018) 

[48] 
NICE Centrality-path Homogeneous Custom ICN 

Enhances eviction rates but struggles to adapt to frequent 

topology changes in dynamic networks. 

Lal & Kumar (2019) 

[26] 
PBCE Centrality-path Homogeneous Betweenness NDN 

Improves cache performance but creates redundancy 

when nodes share identical centrality values. 

Zheng et al. (2019) 

[51] 
BEP Centrality-path Heterogeneous Betweenness CCN 

Uses edge popularity but experiences high node 

replacement rates, reducing cache stability. 

Delvadia et al. (2019) 

[52] 
ERS Centrality-path Homogeneous Betweenness ICN 

Optimizes routing but assumes uniform cache sizes, 

limiting scalability in large networks. 

Meng et al. (2019) 
[53] 

DCS On-path Heterogeneous None VSN 
Improves caching in vehicular networks but faces 
redundancy in limited mobility environments. 

Amadeo et al. (2022) 

[15] 
PaC Centrality-path Heterogeneous Closeness NDN-IoT 

Reduces retrieval delays but has high computational 

overhead for accurate closeness calculations. 

Duan et al. (2022) 

[27] 
DCAM On-path Homogeneous None ICN 

Reduces loss recovery delays but relies on static content 

retrieval patterns, limiting adaptability. 

Negara et al. (2023) 

[28] 
C3CPS Centrality-path Heterogeneous Betweenness NDN 

Effective multi-criteria decisions but computationally 

intensive for large networks. 

Ali et al. (2021) 

[54] 
NameCent Off-path Heterogeneous Name Centrality NDN 

Mitigates data broadcast storms but lacks scalability in 

dynamic topologies. 

Alduayji et al. (2023) 

[55] 
PF-EdgeCache On-path Homogeneous None NDN 

Efficient edge caching but increases computational 

complexity with freshness-based metrics. 

Kumar & Tiwari 
(2023) [56] 

DPPCOP 
Partitioned Off-

path 
Heterogeneous 

Distance-based 
Metric 

CCN 
Improves cache hit ratio but requires frequent partitioning 
adjustments in diverse applications. 

He et al. (2024) 

[44] 
EABC Centrality-path Heterogeneous Betweenness NDN-IoT 

Balances energy efficiency and caching performance but 

struggles in latency-critical environments. 

Amadeo et al. (2023) 

[45] 
CCC Centrality-path Heterogeneous Closeness SDN 

Reduces delays but introduces latency due to centralized 

SDN controller-based decisions. 

Koide et al. (2024) 

[46] 
ICANET Centrality-path Heterogeneous Closeness NDN 

Reduces response delays but lacks real-time adaptability 

in dynamic networks. 

Present Study 
CacheCraft 

(Propose) 
Centrality-path Heterogeneous PageRank NDN 

Achieves higher cache hit ratio and reduces latency with 

scalability in large, and dynamic networks. 

One recurring limitation in these studies is the assumption of homogeneous cache sizes across nodes, which neglects 

the varying traffic demands in real-world networks. Homogeneous allocation often results in inefficient resource 

utilization, frequent content replacement, and suboptimal cache hit ratios. The introduction of heterogeneous cache size 

dimensioning, guided by centrality metrics, has been identified as a critical step in overcoming these challenges. 

CacheCraft, introduced in this study, builds upon this foundation by integrating PageRank centrality for centrality-

path placement and heterogeneous cache size allocation. Unlike prior methods, CacheCraft dynamically adapts to 

changes in network topology, ensuring scalable and efficient caching performance in dynamic, large-scale networks. 

2-5-2- Filling the Gaps with the CacheCraft Algorithm 

As highlighted in Table 1, most existing caching strategies have made strides in optimizing performance metrics such 

as cache hit ratios and latency but suffer from critical limitations: 

1. Homogeneous Cache Size Allocation: 

Approaches such as DCAM [27], ERS [52], and PBCE [26] assume uniform cache sizes across nodes, leading to 

inefficient resource utilization and frequent content replacement in high-traffic areas. CacheCraft overcomes this by 

dynamically allocating heterogeneous cache sizes on the basis of PageRank centrality, optimizing resource usage. 

