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Abstract 

One of the internet architectures of the future that has advantages over the current system is Named 
Data Networking (NDN). However, Denial of Service (DoS) attacks, such as interest flooding 

attacks (IFA), can still disrupt the network. Detecting IFA attacks is crucial for preventing further 

damage. Several approaches to detection systems have been proposed, including a classification 
approach to detecting attacks with multiple detection parameters or features. However, the many 

detection system features that can be extracted from the network result in longer computation times 

for the classification algorithms. This research focuses on enhancing the detection of IFA 
by evaluating the features of the detection system and identifying significant features to improve 

detection accuracy and reduce computation time. We employed various feature selection algorithms, 

including information gain, wrapper naive Bayes, gain ratio, and correlation-based feature selection 
(CFS). The selected features are tested to detect attacks using several classification algorithms, 

including naive Bayes, random forest, J48, and Bayesian network. Our proposed method found only 

three essential features for detecting IFA from 18 features available, resulting in better detection 
accuracy and increasing by 47.8% the time to build the model. This study enhances NDN security 

while reducing computational cost, making real-time attack detection more feasible. 
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1- Introduction 

A future internet architecture called named data networking (NDN) uses a different paradigm than existing networks 

[1, 2]. The NDN network no longer focuses on where data is but on what users need content. To get content, users can 

make requests without knowing where the requested content is Afanasyev et al. [3], and Saxena et al. [4]. There were 

two (two) different types of packets used in NDN communication: interest packets and data packets [5]. Consumers send 

interest packets to request specific types of content. Producers or routers send out data packets with the requested data 

content. The NDN communication model is inseparable from security threats that can disrupt network performance [6]. 

Denial of service (DoS) attacks are still possible on NDN by sending many interest packets. One of the DoS attacks on 

NDN is an interest flooding attack, which can disrupt the network. It requires an excellent mechanism to detect attacks 

to minimize the negative impacts that arise. Several systems detection approaches have been proposed, including the 

classification approach. Detection systems using a classification approach can detect IFA attacks using more than two 

parameters [7]. However, the more parameters used, the more computation time will be burdensome. The essential 

parameters (features in the dataset) must be selected considering the many parameters extracted from the network. 

Unimportant parameters can increase the processing time and accuracy of the detection system. This study aims to 

improve the efficiency of detecting Interest Flooding Attacks (IFAs) by improving feature selection. The main 

contributions of this study are: 
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 Improvement of Feature Selection: We review and compare alternatives to feature selection techniques with the 

primary focus on Correlation-Based Feature Selection (CFS). CFS allows us to quickly determine the most relevant 

parameters (features) to select for detection. Regularly compared to wrapper and ranking techniques, CFS balances 

accuracy and computational expense. 

 Development of an Optimized IFA Detection Model: The algorithm's chosen parameters are then used to develop 

a classification-based detection model that minimizes the resources required for scanning while accurately 

detecting attacks. 

 Validation with Machine Learning Algorithms: The selected parameters are then checked for effectiveness across 

several classifiers, including Naïve Bayes, Random Forest, J48, and Bayesian Networks, to discover the best fit 

for real-time IFA detection.  

This research enhances feature selection and classification approaches to improve computational efficiency and the 

detection of IFAs. The findings advance NDN security to defend against scanning Interest Flooding Attacks.  

1-1- Security Attack in NDN 

Some attacks that may occur on NDN networks are interest flooding attacks, cache privacy attacks, cache poisoning 

attacks, and cache pollution attacks [7]. 

1-2- Interest Flooding Attack (IFA) 

IFA is a kind of NDN denial of service attack, or DoS attack, executed by sending many interest packets. This attack 

focused on making the PIT table full-fixed and disrupting searching and matching interest packets so legitimate requests 

become unserved. An attacker launches this type of attack by sending many interest packets continuously. The goal is 

to make the network service unavailable. IFA attacks are desired at the Pending Interest Table (PIT) to fill the PIT 

capability with the attacker's interest packets so legitimate consumers cannot request the producer. Interest requests can 

be made in several ways, namely by sending request packets that are not in the service, sending request packets that are 

in the service, and in a hybrid manner. Attackers can also send interest packets statically and dynamically, meaning that 

the interests sent are fixed and changing packets to avoid existing detection mechanisms. Figure 1 illustrates the IFA 

attack model on the NDN network. 

 

Figure 1. Figure 1. IFA attack model on NDN 

1-3- Cache Pollution Attack 

This attack aims to slow access to the router's cache by sending unpopular content requests to the router. Each router 

can store content temporarily and delete it with particular mechanisms. Frequently accessed content will be maintained 

in the router. This attack keeps content that is rarely accessed inside the router, causing the content that users need to 

access more slowly [8]. 

1-4- Cache Privacy Attack 

Cache privacy attacks aim to access the sensitive data content of users or groups accessing the network. They exploit 

the information stored in caches by malicious entities to compromise users' privacy. Caches recreate a crucial role in 
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NDN by storing frequently requested data closer to consumers, reducing the network load, and improving overall 

performance. However, this caching mechanism introduces potential privacy concerns. 

1-5- Content Poisoning Attack 

The attack aims to overload routers by injecting high amounts of bogus or corrupt data, ultimately causing network 

disruption. A content poisoning attack forces routers to cache and send out corrupted or malicious data instead of 

legitimate content. To do this, a fake producer that appears to be a legitimate content provider into the network. When 

users or routers request content, the fake producer sends them corrupted content, which spreads throughout the system. 

Legitimate users may, even unknowingly, download and later cache the insufficient data, which is a form of service 

degradation and increased security risk. 

Each attack has different effects and characteristics. Table 1 below shows the characteristics of attacks on NDN. 

Table 1. Attack Characteristics on NDN 

Attack Type Victim Attacker Security Goal Effect Associated NDN Structure 

Interest Flooding Attack (IFA) Consumer, router, and producer Consumer Availability Pending Interest Table (PIT) 

Cache Poisoning Attack Producer and consumer Producer or router Availability and integrity Content Store (CS) 

Cache Pollution Attack Consumer Consumer Availability Content Store (CS) 

Cache Privacy Attack Consumer Consumer Confidentiality Content Store (CS) 

1-6- Related Work 

An interest flood attack is an attack in which an attacker performs a DDoS attack that harms the NDN network. 

Attackers conduct DDoS attacks using various techniques to have a high impact. Researchers have suggested various 

mitigation and detection techniques, including rate-limiting, feature-based classifications, or machine learning-based 

anomaly detection. These techniques still suffer from issues related to levels of accuracy, real-time detection, and the 

ability to adapt to new attack patterns. More studies could alleviate issues in battle detection efficiency and improve 

police readiness to act quickly and accurately against IFA threats in an NDN environment [9].  

