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Abstract

Blood cockles (Andara granulosa) are among the most popular animal protein sources due to their
rich nutritional content and high economic value. The storage period and temperature are two critical
factors that significantly influence the freshness of blood cockles. One key indicator of blood cockle ~ PCA;
quality is the odor they emit. An unpleasant or inappropriate odor can indicate contamination ora  s\m:
decline in quality, posing potential food safety risks. However, conventional methods of odor quality Shelf Life:
testing are often subjective, require specialized skills, and may not always be reliable. To address ’
the limitations of human olfaction, advancements in gas sensor technology, specifically gas array =~ Temperature.
sensors (also known as the electronic nose), have been developed. This research aims to profile the

freshness of blood cockles by identifying their odor under different storage conditions using

electronic nose technology. The study used fresh blood cockle meat, which was stored under varying

temperature conditions: at room temperature, in a cooler, and in a freezer. The storage periods for . .

the samples were 1, 2, 3, 4, and 5 days. The samples were placed in sealed bottles and tested using  Article History:
a gas array sensor. The data collected from this process were in the form of voltage readings, which

were analyzed using machine learning techniques, specifically Principal Component Analysis ~Received: 02 March 2025

(PCA). The data were then classified using a Support Vector Machine (SVM) model. The study  Revised: 18 July 2025
results showed that the gas array sensor successfully classified the odor profiles, with PCA

explaining 93.83% of the variance in the data. The SVM model achieved an accuracy of 89.66% for ~ Accepted: 28 August 2025
PCA-reduced data and 91.44% for non-PCA data. Published: 01 October 2025

1- Introduction

Shellfish are a popular source of animal protein enjoyed by people across all levels of society due to their delicious,
savory taste and abundant nutritional content. Blood cockles (Anadara granosa) are a type of shellfish widely available
in the market, valued for their nutritional and economic benefits. The nutritional content of blood cockles includes
essential minerals such as calcium, phosphorus, iron, iodine, zinc (Zn), and selenium. They are also rich in vitamins like
A, D, E, and K, and the B-complex vitamins (B1, B2, B6, and B12), with a protein content of up to 26 grams per 100
grams [1].
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Previous studies have applied e-nose technology in food quality assessment, including meat freshness evaluation,
spoilage detection, and bacterial contamination analysis [2]. However, research specifically focusing on blood cockles
remains limited, particularly in developing robust pattern recognition models for classifying odor profiles under varying
storage conditions. Several studies have demonstrated the effectiveness of PCA-SVM models in classifying odors in
perishable foods, achieving high accuracy levels [3]. One study analyzing the effects of shelf life and temperature
variations on chicken meat using a gas sensor array achieved a test accuracy of 98.70% [4]. Another study on seafood
freshness assessment reported that PCA-SVM could successfully differentiate between fresh and spoiled samples with
an accuracy exceeding 95% [5]. This study aims to bridge the gap by applying a PCA-SVM approach to classify blood
cockle odor profiles based on gas sensor data, considering different storage times and temperature conditions. By
utilizing six TGS sensors (TGS2600, TGS2602, TGS2611, TGS2612, TGS2620, and TGS826), this research provides a
systematic method for blood cockle freshness evaluation, which could enhance food safety and quality control in seafood
industries.

The quality of blood cockles is highly dependent on environmental factors such as habitat, water quality, and post-
harvest handling methods. However, the freshness and quality of blood cockles sold in supermarkets are not always
guaranteed. One critical indicator of blood cockle quality is the aroma they produce. An inappropriate aroma may signal
contamination or decrease quality, potentially compromising food safety, as blood cockles are highly susceptible to
spoilage. Moreover, storage time and temperature influence the product's quality [6].