2. Limited Adaptability in Dynamic Networks: 

Strategies such as NICE [48], and DCAM [27] perform well in static network topologies but lack adaptability to 

dynamic environments, such as IoT or mobile networks. For example, NICE relies on precomputed centrality metrics, 

which become outdated in scenarios with frequent topology changes. CacheCraft overcomes this limitation by 

dynamically updating node centrality values to adapt to network dynamics. 
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3. High Computational Overhead: 

Centrality-based schemes, such as CMBA [29], and C3CPS [28] introduce significant computational complexity, 

particularly in large-scale networks. For example, C3CPS relies on multicriteria decision-making methods, which are 

computationally intensive. CacheCraft simplifies this process by focusing on PageRank centrality, which balances 

efficiency with scalability. 

4. Caching Redundancy: 

Redundancy in methods such as PBCE [26], where nodes with identical centrality values store the same content, leads 

to inefficient cache utilization. CacheCraft eliminates this by integrating connectivity and influence metrics within 

PageRank centrality for differentiated caching decisions. 

5. Trade-offs between Energy Efficiency and Performance: 

Approaches such as EABC [44] prioritize energy savings but compromise performance metrics such as latency and 

the cache hit ratio. CacheCraft balances energy efficiency and performance, making it suitable for IoT and large-scale 

network scenarios. 

By addressing these limitations, CacheCraft demonstrates superiority through dynamic adaptability, improved 

resource utilization, and reduced computational overhead. Its effectiveness is validated in diverse topologies such as the 

GARR and Palapa Ring, which achieve higher cache hit ratios and lower latency than existing methods do. 

3- Proposed Model: CacheCraft  

The CacheCraft algorithm is designed to identify the storage needs of NDN routers and allocate capacity on the basis 

of their centrality values. By integrating seamlessly with the leave copy everywhere (LCE) placement strategy, 

CacheCraft requires minimal additional processing, most of which occurs during the initial network setup. Furthermore, 

CacheCraft dynamically adapts centrality values in response to changes in network topologies, ensuring that its caching 

strategy remains efficient and scalable. This adaptability significantly enhances the overall efficiency of Named Data 

Networking (NDN) systems. CacheCraft has emerged as an effective solution for NDN network operators, enabling 

more efficient network design and performance optimization to meet evolving traffic and content delivery demands. 

Figure 2 illustrates the system model of CacheCraft. To allocate content store (CS) capacity to node i, the algorithm 

begins by calculating the node’s connectivity via the L(j) symbol, which represents the number of links connected to the 

node. Additionally, the set of neighboring nodes directly linked to node i is identified via the RN symbol. 

 

Figure 2. CacheCraft System Model 

Next, each NDN node computes its PageRank (PR) value iteratively via Formula 5: 

 In the first iteration (k = 1), all nodes are assigned an equal initial PageRank value, as no network connectivity is 

considered at this stage. 

 For subsequent iterations (k > 1), each node communicates with its neighboring nodes to collect their respective 

PR(j) values. For example, as depicted in Figure 2, node i sends requests to its neighboring nodes (J1, J2, J3) to 

retrieve their PR values. Node-i then uses this information to update its own PageRank value. This iterative process 

is performed across all the NDN nodes until the centrality values converge. 
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The damping factor in the CacheCraft prevents the algorithm from becoming stuck in loop cycles and ensures 

convergence by balancing random node transitions and link-following behavior. The value of this factor ranges between 

0 and 1. The closer to 1 the node transition behavior tends to continue following the existing links. 

Once the PageRank (PR) values of all nodes have been determined, CacheCraft calculates the storage capacity (SC) 

for each cache node 𝑅𝑐 via Equation 6: 

𝑆𝐶(𝑖) = 𝑃 ×  𝑐 ×  
𝑃𝑅𝑘𝑚𝑎𝑥(𝑖)

𝑃𝑅𝑇
  

 𝑠. 𝑡.  𝑖 ∈  𝑅𝑐 
(6) 

where 𝑆𝐶(𝑖) is the optimal cache capacity for node i. 𝑅𝑐 is the set of cache nodes in the network. 𝑃 is the cache budget, 

which represents the total percentage of cache capacity distributed across the network. 𝑐 is the number of content prefix 

variations in the network. 𝑃𝑅𝑘𝑚𝑎𝑥(𝑖) is the PageRank centrality of node i after kmax iterations. 𝑃𝑅𝑇 is the total sum of 

all PageRank centralities, as defined by Equation 7: 

𝑃𝑅𝑇 = ∑ 𝑃𝑅(𝑖)𝑖 ∈ 𝑅𝑐   (7) 

This formula ensures that the cache budget is allocated proportionally to each node’s centrality, with highly connected 

or frequently accessed nodes receiving larger allocations. 