Overview of the IFA and its countermeasure study. They suggested using a statistics approach to detect the attack. 

Using a pushback mechanism, the router in this technique alerts other routers to the attack after detecting IFA [10]. 

The author introduces an additional approach based on pushback. In this method, routers observe the names of 

incoming Interests and calculate the cumulative entropy of the interface. Once the cumulative entropy exceeds a 

specific threshold, the router confirms the presence of an attack [11]. Subsequently, the router transmits counterfeit 

data to the origin of the negative prefix. This approach allows false detection due to incorrect threshold determination 

and only sees attacks based on incoming interest prefixes. The proposed Reconstruction Forest-based Detection 

Method (RFDM) tackles the problem of Interest Flooding Attacks (IFAs) in Named Data Networking (NDN), which 

is an acute security issue that can impair network performance by flooding routers with illegitimate interest packets 

[12]. Existing detection mechanisms are limited in performance under traffic variations and usually produce 

detectable false positives. In contrast, RFDM uses RecForest to calculate reconstruction errors, allowing for rapid 

classification of legitimate versus malicious interest packets. As a reactive approach to stopping malicious content 

from forwarding, RFDM can effectively reduce IFAs while preserving the network's stability. Simulation results 

show that RFDM outperforms previous detection techniques in speed, accuracy, and resilience to network variations. 

The overall approach can reduce excessive Pending Interest Table (PIT) caused by IFAs while increasing the 

likelihood of identifying a true positive. 

Anytime a border router receives this counterfeit data, it restricts the rate of source interfaces. However, it is worth 

noting that this detection process may exhaust resources and, in specific scenarios, valid interfaces could punished by 

rate limitation. Another disadvantage is that attackers can exploit fake data to overwhelm the network. Disabling PIT 

exhaustion (DPE) suggested a countermeasure for IFA. Each router in DPE keeps an m-list, which is utilized as a 

detection parameter and keeps track of how many expired interest packets there are in each namespace [13]. When this 

importance transcends a specified threshold, the interest packets with harmful namespace lag are usually transmitted 

rather than kept in the PIT. As a result, routers are not affected by malicious interest packets because they do not store 

their entries in the PITs. This system does not prevent IFA and mitigates its impact—a two-stage detection technique 

conceived. The first phase is wild detection, which uses the interest packet satisfaction rate as an index. If ISR reaches 

a particular threshold, it determines the attacked condition, and the second level detection will initiated. The second 

phase involves detecting the extinction of PIT entries by matching the most extended prefix of the extinct entries. When 

the prefix's expiration ratio exceeds a specific level, determine that the modified prefix has been attacked [14]. This 

method allows false detection because it only looks at the interest prefix and expiration time. When the interest expires, 

the router from the PIT will drop it. 
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A statistical approach using Gini impurity suggests addressing the issue. The router determines the set's disparity 

through Gini impurity by maintaining a record of received Interests' names and calculating their probabilities [15]. It 

compares it to a predetermined threshold to assess the occurrence of an IFA. Furthermore, the router employs the Gini 

impurity to approximate the essential set with an earlier stored set to identify the harmful prefix. It is important to note 

that this proposed method carries the risk of false-positive detections. Similarly, a different entropy-based approach was 

introduced in reference [16]. These two methods also make it difficult to determine the proper threshold because the 

network conditions and topology are diverse and complex. The chi-square-based anomaly detection works by observing 

regular NDN traffic and comparing that to real-time NDN traffic (while monitoring whether deviations are statistically 

significant) and reporting those deviations as an indicator of potential attacks [17]. A large number of experiments (with 

varying parameters) supports findings provide confidence that the items observed as a result of the chi-square-based 

anomaly detection system can lead to high accuracy detection rates across different forms of attack active intrusion 

detection system (IDS) units and ultimately improving NDN's resilience in the face of induced IFAs. However, while 

the proposed method is effective, it has certain limitations. The extent and future security techniques added to deterred 

enhance overall NDN and additional security applications continuously. 

Unlike earlier solutions, an AI-based mechanism utilizes Radial Basis Function or RBF neural networks to alleviate 

IFA and cache poisoning [18]. It takes as inputs a set of statistics such as the timed-out Interests and the numeral of 

satisfied. When the sensor or detector module detects opposing traffic, the router delivers an alarm notification to source 

interfaces. The new lowered rate, the generating timestamp, and the decrease period are all included in the alert message. 

However, rate-limiting can hurt legitimate users. The detection technique is yet another using a machine learning-based 

approach [19, 20]. In this explanation, a router continuously organizes and monitors the satisfaction ratio, entropy of 

interest names, and PIT utilization of interfaces. These metrics are inputs for the classifier's support vector machine 

(SVM). When the detector identifies an abnormality, the router generates a report indicating the occurrence of an IFA. 

The router operates the Jensen-Shannon separation to extract the opposing prefixes. The fraudulent prefixes report to 

downstream routers. This method has an impact on valid Interest packets sent to prohibited prefixes. Like the prior 

solution, the detecting method may use significant resources. Developing a comprehensive attack dataset and 

implementing a unified detection and classification strategy-using machine learning [21]. The proposed 

approach demonstrates its effectiveness in identifying threats. These disadvantages highlight the need for continuous 

improvements and lightweight solutions to enhance security in IoT-NDN environments. 

To mitigate IFA, a strategy involving producers' and routers' collaboration was introduced [22]. This strategy 

addresses conventional distributed IFA and spread IFA where attackers imitate regular transmission rates. When requests 

overwhelm a producer, it sends a signed interest to routers, asking them to limit the request rate for the affected prefix 

explicitly. Upon receiving such an Interest, the router halts forwarding it and notifies other routers accordingly. A border 

router identifies a customer as potentially harmful if they persistently send submissions to the infected prefix, exhibit a 

low satisfaction percentage, and experience many timed-out interests. While this suggested technique can effectively 

mitigate various types of IFA, unlike prior solutions, the approach outlined primarily targets collusive IFA [23]. Routers 

utilize defined time intervals to monitor interface performance and PIT (Pending Interest Table) utilization to detect 

opposing traffic. If these metrics surpass their respective points, the router cleanses the most aging entries from the PIT. 

However, it is essential to note that this technique risks inadvertently deleting legitimate requests. 

Different techniques offered an Active Queue Management (AQM)-based solution to mitigate IFA [24]. The router 

unsystematically selects an uncertain interest and compares its name with the obtained Interest for each welcomed 

Interest. Then, it approximates their original interfaces and determines the source interface's satisfied ratio. If it falls 

below a certain point, the router cancels both Interests. Otherwise, it probabilistically drops the accepted Interest. 