Shellfish quality assessment methods still rely on sensory evaluations based on appearance, texture, smell, and colour.
Traditionally, the human nose has been used to assess the freshness of shellfish by detecting their smell and physical
inspection. However, human olfaction has limitations, particularly regarding standardization, as the evaluation is
subjective and can vary from person to person [7]. Advancements in sensor technology have led to the development of
the Electronic Nose (e-nose) system, which allows for the early detection of the quality and freshness of blood cockles.
Research and development in e-nose applications have increased rapidly, offering solutions to various biomedical
challenges and serving as an effective tool for distinguishing volatile substances [8].

The Electronic Nose (e-nose) is a device that mimics the function of the human nose and can detect and recognize
odors through a sensor array [9]. It uses an array of gas sensors to substitute for olfactory receptors, which detect smells
or aromas and generate specific patterns [10]. These devices employ susceptible sensors to detect volatile substances,
and they utilize pattern recognition methods, providing a higher level of selectivity and reversibility in the system and
making them applicable to a wide range of fields [11]. Numerous data analysis techniques have been developed to
process the data generated by the e-nose. This review explores analytical aspects, from data normalization to pattern
recognition and classification techniques [12]. In practice, the e-nose collects data from various volatile compounds,
which interact with molecules and are analyzed through pattern recognition [13]. The e-nose offers several advantages:
non-destructive, real-time, fast, versatile, safe, and cost-effective. The e-nose system comprises four main components:
the gas sensor array, headspace system, data acquisition, and pattern recognition unit [14, 15].

The gas sensor commonly used in e-nose systems is the Metal Oxide Semiconductor (MOS) type, specifically the
Taguchi Gas Sensor (TGS). The TGS sensor is designed to detect pollutant gases in the air, such as carbon monoxide,
hydrocarbons, and nitrous oxide [16]. The TGS sensor comprises three parts: the sensing element, the sensor base, and
the sensor cap. The sensing element is typically metal oxide, such as Figaro Engineering Inc. [17].

There are two processes in the headspace system: the sensing process and the purging process. In the data acquisition
system, a microcontroller integrates the main components with a microcomputer [18]. For the pattern recognition
process, various methods are employed, including Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Partial Least Squares (PLS), Multiple Linear Regression (MLR), and Cluster Analysis (CA). Artificial neural
network (ANN) methods are also used, such as multilayer perceptron (MLP), fuzzy inference systems (FIS), self-
organizing map (SOM), radial basis function (RBF), genetic algorithms (GASs), neuro-fuzzy systems (NFS), and adaptive
resonance theory (ART) [19].

The sensors included TGS 2600, 2612, 2611, 2602, 2620, and 826, each providing different information [20]. The
TGS 2600 sensor detects hydrogen and carbon monoxide, while the TGS 2602 can detect ammonia and hydrogen sulfide
(H»S). TGS 2611 is used to detect methane, TGS 2612 detects methane, propane, and butane, TGS 2620 is designed to
sense volatile organic compounds (VOCs), and TGS 826 is used for ammonia detection [21]. The response patterns
produced by these sensors are used to assess the quality of blood cockles infected with Vibrio sp. bacteria under varying
storage times at room temperature.

The characteristics of voltage responses are studied to predict target groups that share similar properties. The Principal
Component Analysis (PCA) method transforms the original variables, which are correlated with each other, into a smaller
set of uncorrelated variables without losing significant information [22]. The data collected by the e-nose typically exists
in high-dimensional space due to using a relatively large number of gas sensors, and several signal characteristics are
extracted [23]. Each measurement is multivariate or observational. The primary goal of this method is to reduce the
dimensions of interconnected variables, making it easier to interpret the data [24].
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In this study, pattern recognition for blood cockle samples was carried out using the Support Vector Machine (SVM)
method. SVM is a machine learning technique based on the principle of Structural Risk Minimization (SRM), which
aims to find the optimal hyperplane that separates two classes within the input space. Its evaluation in various
applications has established SVM as a state-of-the-art method in pattern recognition. The measurement data, extracted
using PCA, serves as the input for the SVM process.