Table 2 provides a comprehensive list of symbols, and their descriptions used in the CacheCraft algorithm, ensuring 

clarity and consistency in mathematical representations. These symbols are integral to defining the key parameters, 

intermediate values, and outputs of the proposed model. 

Table 2. Symbols are used to describe the algorithm 

Symbols Description 

𝑛 Number of nodes in the network. 

𝑐 Number of content prefix variations, representing the diversity of requested data. 

𝑑 Damping factor, set to 0.85, balancing the probability of following links versus random jumps. 

𝑘𝑚𝑎𝑥 Maximal iteration 

𝑅𝑐 Set of cache nodes in the network. 

𝑅𝑁 Set of neighbors directly connected to a given cache node 

𝑃𝑅𝑘(i) PageRank centrality of node-  at the 𝒌-th iteration 

𝑃𝑅𝑘−1(j) PageRank centrality of the -th neighbor node of  at previous – 1 iteration 

𝑃𝑅(𝑖) Final PageRank centrality of node- 𝒊 

𝑃𝑅𝑇 Total sum of all PageRank centralities across the network. 

𝐿(𝑗) Number of links connected to the -th neighbor node 

𝑆𝐶(𝑖) Optimal cache capacity of node- 𝒊, representing the allocated Content Store (CS) size. 

𝑃 Cache budget, the total percentage of cache capacity distributed across the network. 

The pseudocode for CacheCraft, shown in Algorithm 1, details the systematic process for calculating optimal cache 

sizes. This includes: 

 Initialization: Assigning equal initial PageRank values to all nodes. 

 PageRank Iterations: Update the PageRank values iteratively on the basis of neighboring nodes’ contributions. 

 Cache Size Calculation: Allocating cache sizes proportionally to the final PageRank centrality values. 

 Output: Returning the optimal cache capacities for each router in the network. 

This approach ensures efficient resource utilization while dynamically adapting to changes in network topology. 
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Algorithm 1. Pseudocode of CacheCraft 

Input Topology, Cache budget (𝑷), Damping factor (𝒅), and Maximal iteration (𝒌𝒎𝒂𝒙) 

Output Optimal cache capacity (𝑆𝐶) 

1 for 𝑖 in 𝑛 do ← Calculate 𝑃𝑅(𝑖) 

2 for 𝑘 in 𝑘𝑚𝑎𝑥 do 

3 if 𝑘 = 1 do 

4 𝑃𝑅(𝑖) =
1

𝑛
  

5 else 

6 𝑃𝑅𝑘(𝑖) =  
(1−𝑑)

𝑛
+ 𝑑 × ∑

𝑃𝑅𝑘−1(𝑗)

𝐿(𝑗)𝑗∈𝑅𝑁 PRk(i) =
(1−d)

n
+ d × ∑

PRk−1(j)

L(j)j∈Rn   

7 Calculate PRT 

8 for 𝑖 in 𝑅𝑐 do 

9 Calculate 𝑆𝐶(𝑖) 

10 return Optimal content store capacity of each router 

3-1- Experimental Setup  

To evaluate the impact of the network topology and Network Centrality (NC) algorithms on the performance of 

Named Data Networking (NDN), we selected three real-world topologies: GARR, Palapa Ring, and Tiscali. These 

topologies represent diverse network structures and provide robust benchmarks for testing the proposed CacheCraft 

algorithm. This study assumes that the topology conditions are ideal (no node failures). 

3-1-1- Selected Network Topologies 

1) GARR 

The GARR topology supports Italian national universities and research organizations. It consists of 61 nodes and 75 

edges, including 27 cache nodes, 21 receiver nodes, and 13 source nodes [57]. This topology is characterized by high 

node density, with each node having a relatively small number of links. The maximum distance between a user and a 

server is 7 hops, with an average distance of 4 hops. This setup simulates a network with many dispersed connection 

points but limited connectivity per node. 