Regardless, attackers can time their attacks to suffice the target's PIT, causing the router to drop incoming interests. The 

writers altered its technique to incorporate securing [25]. When a boundary router notices an interface's PIT occupancy 

and satisfied ratio are over criteria, it secures it. The paper presents the Hybrid Proactive Reactive Defense Scheme 

(HPR-DS), which comprises two key components: Proactive Resource Management (PRM) and Reactive User Behavior 

Analysis (UBA) [26]. The PRM component employs time-series analysis and a sliding window-based resource allocation 

approach to manage content-specific resources to restrict excessive access based on the Interest Satisfaction Ratio (ISR) 

and Round Trip Time (RTT). The UBA component utilizes multidimensional clustering to identify anomalous traffic 

patterns and report suspicious users at the network's edge. In the simulation, the results have shown that the HPR-DS 

works to maintain user transmission quality, improves attack detection accuracy, and adapts to user behaviours that may 

change over time. The current approach assumes that attackers will focus on content that has similar prefixes. 

On the other hand, the system still punishes legitimate traffic, and the penalty grows as it approaches the centre 

network. Each router chooses random prefixes from a registered list of computed metrics for individual prefixes [27]. 

Then, it generates a set of binary tree searches using the minimum and maximum matters of the nominated prefixes. It 
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then computes the intermediate traverse path of the selected prefixes and utilizes it to calculate an anomaly score for 

individual prefixes. Finally, it sends the malicious prefixes to downstream routers. Legitimate Interest is penalized by 

namespace-based rate-limiting. Furthermore, the detection procedure might require significant resources, particularly on 

core routers. This approach can take some duration to detect threats. This research proposes a new two-phase model for 

detecting interest flooding attacks in NDN [28]. The first phase involves using key features (e.g., a node behaviour, 

distribution, pattern, frequency, and runtime) extracted and processed using a Deep Convolutional Neural Network 

(CNN) algorithm to detect malicious activity such as interest flooding for existing and non-existing data, hijacking 

interest packets, and signing data with invalid keys. The second phase mirrors the feature extraction process but focuses 

on identifying interest flooding attacks using a Fuzzy Decision Tree (FDT). The study improves detection accuracy by 

utilizing a newly proposed Decision Rider Optimization Algorithm (DO-ROA) to optimize the CNN and FDT classifiers, 

creating an improved version of the first optimization algorithm (Rider Optimization Algorithm - ROA). The 

performance of both classifiers is evaluated to determine the method efficacy using comparative evaluations via Type I 

and Type II performance metrics. The results indicate that the DO-ROA optimizations improve accuracy compared to 

the traditional models, demonstrating an enhanced mechanism for enabling NDN security. This approach didn't 

implement feature selection to improve speed computation. Based on the analysis carried out on the previously proposed 

detection system, a summary and comparison were obtained, which can be seen in Table 2. 

Table 2. Related work summary 

Reference Detection approach 
Feature 

selection 

Independent 

module 

Attack 

Type 

Location 

development 

Kumar et al. [7] Classification approach No Yes IFA All routing node 

Gasti et al. [10] Push back mechanism - No IFA Specific router node 

Xin et al. [11] Relative entropy theory - No IFA Specific router node 

Xing et al. [12] Reconstruction Forest-based Detection Method (RFDM) - No IFA Specific router node 

Wang et al. [13] PIT exhaustion (DPE) - No IFA Specific router node 

Zhi et al. [19] Support vector machine (SVM) No Yes IFA Specific router node 

Afanasyev et al. [20] Classification approach No Yes IFA All routing node 

Mandapati et al. [21] Hidden Markov Model (HMM) No Yes IFA All routing node 

Xing et al. [27] Binary tree and min max algorithm - Yes IFA Specific router node 

Joseph [28] Deep Convolutional Neural Network (CNN) No Yes IFA Specific routing node 

Kumar et al. [29] Classification approach with J48 and RBF classifier Ranking based Yes IFA All routing node 

This paper 
Classification approach + NBC & Random Forest + 

feature selection module 
Filter based Yes IFA All routing node 

This research proposes a detection system using a classification approach by applying correlation-based feature 

selection (CFS). Correlation-based feature selection aims to find the right features to use as a reference for the detection 

system and reduce the amount of data to be processed, thereby increasing data processing time and speeding up the 

detection system. The selected features will be used as a reference for the detection system, and their performance will 

be compared with previous research. 

2- Research Methodology 

2-1- Detection Approach 

The detection system utilizes a machine learning approach using the available datasets—the classification algorithm 

to classify traffic into attacks or not. The dataset must be pre-processed by selecting significant features using an attribute 

selection algorithm to input the classification algorithm. There are 4 (four) significant attribute selection algorithms used, 

namely gain ratio, information gain, wrapper naive Bayes, and CFS. Next, the dataset with selected features will tested 

using 4 (four) classification algorithms: J48, naive Bayes, random forest, and Bayesian network. Figure 2 shows the 

flowchart of the detection approach. 

 ndnSIM IFA Simulation: IFA simulation using ndnSIM is at the forefront of the process. It stimulates the ndnSIM 

IFA environment to generate the data that will be used for the detection module. 

 Feature Extraction: After the simulation, relevant features from the generated data are extracted. These features 

will then be the key indicators to identify the events you want to detect. 

 Data Preprocessing: The extracted features are then preprocessed to prepare them for the machine learning model. 

Data Preprocessing involves cleaning the data, normalizing it, and potentially transforming it into a more suitable 

format. 
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 Feature selection: As the name suggests, Feature selection selects important features from preprocessed data for 

further utilization. It reduces the noise and enhances the model's performance by relying only on the most relevant 

information. 

 Training and testing set: The selected features are then divided into a training set and a test set. The training set 

develops or trains the detection approach based on the machine learning model. In contrast, the testing set assesses 

the model's performance or accuracy on unseen data. 

 Classification-based detection module: Classification-based is the essence of the process. One then trains a 

classification model (e.g., support vector machine, random forest, neural network) on the training set. Once the 

model is trained, new data points can be fed to the model to determine if an event of interest has taken place. 

 Model evaluation: The qualified model is assessed on the testing set to evaluate its performance. Model evaluation 

helps ensure the model is accurate and reliable before it goes into actual deployment. 

 

Figure 2. The flow chart of detecting IFA 

2-2- Experiment Setup 

The dataset was created using of ndnSIM on tree topology (Figure 3) [29]. The features used in the IFA detection 

system are generated via simulation settings, as indicated in Table 3. Experiments were conducted using a laptop with a 

4-core i3 processor and 8GB of RAM. 