This paper begins by outlining the experimental setup and the techniques used to collect and analyze data. It then
presents the results, focusing on the classification of odor patterns and the performance of the PCA-SVM model in
evaluating the freshness of blood cockles. Following the results, the discussion compares these findings with previous
research, highlighting their significance and any limitations. The paper concludes by summarizing the key discoveries
and proposing directions for future research in this area. This research employed the PCA-SVM method with six types
of TGS sensors: TGS2600, TGS2602, TGS2611, TGS2610, TGS2620, and TGS826. Odor cluster analysis using a gas
sensor array to study the effects of shelf life and temperature variations on chicken meat, achieving a test accuracy of
98.70%. This study aims to analyze the data patterns from the gas sensor array in the Electronic Nose (E-Nose) and
classify the odor profiles of blood cockles using the Principal Component Analysis (PCA) and Support Vector Machine
(SVM) methods.

2- Material and Methods
2-1-Electronic Nose (E-nose) Technology

The E-nose simulates human olfactory perception using an array of gas sensors to detect volatile organic compounds
(VOCs) released by the samples. In this case, the E-nose detects the gases emitted by the blood clams under various
storage conditions. The sensors' responses to these VOCs are translated into data, providing a "smell" profile that can be
analyzed to determine freshness.

2-2-Sensor Response and Calibration

The first step in data analysis involves calibrating the E-nose system. This ensures that the sensors respond accurately
and reliably to known gas concentrations (H,S gas in this case). Calibration is critical to the success of the E-nose
method, as it establishes a baseline for sensor accuracy and precision. By evaluating the recovery rate and repeatability,
the study ensures that the sensor data reflects the actual gas emissions from the clams without significant error.

2-3-Dimensionality Reduction (PCA)

The sensor data is processed using Principal Component Analysis (PCA), which is a statistical method that reduces
the complexity of the data by identifying the main components or features that explain most of the variation in the data.
PCA helps in visualizing and interpreting high-dimensional data, making it easier to identify trends or patterns in the
odors emitted by the clams under different conditions.

2-4- Classification with Support Vector Machine (SVM)

After feature extraction through PCA, the data is classified using Support Vector Machine (SVM), a supervised
machine learning algorithm. SVM helps in categorizing the blood clams into two groups: fresh and non-fresh, based on
the extracted odor features. This classification approach allows the study to distinguish between the different stages of
freshness, which is crucial for assessing food quality.

2-5- Applications and Practical Implications

This methodology has important applications in food quality monitoring, particularly in ensuring the freshness of
seafood products. The combination of temperature and storage time variations simulates real-life conditions, making the
research applicable to the food industry, where rapid, non-invasive freshness detection can lead to better inventory
management, reduced waste, and improved consumer safety.

2-6- Sample Preparation

Blood clams purchased directly from fishermen were prepared in 1 kilogram. The shells were cleaned and opened to
examine the shellfish's shape, colour, and texture. The clams were divided into three samples, each stored at different
temperatures: 4°C, 12°C, and 25°C. Each sample was tested using an electronic nose, with data collected from 50
samples simultaneously.

2-7-Electronic Nose Set-up

In this research, the primary tool in the electronic nose gas array sensor system is located in the tube box. The E-nose
tool will be combined with other components when data collection is carried out. Then, the PC is connected to the cable
in the E-nose box. An illustration of the research tool setup can be seen in Figure 1.
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Figure 1. Set up of research tools

The total warm-up time is 20 minutes at a temperature of 50°C. Sample preparation takes 5 minutes, followed by 10
seconds for baseline measurement and 2 minutes for sensing. The purging stage lasts 250 seconds. These settings are
configured using the PC's gas sensor array interface software. The samples used are fresh blood clams, with variations
in temperature and storage time, and data are collected from 50 samples at each time interval. A plastic flexible tube
connected to the sensor is attached to a glass beaker, each containing a sample. The beakers are covered with aluminium
foil to prevent contamination from external air.