2) Tiscali 

Representing the Italian telecommunication network, Tiscali comprises 240 nodes and 404 edges, including 44 

content source nodes, 36 receiver nodes, and 160 cache nodes [28]. This topology depicts a dense network where nodes 

are highly interconnected. The maximum hop distance between users and servers is 11 hops, with an average hop distance 

of 7 hops [58]. This topology models a network with high connectivity, presenting unique challenges in cache 

distribution. 

3) Palapa Ring 

The Palapa Ring models Indonesia’s national fiber optic backbone network, which is designed to increase broadband 

accessibility across a vast region spanning 36,000 kilometers. It includes 83 nodes, comprising 10 content source nodes, 

7 receiver nodes, and 66 cache nodes. This topology is notable for its distribution arrangement and uniform link 

distribution. The maximum hop distance between users and servers is 18 hops, with an average hop distance of 8 hops. 

Figure 3 illustrates the Palapa ring topology, and Table 3 provides detailed node specifications, including user, server, 

and cache node placements. 

 

Figure 3. Palapa Ring Topology 
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Table 3. Specification Information for the Palapa Ring 

Device Node 

User [0, 12, 15, 46, 10, 32, 40, 78, 74, 67, 59, 55] 

Server [6, 8, 25, 30, 34, 38, 75, 72, 66, 82, 83, 47] 

Node NDN 
[1, 2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 33, 35, 36, 37, 39, 41, 42, 
43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 76, 77, 79, 80, 81] 

3-1-2- Simulation Environment 

This study uses the Icarus simulator, which employs the leave copy everywhere (LCE) strategy for cache placement. 

This mechanism instructs nodes accessing content to retain a copy locally. For cache replacement, the least recently used 

(LRU) method is applied, ensuring efficient content eviction by replacing the least recently accessed content when the 

content store is full [59]. The experimental parameters are as follows: 

 Cache capacity ratios: The cache budget ranges from 1% to 20% of the total content variety. 

 Traffic distribution: The Poisson distribution is applied to represent the traffic request pattern in real- world cases. 

 Content popularity distribution: A stationary Zipf’s distribution with 𝛼 = 0.8 is used to represent the user’s tendency 

toward content popularity in certain places. The greater the alpha value is, the more the content request pattern 

from users is concentrated on popular content.  

 User behavior toward new content: In real- world cases, a user tends to explore new random content after finishing 

exploring the current content. Thus, 𝑑 in this study is 0.85. The damping factor 𝑑 = 0.85 is selected on the basis of 

its proven accuracy in prior studies [60]. 

 Network Centralities: CacheCraft is compared against Uniform, Degree, Closeness, Eigenvector Centrality (EG), 

and Betweenness Centrality (BC) to benchmark its performance.  

 Content Settings: The network contains 200,000 content items, with aggregate cache capacities set at 2,000, 10,000, 

20,000, 30,000, and 40,000. 

 Simulation Phases: 

 Cache Warm-Up: This involves 100,000 content requests to initialize the system. 

 Cache Measurement: Considers 400,000 content requests to evaluate performance. 

 Metrics: Performance is assessed via the following: 

 Cache Hit Ratio (CHR): The proportion of content requests served directly from the cache. 

 Latency: The average delay in retrieving content. 

Table 4 summarizes all the experimental parameters, including the topologies, centrality metrics, cache 

configurations, and workload distributions. 

Table 4. Experimental Setup 

Parameter Values 

Topology GARR, Palapa Ring, and Tiscali 

Network Centralities Uniform, Degree, EC, BC, Closeness, and CacheCraft (proposed method) 

Cache Placement LCE 

Cache Replacement LRU 

Prefix Variations (𝑛𝑝) 200,000 

Cache Budget (𝑃) 1%, 5%, 10%, 15% and 20% 

Warm-up Contents 100,000 

Measured Contents 400,000 

Content Popularity Distribution Stationary Zipf 

Request Traffic Distribution Poisson 

𝛼 0.8 

d 0.85 
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3-1-3- Implementation Feasibility 

To validate CacheCraft, extensive simulations are conducted via real- world topologies, including the GARR, Palapa 

Ring, and TISCALI, ensuring that the results are grounded in practical scenarios. These topologies represent diverse and 

large-scale networks, offering a robust testbed for evaluating the algorithm under varying traffic loads and dynamic 

conditions. The simulations are designed to assess CacheCraft's performance in the following: 

1. Latency reduction: By dynamically assigning cache sizes and strategically placing content. 

2. Cache hit ratio: Through efficient utilization of network resources. 

3. Computational efficiency: Leveraging PageRank centrality for scalable allocation. 

Details of the simulation setup, parameter configurations, and evaluation metrics are provided in Section 4, along 

with a comparative analysis against state-of-the-art approaches. 