 

Figure 3. Attack model on tree topology 
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Table 3. Full feature name on dataset for interest flooding attack detection 

No. Feature Name Description 

1 Time Simulation time when data is taken based on (data taken every second starting from 1-300 seconds) 

2 Router The router used to build the topology (routers 1-7) 

3 Interface Router interface 

4 PITSize PIT size on the router during the simulation 

5 PITSizeInt PIT size on the router during the simulation in integer 

6 DropData The number of packets dropped during the simulation based on a several time 

7 OutInterests The number of outgoing interests on a router 

8 DropInterests The number of drop interest 

9 InData The amount of incoming data on the router 

10 InTimedOutInterests The incoming interest packet expiration time 

11 OutTimedOutInterests The outgoing interest packet expiration time 

12 DropNacks The number of NACK drop 

13 InInterests The numeral of interest packets that enter the router 

14 OutData The amount of data coming out of the router. 

15 InNacks NACK messages that go to the router 

16 OutNacks NACK messages coming out of the router 

17 InsatisfiedInterests Interest packet that are entered and served (per interface) 

18 OutSatisfiedInterests Outgoing and serviced interest packet (per interface) 

2-3- Feature Selection Module 

Feature selection is an essential technique in machine learning for datasets to reduce and increase accuracy. In this 

study, features were selected by wrapping methods and filters to get optimal results. Figures 4 and 5 below indicate the 

selection of the mentor features using the driving and wrapper approaches. 

 

Figure 4. Wrapper method feature selection 

 

Figure 5. Filter method feature selection 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2407 

The wrapper method is a feature selection technique that uses a learning algorithm to evaluate different subsets of 

features. The goal is to find the subset of features that results in the best performance on a given task. Below are the 

steps of the wrapper method feature selection: 

 Start with an initial set of features. This could be an empty set or include all of the available features.. 

 Train a model on the underlying set of features using a learning algorithm. Evaluate a model. The model's 

performance could be based on any number of metrics, such as accuracy, precision, or recall. 

 Split and select a new subset. It is done either by adding a new feature to the set or removing a feature from the 

set. Every new combination is chosen, hoping it may have a better effect on improving performance. 

 Keep looping through steps 2 - 4 above in order until satisfactory performance. 

 If the best subset happens, all final model training will rest on that set. 

Search types are forward selection and backward selection. Forward Selection starts with an empty set of features and 

adds features one at a time until performance plateaus. Backward selection begins with the complete set of features and 

removes features one at a time until performance plateaus. 

The filter method for feature selection is a technique that evaluates the relevance of features independently of any 

machine learning algorithms. This approach is instrumental in flooding attack detection, as it helps identify the most 

significant features that contribute to detecting such attacks without the computational overhead of training models. The 

filter method is a powerful approach for feature selection in flooding attack detection, providing a means to identify 

relevant features while minimizing the risk of overfitting efficiently. By leveraging statistical measures, filter methods 

enhance the overall performance of machine learning models in cybersecurity applications. 

In this experiment, 4 (four) significant feature selection algorithms were used: gain ratio, information gain, wrapper 

naive Bayes, and correlation-based feature selection (CFS).  

1) Information gain algorithm for feature selection 

Significant feature selection using information gain is utilized in data modelling to determine the considerable 

informative or appropriate features. Information gain calculates how significantly information is accepted by separating 

the dataset based on characteristics. The information gain algorithm calculates the information gain for each feature in 

the dataset and sorts it based on the resulting gain value. The feature with the most elevated information gain is believed 

to be the most informative and is selected and used to further data modelling. This approach helps reduce the dataset 

sizes and eliminates features that have little contribution in diverging the categories in the dataset. Selecting the right 

features using the significant feature selection algorithm of information gain features can help improve the efficiency 

and quality of data modelling [30]. 

2) Gain ratio feature selection 

The Gain Ratio is an alternative to Information Gain for choosing the attribute to split in a decision tree. It addresses 

the issue of attribute bias with many outcomes. The optimum feature to split on is determined using the Gain Ratio, a 

metric that considers the information gain and the number of outcomes of a feature. The optimal feature for splitting is 

determined by comparing the gain ratios of each feature; the highest gain ratio from the feature is chosen [31]. 

3) Wrapper naive bayes feature selection 

Wrapper subset evaluation is used in feature selection algorithms or feature subset evaluation in machine learning. It 

involves evaluating different subsets of features by training and testing a learning algorithm using each subset wrapped 

in a performance evaluation metric [32]. Wrapper subset evaluation evaluates different subsets of parameters or features 

to find the most suitable subset that maximizes the performance of a learning algorithm for a specific task. The wrapper 

approach investigates all feature subsets and then trains and assesses a classifier for each subgroup to ascertain its quality. 

Nevertheless, this approach may need to be more computationally efficient. Some wrapper techniques include recursive 

feature elimination, exhaustive feature selection, forward selection, and reverse selection [33]. 

4) Correlation based feature selection 

Correlation-based feature selection (CFS) is an attribute selection approach that evaluates the relevance and 

redundancy of features by measuring their correlation with the target variable and among themselves. It aims to select a 

subset of parameters or features positively correlated with the class variable while maintaining low inter-correlations 

among themselves [34, 35]. It helps improve the interpretability and efficiency of machine learning models by identifying 

the most informative features for the task at hand. Put otherwise, a feature is meaningful only if associated with or 

indicative of the class; otherwise, it is unimportant. An attribute If there are any values of Vi and c such that                                   

p(Vi = vi)>0, vi is relevant otherwise irrelevant. 
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𝑝(𝐶 = 𝑐|𝑉𝑖 = 𝑣𝑖) ≠ 𝑝(𝐶 = 𝑐)  (1) 

Features with a strong correlation (predictive power) with the class but a low correlation (not predictive power) with 

one another make up a good feature subset. The correlation between a combined test of the computed elements and the 

outside variable can be forecasted from the correlation between separate components in a trial, the external variable, and 

the inter-correlation between individual pairs of elements. CFS’s feature subset evaluation function can be used in 

Equation 2. 

𝑟𝑧𝑐 =
𝑘𝑟𝑧𝑖̅̅ ̅̅

√𝑘+𝑘(𝑘−1)𝑟𝑖𝑖̅̅ ̅
  (2) 

where k is the number of elements, rzi̅̅ ̅ is the average of the correlations between the elements and the external variable, 

rii̅ is the average inter-correlation between elements, and rzc is the correlation between the summed elements and the 

external variable. 

2-4- Detection Algorithm 

We use 4 (four) classification algorithms to test datasets with selected features, namely Naive Bayes, J48, random 

forest, and Bayesian network. 

1) Naive Bayes Classifier 

The naive Bayes classification algorithm is established on Bayes' theorem and computes the likelihood of data. This 

algorithm classifies new data with the assumption that its attributes are independent. The algorithm calculates the 

probability of the data against the existing classes. The data is classified based on calculating the highest probability 

[36]. 