2-8-Data Testing and Analysis

The experimental procedure involved two stages: calibration measurements and biological sample analysis.
Calibration was conducted using known H, S gas concentrations to evaluate sensor accuracy and precision. Accuracy
was tested through recovery analysis (% recovery), ensuring results fell within a 10% tolerance, while precision was
assessed using repeatability tests to calculate the relative standard deviation (RSD). For biological samples, fresh blood
cockles were tested under time variations (1-5 days) and temperature variations (4°C, 12°C, and 25°C). Sensor
responses, recorded as voltage data, were processed using Principal Component Analysis (PCA) for feature extraction
and dimensionality reduction. Radar charts visualized the sensor data, and Support Vector Machine (SVM) classified
the samples into fresh and non-fresh groups. This approach ensured accurate and reliable analysis of the samples.

3- Results
3-1-Sample Testing

The sensing process begins with a pre-heating stage to stabilize the gas sensor array, ensuring consistent performance
in clean air conditions [25]. Each sensor requires a pre-heating duration of 900 seconds (15 minutes), during which it
stabilizes to reach a consistent value. Figure 2 illustrates the pre-heating graph for each sensor. While this process ensures
device stability, it is a preparatory step unrelated to the main experimental procedures. As such, details about the pre-
heating process may be better suited for inclusion in the supporting materials.

Figure 2. Image of Pre-Heating Sensor

3-2-Electronic Nose Sensor Response Test Results for Samples

In the sensing process using a gas array sensor, the odor produced by each blood cockle sample leads to different
voltage responses based on temperature and storage time variations. The research involved testing samples at three
different temperature settings: 25°C, 12°C, and 4°C, and five different storage times: 1 day, 2 days, 3 days, 4 days, and
5 days. For each variation, 50 data repetitions were collected over 6 minutes and 50 seconds. The results showed different
gas array responses for each treatment. Specifically, the sensor response decreased as the storage temperature of the
shellfish decreased.

Page | 2583



Emerging Science Journal | Vol. 9, No. 5

Conversely, the sensor response increased with longer storage times. These results indicate that blood cockle
samples can be differentiated based on the pattern of sensor responses resulting from each treatment. The response
results of the gas array sensor for the 15 different treatments are presented in Table 1. At 25°C, the samples
deteriorated the fastest, with the sensor response rising quickly over time. At 12°C and 4°C, spoilage occurred more
slowly, with lower sensor responses observed throughout the study. The sensor effectively differentiated the freshness
of samples based on their temperature and storage time. These findings demonstrate that the electronic nose (E-nose)
is a useful tool for monitoring the freshness of blood cockles, with potential applications in food quality control and
inventory management.

Table 1. Sensor response results
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3-3- TGS Gas Sensor Sensitivity Results

The array of gas sensors comprises several TGS, each calibrated for specific gas sensitivities. The response of each
sensor is represented by voltage changes relative to its baseline in clean air, as recommended by the sensor manufacturer.
In experiments with blood cockle samples, the TGS 826 gas sensor demonstrated the most significant response in
distinguishing samples under different temperature variations. Similarly, the TGS 2610, 2602, and 2611 sensors
distinguished samples. In contrast, the TGS 2600 and 2620 sensors were less effective, with the TGS 2620 failing to
differentiate among samples. Figure 3 illustrates the relative responses of TGS 2600, 2602, 2611, 2620, 2610, and 826
sensors to the gases emitted by blood cockle samples under varying conditions.
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Figure 3. Sensitivity of gas sensors (a) TGS2600, (b) TGS2620, (c) TGS2611, (d) TGS2602, (e) TGS826, (f) TGS2610

The TGS 826 sensor showed the most significant and consistent response, making it the most reliable for
distinguishing blood cockle samples at various temperatures. It is sensitive to the volatile organic compounds (VOCs)
released during spoilage. The TGS 2610, 2602, and 2611 sensors also distinguished the samples, but their responses
were less pronounced, indicating lower sensitivity to the specific VOCs emitted by the cockles. In contrast, the TGS
2600 and 2620 sensors were less effective, with the TGS 2620 failing to differentiate among the samples, suggesting it
is less sensitive to the gases emitted by the blood cockles.