4- Experimental Validation  

This study evaluates the effectiveness of the proposed CacheCraft algorithm via three primary criteria: cache hit ratio 

(CHR), average latency, and time complexity. The performance of CacheCraft is compared with that of existing NC 

algorithms, including uniform, betweenness centrality (BC), degree, closeness, and eigenvector centrality (EG). 

Simulations are conducted under varying content store (CS) sizes, represented by different values of 𝑃. 

4-1- Cache Hit Ratio (CHR) 

The Cache Hit Ratio (CHR) measures the efficiency of a caching system by calculating the proportion of successful 

cache lookups (hits) relative to the total number of cache lookups. It is computed via Equation 8 [9]: 

𝐶𝐻𝑅 =  
𝑛ℎ𝑖𝑡

𝑛ℎ𝑖𝑡+𝑛𝑚𝑖𝑠𝑠
× 100%  (8) 

where 𝑛ℎ𝑖𝑡  is the number of content requests successfully served by the cache node and where nmiss is the number of 

content requests that failed to be served by the cache node. All types of content requested by users are considered when 

calculating CHR.  

Figure 4 shows the simulation results for CHR across the three topologies: (a) GARR, (b) Palapa Ring, and (c) Tiscali. 

The results demonstrate that PageRank, as utilized in CacheCraft, outperforms all the comparison methods. A positive 

correlation is observed between increasing 𝑃, and the corresponding increase in CHR, as larger CS capacities enable 

NDN nodes to cache more content, reducing cache misses and improving CHR. 

As depicted in Figure 4-a, the proposed CacheCraft algorithm consistently outperforms competing caching strategies 

in the GARR topology across all cache capacity levels, denoted by 𝑃. For instance, at 𝑃 = 0.01, CacheCraft achieves a 

Cache Hit Ratio (CHR) of 13%, surpassing the next best strategy, Betweenness Centrality (BC), by 2% and the uniform 

method by 4%. This performance gap widens as 𝑃 increases, with CacheCraft attaining a CHR of 40% at 𝑃 = 0.2, which 

is 10% greater than Uniform, 2.3% greater than BC, and 4.7% greater than Degree. Compared with C3CPS, CacheCraft’s 

reliance on PageRank centrality allows for more dynamic adaptability, ensuring that cache resources are allocated to 

high-traffic nodes in real-time, thereby avoiding the redundancy often observed in C3CPS’s static, multicriteria decision-

making process. 

Figure 4-b highlights the performance of the Palapa ring topology. CacheCraft maintains its superior efficiency, 

achieving a CHR improvement of 9% over Uniform, 10% over BC, and 7% over Degree at 𝑃 = 0.2. Unlike C3CPS, 

which suffers from significant computational overhead due to its multicriteria decision-making methods, CacheCraft 

leverages the computational efficiency of the PageRank algorithm to scale effectively across complex topologies. This 

ensures not only higher CHR but also reduced latency, as CacheCraft allocates larger cache capacities to nodes with both 

strategic importance and higher traffic volumes. 

Similarly, in the Tiscali topology, as shown in Figure 4-c, CacheCraft has a CHR that is 6.5% higher than uniform, 

7.5% higher than BC, and 15% higher than Eigenvector Centrality (EG) at 𝑃 = 0.2. Compared with C3CPS, CacheCraft’s 

strategic placement of cache resources eliminates redundancy and prioritizes nodes on the basis of global influence, 

leading to consistently better performance across all metrics. C3CPS, constrained by its computationally intensive 

multicriteria approach, struggles to match CacheCraft’s adaptability and efficiency, particularly in dynamic network 

conditions. 

Overall, the proposed CacheCraft algorithm achieves superior CHR performance across all tested topologies and 

cache capacity levels by effectively balancing node significance, traffic volume, and network connectivity. Its ability to 

adapt dynamically, avoid redundancy, and efficiently allocate resources sets it apart from C3CPS and other traditional 

methods, makes it particularly suitable for large-scale and dynamic network environments. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Impact of Cache Capacity on the Cache Hit Ratio (CHR) across Topologies: (a) GARR, (b) Palapa Ring, (c) Tiscali 

4-2- Average Latency 

Latency represents the time taken between sending an interest packet and successfully receiving the requested data. 