2) J48 classifier 

The J48 classification algorithm performs classification by building a tree. This algorithm produces a binary tree 

established on the feature values of the training data. The new data can be classified into existing classes from the formed 

binary tree [37]. 

3) Random forest classifier 

A Random Forest Classifier is an ensemble learning algorithm operated for classification schemes. It merges 

considerable decision trees to construct predictions [38]. A piece tree in the Random Forest is built alone, and the final 

prediction is defined by aggregating the forecasts of all the trees. Random Forest Classifier is comprehended for its 

power to manage high-dimensional datasets, handle missing values, and provide estimates of feature importance. It is a 

popular and robust algorithm for classification tasks due to its robustness and ability to mitigate overfitting [39]. 

4) Bayesian Network 

A Bayesian Network, or a Bayesian Belief Network, is a graphical prototype illustrating the probabilistic connections 

among variables. In a Bayesian Network, variables are depicted as nodes, and the connections between variables are 

described as directed edges or arrows between the nodes. The nodes in the network symbolize arbitrary variables, and 

the edges indicate the conditional dependencies between the variables. A Bayesian Network Classifier is a classification 

algorithm based on Bayesian Networks. It uses the principles of Bayesian probability theory and graphical models to 

classify instances into different classes or categories [40]. 

2-5- Evaluation Metrics  

The confusion matrix exists as an evaluation benchmark utilized to calculate the interpretation of a classification 

algorithm. The confusion matrix consists of False positives (FP), true positives (TP), true negatives (FN), and false 

negatives (FN). TP is attack traffic detected as an attack. FP is attack traffic detected as regular traffic. FN is normal 

traffic but detected as an attack. TN is regular traffic detected as normal traffic. The Confusion matrix as an 

implementation evaluation benchmark for the classification algorithm is displayed in Figure 6. Using the confusion 

matrix, we can define accuracy, precision, TP rate, FP rate, and F-measure. 

 

Figure 6. Evaluation metrics  
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Accuracy refers to the model's ability to classify the data correctly. It is defined by computing the proportion of valid 

predictions (both positive and negative) to the complete quantity of data. Accuracy measures the agreement level 

between the forecasted and actual values. The accuracy value can be obtained by Equation 3. 

Accuracy =
TP + TN

TP + TN + FP + FN
 (3) 

The True positive rate (TP rate) or recall is the percentage of attack traffic classified correctly compared to the total 

attack traffic. The TP rate value can be obtained using the Equation 4. 

TP rate =
True positive (TP)

True positive (TP) + False negative (FN)
 (4) 

The false positive rate (FP rate) is the ratio of relevant samples incorrectly classified to all samples incorrectly 

identified as irrelevant. The FP rate value can be obtained using the Equation 5. 

FP rate =
False positive (FP)

False positive (FP) + True negative (TN)
 (5) 

Precision is the ratio of the appropriate sample calculation to the relevant sample count accurately classified. The 

precision value can be obtained using the Equation 6. 

Precision =
True positive (TP)

True positive (TP) + False positive (FP)
 (6) 

A harmonic mean of recall and precision is the F-measure. The value of the F-measure can be obtained using the 

Equation 7. 

Measure =
2 ∗ precision ∗ TP rate

Precision + Recall
 (7) 

3- Results and Discussion 

Simulations were done using ndnSIM to produce traffic data collected every second. As evidenced by the simulation 

results, the PIT usage of each router is greatly influenced by the Interest Flooding Attack (IFA), as illustrated in Figure 

7. The attack was carried out throughout the simulation by sending interest packets at 4x, 8x, and 16xy, the original data 

rate. Attack packet raises also cause the PIT usage to rise (Figure 8). The interest drops further as the number of attacks 

increases since the high PIT usage does not serve the interest packets (Figure 9). The interest drop rate rises as the attack 

intensifies, as the vast PIT usage does not serve the interest packets. The increased usage of PIT due to this excess interest 

traffic adversely affects the overall number of satisfied interest packets. Excessive interest traffic leads to high PIT usage, 

affecting the overall number of satisfied interest packets (Figure 10). The IFA is seen to adversely affect the interest 

satisfied ratio, a key performance indicator of the network, which is the declining overall performance of the network 

(Figure 11). The findings show that IFA harms the NDN network, which requires efficient detection and mitigation. 

Understanding the relationship between the intensity of attack and performance metrics will help free NDN networks 

from IFA. Researchers will be able to come up with stronger IFA defences. It will allow the NDN network's real-world 

applications. 

 

Figure 7. PIT entries each router 
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Figure 8. Total PIT entries 4x, 8x, 16x 

 

Figure 9. Comparison of interest drop 4x, 8x, 16x 

 

Figure 10. Comparison of total satisfied interest 4x, 8x, 16x 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2411 

 

Figure 11. Comparison of ISR 4x, 8x, 16x 

Interest Flooding Attack (IFA) affects all routers as it floods all the routers' Pending Interest Table (PIT) with high 

interest entering each router, as shown in Figure 7. The high PIT entries during IFA show the network is congested, 

which may lead to network issues. The representation shows that the IFA significantly affects the network's performance. 

As we analyze the patterns of individual routers against the general directional flow of PIT entries, we get helpful insights 

into how successful the attack is currently, and later on, we may see its impact on the network. The rise in PIT entries 

indicates that routers are getting flooded with interest packets, which can lead to delays or drops and add to congestion. 

Understanding how and where multiplication happens is essential to developing suitable proactive defence strategies. 

By identifying routers that show a significant increase in PIT usage, administrative actions can be taken for those routers 

that can help mitigate IFA. This assessment effectively illustrates the outcomes of the attack and indicates the necessity 

of making defences proactive. The eventual outcome of this work is to give insights that can help design a better 

architecture of NDNs that are resilient to IFA attacks and their subsequent impacts on performance. 

The varying performance of PIT entries under different attack levels is represented in Figure 8. A trade-off exists 

between the attacks' intensity and the performance of the PIT entry rate. As attacks increase gradually from 4x, 8x, and 

16x from the original rate, the PIT entries rise sharply but decline early. More attacks appear to reach faster saturation 

in PIT entries, resulting in a quicker drop when the network can no longer support the load. The graph displays a steady 

trend across multiple attack levels, with increased PIT entries corresponding to the growth of attack values and a gradual 

reduction. Even though the overall pattern appears predictable, like similar attack levels, the precise timings for peak 

and saturation depend on the attack level. It shows that the performance of PIT (whatever that is) against the attacks 

varies widely. Researchers need to understand how the performance of the named data networking changes by attacks. 

It can help inform better security mechanisms that stop PIT entries from going too high. PIT congestion is crucial for 

reducing vulnerability to interest flooding attacks. Understanding these interactions can help network designers 

implement better adaptive defences to preserve system stability and efficiency against attacks. 