3-4-Sensor Validation Test Results

Hydrogen sulfide (H, S) gas is a key indicator produced during the decomposition of shellfish, making it a critical
target for sensor evaluation. The response of TGS 2602 and TGS 826 sensors to H, S was tested using concentrations
of 1 ppm, 2 ppm, 3 ppm, 4 ppm, and 5 ppm. Repeated measurements were conducted to assess accuracy, defined as a
recovery value within 90%-110%. These results, presented in Table 2, validate the sensor's performance in detecting
H, S under controlled conditions. However, additional details about the setup and methodology for these measurements
are absent in the materials and methods section. To address this gap, the experimental protocol for this test should be
described in detail, including how these results supplement or verify the manufacturer’s specifications.

Table 2. Table of H2S Accuracy Test Results

Concentration based on voltage linearity Recover percentage (%)
Concentration
TGS2602 TGS826 TGS2602 TGS826
1 ppm 0.9598 1.0103 95.899% 101.037%
2 ppm 1.9859 2.0143 99.297% 100.716%
3ppm 3.077 2.9978 102.594% 99.268%
4 ppm 4.051 3.966 101.263% 98.984%
5 ppm 4.927 5.037 98.534% 100.756%
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Based on the information in Table 2, it can be concluded that both sensors, namely TGS 826 and TGS 2602, meet the
accuracy requirements. This is because both sensors' H,S gas measurements show values within the 10% tolerance range.
The precision test is a method used to measure how closely test values align with one another under the same test
conditions. This test calculates the consistency of repeated sensor responses on the same sensor. The consistency of the
E-Nose sensor can be measured by calculating the Relative Standard Deviation (RSD) value, as shown in Table 3. The
RSD value is categorized as precise if the percentage score is below 7.3% [26].

Table 3. Sensor Risibility Test Results

RSD (%)
Sample
TGS2600 TGS2602 TGS2611 TGS2610 TGS2620 TGS826
1 21.49391 56.572812 98.300377 16.535719 17.84932 19.919582
2 27.36339 72.454390 38.716066 24.27920 25.21537 50.298379
3 91.97353 207.47772 64.769054 109.4428 117.2083 94.743134
4 38.61822 131.95144 135.94605 115.4600 51.06010 148.3507
5 47.69463 102.65576 43.406487 89.822231 61.110429 85.521472
6 27.726641 63.021267 22.131452 24.619475 25.211652 22.568414
7 43.293655 67.799782 22.055367 24.949395 35.698255 18.004620
8 5.481459 12.100031 60.230344 5.734192 6.046907 5.168021
9 14.370807 10.051369 7.791535 13.437860 15.710256 5.715633
10 10.327871 17.472933 60.633506 31.310257 10.837928 18.605740
11 10.746895 14.407626 12.440592 11.685748 10.738392 6.798276
12 32.360238 22.197297 46.426063 36.778038 33.465603 10.128170
13 10.553367 13.427846 16.911356 14.858589 11.562119 6.246612
14 23.596897 17.481134 115.295351 29.677701 25.568805 7.718066
15 14.312413 13.754032 21.570101 20.729671 15.755786 6.617144
3-5-PCA

Principal Component Analysis (PCA) simplifies data by reducing its dimensionality while preserving essential
variance, transforming original independent variables into new, uncorrelated variables [14]. The data analysis
involves standardizing the data, constructing a covariance matrix, and calculating eigenvalues and eigenvectors.
Eigenvalues indicate the variance captured by each Principal Component (PC). Table 4 presents the results of
eigenvalue calculations.