A lower latency enhances the content distribution speed, whereas a higher latency slows the dissemination of materials. 

Latency is typically measured in milliseconds (ms) [10]. Figure 5 compares the performance of network centrality (NC) 

methods across three topologies (GARR, Palapa Ring, and Tiscali) in terms of latency. The CacheCraft results 

consistently show that CacheCraft achieves the lowest latency, followed by betweenness centrality (BC) in second place. 
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(a) 

 

(b) 

 

(c) 

Figure 5. Effect of Cache Capacity on the Latency (ms) across Topologies: (a) GARR, (b) Palapa Ring, (c) Tiscali 

Cache capacity impact on latency. As depicted in Figure 5, an increase in the cache budget (𝑃) results in a 

corresponding decrease in average latency across all the topologies. This occurs because larger content store (CS) 

capacities allow NDN nodes to store more content, reducing the need for users to retrieve data from distant servers. 

Cache hits are more likely to occur on NDN nodes near the user, significantly lowering latency. 
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As shown in Figure 5-a, CacheCraft has the lowest latency across all the cache capacities (𝑃) in the GARR topology. 

At 𝑃 = 0.2, CacheCraft achieves a latency of 51.5 ms, which is 2.6% lower than that of C3CPS (52.9 ms), 3.9% lower 

than that of degree (53.6 ms), 6.8% lower than that of closeness (55.3 ms), and 27.6% lower than that of uniformity (73.1 

ms). The consistent reduction in latency is attributed to CacheCraft’s use of PageRank centrality, which efficiently 

identifies and prioritizes high-traffic nodes, minimizing the distance between content and users. When 𝑃 increases, 

latency decreases for all the strategies because of the greater caching capacity, but CacheCraft consistently performs the 

best. 

Similarly, Figure 5-b highlights the latency performance in the Palapa ring topology, where CacheCraft achieves a 

latency of 53.7 ms at 𝑃 = 0.2. This represents a reduction of 6.8% compared with C3CPS (57.6 ms), 7.1% compared 

with degree (57.9 ms), 6.3% compared with closeness (57.4 ms), and 7.4% compared with uniform (58.0 ms). 

CacheCraft’s ability to allocate cache capacities dynamically on the basis of both node importance and traffic patterns 

ensures superior performance, even in complex topologies such as the Palapa Ring. The proposed scheme's adaptability 

to node centrality significantly reduces latency, as more frequently accessed content is cached closer to users. 

Figure 5-c shows the latency results in the Tiscali topology, which represents a dense and highly interconnected 

network. At 𝑃 = 0.2, CacheCraft achieves a latency of 51.8 ms, which is 8.9% lower than that of C3CPS (57.0 ms), 6.2% 

lower than that of degree (55.2 ms), and 9.4% lower than that closeness (57.2 ms). The results underscore CacheCraft’s 

ability to outperform all other strategies consistently by holistically considering both node connectivity and traffic 

demands when allocating cache resources. Unlike C3CPS, which often places cached content at nodes further from end-

users due to static path assumptions, CacheCraft’s dynamic and topology-aware approach effectively minimizes retrieval 

delays. 

Overall, CacheCraft achieves the best latency performance in all topologies and cache capacities tested. By fully 

leveraging the PageRank algorithm, CacheCraft ensures that caching decisions account for both local and global network 

dynamics, leading to lower latency than traditional methods such as C3CPS, degree, and uniformity. This robust 

adaptability makes CacheCraft highly effective in reducing latency in both static and dynamic network environments. 

4-3- Computational Time 

The computation time refers to the duration required by an algorithm to complete specific calculations or procedures. 

This metric directly correlates with the computational complexity of the algorithm, making it a critical factor in 

evaluating the scalability and efficiency of caching strategies. Figure 6 presents the computation time (in milliseconds) 

for various NC methods under different test conditions. 

 

Figure 6. Comparison of computation time (ms) across network centrality methods and topologies 

As shown in Figure 6, the computation times for betweenness centrality (BC) and closeness centrality increase 

exponentially with increasing network complexity. This is primarily due to the high computational demand of these 

algorithms, which involve calculating the shortest paths for all nodes in the network. Each shortest-path computation 

requires intricate calculations, making these methods less suitable for large-scale or complex networks. For instance: 

 Betweenness Centrality: The computational complexity is 𝑂(𝑛𝑚 + 𝑛2 log 𝑛). The computation time rapidly increases 

as the number of nodes (𝑛) and the number of links (𝑚) in the topology increase.  