The comparison of interest drops for various attack sizes (4x, 8x, 16x) over time is shown in Figure 9. The drop line's 

steepness corresponds to the attack level's magnitude. As the attack size increases, the number of interest drops also 

increases sharply. The attack with 16x makes the highest drop in interest, followed by 8x and 4x. It suggests that more 

aggressive attacks overload the system, resulting in a more significant loss of interest packets. The graph also shows that 

while all attack levels create interest drops precisely upon the attack, they all return to stability when the attack stops. 

Without an attack, the interest drop rate remains low and stable over the period examined. It shows that the number of 

dropped interests depends on the attack size, meaning that the network is prone to losing much interest during a heavy 

attack. Recognizing these trends will be helpful in the optimization of NDN security measures and in formulating 

solutions against excess interest drops during attacks. 

Figure 10 demonstrates the number of satisfied interests for different attack values and how the performance of the 

attacked network decreases as the attack value increases. The attack value increases from 4x to 8x to 16x, and satisfied 

interests decrease significantly. It means that the higher the attack rate, the more clogged the network is, and legitimate 

interest requests do not get through. The bar graph shows that at the least attack level (4x), the system can still handle 

an enormous load of requests. However, with the increase in attack level (8x and 16x), the system is getting increasingly 

congested; thus, fewer interest requests are being satisfied. A lower number of satisfied interests does not mean better 

performance but rather shows that an interest flooding attack has severely affected the network. The attack traffic uses 

up the network's resources, and the ability to process legitimate requests is lessened, thereby reducing the performance 
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of the whole network. The results highlight the importance of robust countermeasures to tackle excess interest flooding 

to sustain service availability. 

The Interest Satisfaction Ratio (ISR) matched with the different attack intensities of 4x, 8x, and 16x over time is 

illustrated in Figure 11. The findings suggest that an initial interest request may still yield a high ISR. However, the 

satisfaction rate declines quickly after the attacks occur. At the beginning stages, show an ISR of approximately 100%, 

implying that the network can successfully satisfy interest requests. However, as the attack occurs and increases, the ISR 

with the 16x attack drops significantly, also quicker than the 8x or 4x attacks. It implies that higher attack levels can 

overwhelm a network earlier than lower intensity, resulting in a lower rate of satisfied interests. 

On the other hand, both the 8x and 4x attacks have a much steadier decline and maintain a relatively high ISR 

throughout a longer time frame. This data suggests that the interest processing capability is retained during lower attack 

intensity. As a result, the network becomes utterly congested at the same attack intensity, resulting in nearly 0 ISR, much 

quicker than at a lower attack intensity of 4x. The periodic recovery in ISR in the graph signifies periods when the 

network can satisfy interests due to decreased attack intensity phases. A high ISR at all time frames means the overall 

network performance is good and resilient and provides stability to satisfy interested interest requests after the conditions 

of a significant interest flooding attack off.  

The results of testing the classification algorithm on the reduced dataset are shown in Table 3. The table provides 

performance metrics for feature selection algorithms and machine learning classifiers. The first column lists various 

feature selection algorithms, including Full feature, Information Gain, Gain ratio, Wrapper NB, and CFS. These 

algorithms are used to select relevant features for the machine learning models. The subsequent columns represent 

different machine learning classifiers: Naive Bayes, J48, Random Forest, and Bayesian Network. Each classifier is 

evaluated based on several performance metrics. 

The performance metrics in the table include False Positive (FP) rate, True Positive (TP) rate, Precision, and F-

measure. These metrics measure the accuracy, reliability, and effectiveness of the classifiers. The values in the table 

correspond to the performance metrics for each combination of feature selection algorithm and classifier. The table also 

includes an "Average" row that calculates the average values of the performance metrics across all feature selection 

algorithms and classifiers. Table 4 supplies insights into implementing various classifiers and feature selection 

algorithms, allowing comparison and evaluation of their effectiveness in the given context. 

Table 4. Comparison of Metrics Evaluation Tree Topology 

No. 
Feature selection 

algorithm 

Naive bayes J48 Random forest Bayesian network 

TP 

rate 

FP 

rate 
Precision F-measure 

TP 

rate 

FP 

rate 
Precision F-measure 

TP 

rate 

FP 

rate 
Precision F-measure 

TP 

rate 

FP 

rate 
Precision F-measure 

1 Full Fitur [20] 0.931 0.077 0.931 0.931 0.997 0.003 0.997 0.997 0.995 0.006 0.995 0.995 0.982 0.018 0.982 0.982 

2 Information Gain [29] 0.926 0.081 0.926 0.926 0.998 0.002 0.998 0.998 0.998 0.002 0.998 0.998 0.984 0.017 0.984 0.984 

3 Gain ratio [29] 0.924 0.085 0.925 0.924 0.997 0.003 0.997 0.997 0.998 0.003 0.998 0.998 0.983 0.017 0.983 0.983 

4 Wrapper NB 0.924 0.063 0.925 0.923 0.977 0.023 0.977 0.977 0.975 0.026 0.975 0.975 0.970 0.033 0.970 0.970 

5 CFS 0.883 0.127 0.883 0.882 0.999 0.001 0.999 0.999 1.000 0.000 1.000 1.000 0.999 0.001 0.999 0.999 

Average 0.918 0.086 0.918 0.917 0.993 0.007 0.993 0.993 0.993 0.007 0.998 0.993 0.984 0.017 0.984 0.984 

The Table shows that both J48 and Random Forest yield high True Positives (TP) rates and CFS plots well under 

these classifiers. Furthermore, Random Forest returns the highest TP rate (1.000) with CFS, which indicates that Random 

Forest ultimately classified the characteristics of those cases' combination variables correctly. The Bayesian Network 

also provides strong performance, particularly with CFS, and generated the lowest rate of False Positives (0.001) and 

the highest rate of precision (0.999). In comparison, Naïve Bayes, while a popular classification option, generally 

produced lower TP rates and higher FP rates than the other classifiers tested. Lastly, the 'Average' row at the base of the 

table provides a general overview of the effectiveness of the classifiers. J48 and Random Forest produced the most 

consistent and reliable outcomes given the average TP rate of 0.993, precision of 0.993, and F-measure of 0.993. Overall, 

the information in the table exponentially aided the decision-making process related to which classifier-feature selection 

combination to optimize detection accuracy and reduce false positives, which ultimately fails or improves the system's 

performance in the given scenario. 

The following is a table of the results of the features chosen by the feature selection algorithm in several attack 

scenarios. The attacker sends 4x, 8x, and 16x the number of interest packets transmitted by legitimate consumers. The 

simulation is carried out using tree topologies. The number of full features is 18 (eighteen), and the number of selected 

features based on the feature selection algorithm can be noticed in Table 4. Additionally, the accuracy of 

the classification algorithm is shown in Table 5. 
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Table 5. Number of Selected Feature 

No. 
Feature selection 

algorithm 

Number of selected feature 

4x 8x 16x 

1 Full Fitur [20] 18 18 18 

2 Information Gain [29] 9 9 9 

3 Gain Ratio [29] 9 9 9 

4 Wrapper NB 5 2 5 

5 CFS 3 3 3 

The number of features chosen by the feature selection methods for each attack intensity (e.g., 4x, 8x, and 16x) is 

displayed in Table 5. As observed, the Full Feature selection method maintains all features (i.e., 18) through each attack 

intensity, meaning that dimensionality is not reduced. The Information Gain and Gain Ratio selections maintain nine 

features, indicating that it uses the criteria from previous studies to identify the most relevant features. The Wrapping 

Naïve Bayes (NB) selection algorithm is not consistent as it occurs by identifying five features for the 4x and 16x attacks. 

In comparison, it only uses two features for the 8x attack. It indicates that the Wrapping NB selection method reacts 

independently of the attack intensity and determines the most important features to use for each attack separately. CFS 

identifies the least number of features because it consistently identifies only three features independent of attack 

intensity, suggesting it is effective at filtering redundant or less significant features while maintaining a strong 

performance at each attack intensity. Reducing the number of features through the feature selection process will help the 

various algorithms in computational efficiency and classification performance. Overall, the results in Table 4 suggest 

that CFS could achieve the best efficiency. 

Table 6 shows classification accuracy results for various classification algorithms used for different feature selection 

methods, with a collection of instances subjected to a 16x attack. The results show a clear relationship between feature 

selection and classification accuracy: fewer or fewer selected features can yield greater classification accuracy, as in the 

Correlation-Based Feature Selection (CFS) algorithm, which generates the most excellent accuracy. Although it only 

selects three features, the CFS method has corresponding performance (99.79% accuracy for J48) and outstanding 

performance (99.98% accuracy for Random Forest and 99.88% for Bayesian Network) across several classifiers. It 

provides evidence that a few non-less relevant features can increase classification results. As a comparison, all classifiers 

yield good accuracy using Random Forest, over 99% accuracy across all feature selection methods implemented, and 

J48 accuracy appears similar for CFS and Information Gain methods, all above 99.7%. Using CFS can significantly 

enhance classification accuracy while reducing computational complexity. The classification algorithm comparison 

under the 16x attack scenario is further illustrated in Figure 12. 

Table 6 showcases the accuracy outputs of different classification algorithms under an 8x attack in a tree topology. 

From the results, it is noticeable that the algorithms for feature selection influence the classifier’s performance, with the 

CFS algorithm being the most accurate across classifiers. The best classifier is the Bayesian Network classifier, followed 

closely by CFS, with accuracy reaching 99.98%, showing that this classifier is highly adept in working with a dataset 

with a limited number of features with high relevancy. Using the CFS method, the Random Forest classifier takes a 

slight step down in accuracy, reaching 99.97%, indicating that this classifier also performs well in utilizing the CFS 

method. The J48 classifier also produced a high level of accuracy as a whole, with the highest accuracy being 99.96% 

when CFS was used as the feature selection method; this only shows that a decision tree-based classifier can classify 

successfully based on means of optimized features, as is the case in this scenario. Differently, Naïve Bayes was shown 

to yield the lowest amount of accuracy in all cases, with the highest amount of accuracy coming in at 94.81%, due to the 

entirety of the feature set being utilized. It implies that as features are eliminated, Naïve Bayes would not perform 

similarly to other classifiers. Wrapper NB also yielded the lowest amount of accuracy through a comparison with 

different classifiers, notably the Bayesian Network classifier (95.05%) and Random Forest classifier (95.39%), as both 

other classifiers demonstrated their proficiency despite feature selection in feature selection at an 8x attack. 

Table 6. The Results of Accuracy Algorithm in Tree Topology 16x  

No. 
Feature selection 

algorithm 

Accuracy (%) 

Naive Bayes J48 Random Forest Bayesian Network 

1 Full feature [20] 92.63 99.61 99.42 98.13 

2 Information Gain [29] 92.73 99.70 99.77 98.35 

3 Gain ratio [29] 92.73 99.70 99.77 98.35 

4 Wrapper NB 94.75 97.21 96.98 96.06 

5 CFS 88.35 99.79 99.98 99.88 
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Figure 12. Comparison of accuracy on tree topology 16x 

Figure 13 displays a comparative assessment of the classification accuracy of various classification algorithms 

operating under the 8x attack scenario in a tree topology. The analysis shows that the Random Forest classifier has the 

highest accuracy in all algorithms tested in Graph 1 and Graph 2 for feature selection; this further supports the utility of 

Random Forest classification when optimal features are selected. Across each of the algorithms used for feature selection, 

the CFS algorithm selected the least number of features compared to the other feature selection methods while 

maximizing accuracy, with the Bayesian Network reaching 99.98% accuracy and Random Forest reaching 99.97% 

accuracy. It demonstrates the value of selecting the most relevant features for increased classification accuracy. The J48 

classifier showed additional increases in accuracy across feature selections, with its highest perceived accuracy reaching 

99.96% using CFS feature selection. Therefore, decision-tree-based classifiers have a significantly positive influence 

after optimum feature selection. 

 

Figure 13. Comparison of accuracy on tree topology 8x 

Table 7 displays the accuracy results of different classification algorithms within a tree topology during a 4x 

attack. As observed, the Random Forest classifier with the CFS feature selection algorithm achieves the best 

accuracy of 100%. It shows that selecting relevant features improves classification performance and allows an 

algorithm to make accurate classifications. The J48 classifier, on the other hand, shows a substantial accuracy across 

all feature selection strategies, achieving the best accuracy of 99.98% when the wrapper NB algorithm is used. It 

indicates that J48 takes advantage of optimal feature selection strategies. Similarly, the Bayesian Network classifier 

achieves the best accuracy of 99.86% with the CFS feature selection method, which proves that the algorithm can 

handle a refined feature set. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2415 

Table 7. The Results of Accuracy Algorithm in Tree Topology 8x  

No. 
Feature selection 

algorithm 

Accuracy (%) 

Naive Bayes J48 Random Forest Bayesian Network 

1 Full Fitur [20] 94.81 99.53 99.49 98.27 

2 Information Gain [29] 94.64 99.70 99.78 98.38 

3 Gain ratio [29] 93.69 99.63 99.77 98.29 

4 Wrapper NB 90.37 95.78 95.39 95.05 

5 CFS 89.62 99.96 99.97 99.98 

In contrast, Naïve Bayes continues to achieve the worst accuracy of all the classifiers. Using the CFS feature selection 

method, Naïve Bayes achieves an accuracy of 86.75%, indicating its sensitivity in reduced feature set methodologies. 