 Closeness Centrality: While it evaluates the proximity of each node to all other nodes, this process involves calculating 

distances for every node in the network, further increasing the computational burden. However, the closeness 

computational complexity is 𝑂(𝑛(𝑛 + 𝑚)) .   
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In contrast, Uniform, Degree, Eigenvector, and CacheCraft exhibit algorithmic (linear or sublinear) growth in 

computation time, even in complex networks. These methods require fewer intensive calculations, allowing for greater 

scalability and efficiency:  

 Uniform: Assigns equal importance to all nodes without additional computations making it the most computationally 

efficient. This means the computational complexity is 𝑂(𝑛). 

 Degree: Node importance is computed by counting the number of links connected to each node whose computational 

complexity is 𝑂(𝑛 + 𝑚). This straightforward calculation ensures low computational overhead. 

 Eigenvector and CacheCraft: Both rely on adjacency calculations to determine node centrality. While these 

computations are more intensive than uniform or degree computation are, they remain more efficient than BC and 

closeness computation are. CacheCraft, which leverages PageRank centrality, achieves scalable performance without 

compromising accuracy. The eigenvector complexity is 𝑂(𝑘𝑚) whereas the CacheCraft complexity follows the 

PageRank complexity which is 𝑂(𝑘𝑛) where 𝑘 is the number of maximal iterations. 

The results in Figure 6 highlight the limitations of betweenness (C3CPS) and closeness centrality in practical 

applications, particularly in intricate or large-scale networks. While theoretically robust, these methods demand 

extensive computation, rendering them impractical for real- world deployments requiring fast decision-making. 

Conversely, CacheCraft demonstrates a balance between computational efficiency and effectiveness. By utilizing 

PageRank centrality, CacheCraft avoids the exponential growth in computation time observed in BC and closeness. Its 

reliance on iterative matrix calculations ensures scalability, making it well-suited for complex network scenarios. The 

performance of CacheCraft is comparable to that of the eigenvector in terms of computational efficiency but surpasses 

it in caching performance metrics, as discussed in earlier sections. 

The findings validate CacheCraft as an efficient and scalable caching strategy that can be applied to real-world NDN 

deployments without introducing prohibitive computational delays. 

5- Conclusion 

This study introduced CacheCraft, a topology-aware caching framework designed to enhance named data networking 

(NDN) performance by optimizing content store (CS) capacity allocation. The framework uses the PageRank algorithm 

to determine the strategic importance of nodes and dynamically adjusts CS capacity allocations on the basis of traffic 

demands and network topology. Extensive evaluations of three topologies—GARR, Palapa Ring, and Tiscali—

demonstrated that CacheCraft achieved an average improvement of 7.8% in the cache hit ratio (CHR) and a reduction in 

latency of 5.6 ms compared with state-of-the-art methods, including uniform, betweenness, degree, closeness, and 

eigenvector centrality-based approaches. The strengths of CacheCraft stem from its ability to allocate resources 

efficiently and adapt to real-time changes in network topology. By leveraging PageRank centrality, CacheCraft 

prioritizes nodes with greater connectivity and influence within the network, ensuring optimal performance with minimal 

computational overhead. This adaptability is particularly beneficial for large-scale and dynamic network environments, 

addressing critical issues such as high traffic load balancing and resource utilization efficiency. By addressing existing 

limitations in caching strategies and demonstrating robust empirical performance, CacheCraft paves the way for more 

adaptive and efficient NDN systems. Its contributions to improving network resource allocation, latency reduction, and 

cache performance mark a significant advancement in the field, with potential applications extending to various high-

demand, dynamic network scenarios. This research also identifies pathways for further development. Future work to 

improve this study could include (i) integrating proactive caching strategies, such as machine learning models for content 

popularity prediction, to enhance CacheCraft’s pre-emptive capabilities; (ii) adopting advanced cache replacement 

mechanisms informed by user behavior and content lifecycle data to further improve overall performance and scalability; 

and (iii) considering the impact of centrality toward topology conditions such as node failures. 
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