However, it achieves an improved accuracy of 91.88% using the full feature selection methodology. Overall, the best 

results for the 4x attack are combined with the Random Forest classifier and CFS feature selection algorithm. Figure 14 

compares classification accuracy results under the 4x attack conditions. 

 

Figure 14. Comparison of accuracy on tree topology 4x 

The model development time in this study is critical; removing tested and noted unnecessary features improves 

computation time while enhancing classification efficiency. Only choosing the features the model developed finds 

practical and necessary will significantly improve classification efficiency after development, as the developed model 

can operate on the data more quickly. It enhances the model's overall performance and reduces resources consumed to 

maintain the capabilities following computational processing, making it useful for practical catastrophes in the field. A 

tabular comparison in Table 8 demonstrates the relative computational time for the reduced dataset. Further, it shows 

the results and impacts of feature selection on efficiency and processing. 

Table 8. The Results of Accuracy Algorithm in Tree Topology 4x 

No. 
Feature selection 

algorithm 

Accuracy (%) 

Naive Bayes J48 Random Forest Bayesian Network 

1 Full Fitur [20] 91.88 99.89 99.51 98.19 

2 Information Gain [29] 90.53 99.93 99.83 98.27 

3 Gain ratio [29] 90.92 99.85 99.8 98.28 

4 Wrapper NB 92.15 99.98 99.97 99.92 

5 CFS  86.75 99.92 100 99.86 
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Based on Table 8, building a classification model improves computational efficiency by removing irrelevant features 

from the dataset. This feature reduction allows the model to be trained faster while maintaining or improving accuracy. 

Among the various classification algorithms tested, the Naïve Bayes algorithm is the fastest in computation time, making 

it an ideal choice for situations where rapid processing is required. However, its drawback lies in its lower accuracy 

compared to other algorithms. In contrast, the Random Forest algorithm takes the longest to build the model, mainly 

when using the complete set of features. Despite its high computational cost, Random Forest consistently delivers the 

highest accuracy, demonstrating a trade-off between processing time and prediction performance. 

Furthermore, all classification algorithms, except for Naïve Bayes, improve speed and accuracy when applying 

feature selection techniques. The table also highlights that as the number of features decreases, the computational time 

for all algorithms is significantly reduced. The CFS feature selection algorithm has the fewest features, resulting in the 

shortest model-building time across all classification methods. Feature selection plays a crucial role in optimizing model 

efficiency. Figure 15 illustrates a more detailed comparison of the average time consumed constructing the model, further 

emphasizing the impact of feature selection on computation time and classification performance (see Table 9). 

Table 9. The Comparison of Time Consumption Algorithm to Build Model on Tree Topology 

No. 
Feature selection 

algorithm 

Time consumption 16x (second) Time consumption 8x (second) Time consumption 4x (second) 

Naive 

Bayes 
J48 

Random 

Forest 

Bayesian 

Network 

Naive 

Bayes 
J48 

Random 

Forest 

Bayesian 

Network 

Naive 

Bayes 
J48 

Random 

Forest 

Bayesian 

Network 

1 Full Fitur [20] 0.04 0.27 6.19 0.13 0.04 0.72 5.43 0.22 0.17 0.59 4.98 0.37 

2 Gain ratio [29] 0.04 0.16 4.84 0.07 0.02 0.13 4.43 0.06 0.02 0.09 4.62 0.05 

3 Wrapper NB 0.02 0.43 4.27 0.14 0.01 0.05 2.38 0.02 0.01 0.06 3.03 0.04 

4 Information Gain [29] 0.02 0.16 4.06 0.06 0.03 0.12 4.38 0.05 0.02 0.13 3.84 0.05 

5 CFS 0.01 0.07 1.96 0.02 0.01 0.07 1.92 0.03 0.01 0.06 2.6 0.03 

Average 0.026 0.218 4.264 0.084 0.022 0.218 3.708 0.076 0.046 0.186 3.814 0.108 

 

Figure 15. Comparison of time consumption to build model 

The bar graph compares the average time to develop a model using distinct feature selection algorithms. These 

findings show that feature selection significantly decreases computation time compared to all featur e methods, as 

indicated by implementing various methods. In the feature selection, CFS is the fastest algorithm on average, 

anywhere close to 0.57 seconds to do it perfectly as the most computationally effective one. The Wrapper NB method 

takes seconds, an average of 0.87 seconds. It shows a lot of speed improvement compared to other methodologies. 

Overall, the Information Gain and Gain Ratio are slower on average, taking 1.08 seconds for each to execute while 

performing better in increased efficiency (not the point with the most optimal time reduction). The complete feature 

set gives the highest time computation (1.60 sec on average), significantly longer than every other method. It exposes 

the limitation of training a model even with all the available features, which drags the computational requirement 

absurdly even if we do not notice any increase in performance. Overall, the chart stresses the impact of feature 

selection on efficiency improvement in machine learning models. Results validate that CFS has the least time 

consumption, followed by the Wrapper NB methods and then the Information Gain, Gain Ratio. Although complete, 

the whole feature approach is the least efficient, proving that feature redundancy/irrelevance should be cleaned and 

cut when faster model building is desired. 
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4- Conclusion 

It is essential to detect Interest Flooding Attacks (IFA) in networks based on Named Data Networking (NDN) to 

ensure network performance is not hampered. Detection should be fast and accurate to minimize the effects of the attack. 

Based on our experiments in the present work, not all features can be reliably used for an attack presence indication. 

Hence, the feature selection process is crucial, dramatically affecting the detection system's accuracy and speed. This 

study used four feature selection algorithms: wrapper Naive Bayes, gain ratio, information gain, and correlation-based 

feature selection (CFS) to identify significant features. The CFS algorithm was the most efficient among these in 

determining the fewest features compared to the other methods. The research paper validated the chosen features using 

four classification algorithms: Naive Bayes, J48, Random Forest, and Bayesian Network. The best results were obtained 

when combining CFS and Random Forest, which achieved a fantastic 100% detection rate for three essential features 

extracted from 18 total features. This method offers excellent efficiency, as it reduces the time to build the model by 

47.8% and increases the detection accuracy. The following study will test the CIFA and ICIFA attacks, the extended 

version of the original IFA attack. This feature selection process will be modified to suit advanced detections. The 

research will evaluate the CIFA and ICIFA attack types to develop further methodologies to provide the required 

capabilities. The study examines advanced types of attacks so that the network security offered by NDN does not go 

down; thus, the reliability and resilience of NDN are maintained. 
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