Table 4. Eigen Value calculation results

ngggir?;: ts Eigenvalues % Variation
1 51007.2693 77.8187
2 10501.3151 16.0212
3 1989.4922 3.0352
4 1989.4922 2.1528
5 1411.1199 0.8746
6 573.3292 0.0971

From the results in Table 4, the eigenvalues and data variations representing the accuracy of the gas array sensor
are obtained. The variation accuracy value in the cumulative sum graph in Figure 4. PC1 has an accuracy value of
77.8187%, PC2 of 16.0212%, PC3 of 3.0352%, PC4 of 2.1528%, PC5 of 0.8746%, and PC6 of 0.0971%.
Therefore, data analysis using PCA utilizes PC1 and PC2, accounting for a cumulative variation value of 93.83%
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of all data. In performing a good PCA, one criterion for determining the number of components is the percentage
of variation. The number of PCs used in clustering should have a cumulative percentage of variance of at least 80%
[27].
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Figure 4. Graph of the sum of the principal component variation values
Figures 5-a and 5-b show the PCA score plot graph. The graph represents the location of the data cauterization. The

graph shows 2 principal components originating from 6 TGS sensor variables, which are correlated with each other into
2 variables which are not correlated with each other.
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Figure 5. (@) PCA Score Plot graph based on temperature variations and (b) PCA score plot graph based on variations in
blood cockle profiles (fresh and not fresh)

In Figure 5-a, the PCA score plot shows that temperature variations (4°C, 12°C, and 25°C) create distinct clusters,
with two principal components effectively capturing the variation in gas emissions. Figure 5-b differentiates fresh and
not fresh blood cockles, demonstrating that the sensor array can reliably classify spoilage levels. The separation of data
points in both plots indicates that PCA successfully identifies patterns in the sensor data, correlating with temperature
and freshness.

3-6- Support Vector Machine (SVM)

The study used a Support Vector Machine (SVM) with and without PCA to classify blood cockle samples as fresh or
non-fresh. Using PCA (PC1 and PC2 as inputs) achieved 89.66% accuracy, while without PCA, accuracy improved to
91.44%. Results, shown in Figure 6, compare predicted and actual classifications. However, using training data to assess
performance raises concerns about reliability. Independent testing or cross-validation is necessary for robust validation.
With PCA (using PC1 and PC2 as inputs), the classification achieved 89.66% accuracy, while without PCA, accuracy
improved to 91.44%. Using training data for performance assessment raises concerns about reliability, and independent
testing or cross-validation is necessary for robust validation.
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Figure 6. SVM confusion matrix (a) with PCA and (b) non-PCA
To determine the shelf life of blood cockles stored outside a cooler or freezer, a second machine-learning model was
developed to predict the blood cockle profile for samples at 25°C (room temperature). This machine learning model,

designed to predict the profile of blood cockles based on shelf life at 25°C, achieved an average accuracy of 94.26%.
The details of the SVM prediction results are presented in Table 5.

Table 5. SVM Guess Results

Non-PCA Data

Classification Classification

Sample Fresh  Not Fresh Results Aeouracy

First day 3367 833 Fresh 80.16%
Second day 58 3302 Not Fresh 98.27%
Third day 8 2992 Not Fresh 99.73%
Fourth day 5 2995 Not Fresh 99.83%

Fifth day 49 2951 Not Fresh 98.36%

4- Discussion

The electronic nose (E-nose) instrument consists of gas sensors and a pattern recognition system that detects objects
based on their smell or aroma. The response generated by the E-nose is a voltage signal, which indicates the relationship
between the odor concentration and the shellfish emissions. The higher the voltage produced, the higher the concentration
of odor emitted by the shellfish.

In this research, the E-nose used comprises six sensors: TGS 2612, TGS 2600, TGS 2611, TGS 2602, TGS 2620, and
TGS 826. Each sensor has a specific sensitivity to certain gases. TGS 2602 is highly sensitive to low concentrations of
odorous gases such as ammonia and H2S. TGS 2611 is sensitive to methane gas, while TGS 2600 has high sensitivity
to low concentrations of contaminant gases like hydrogen and carbon monoxide. The TGS 2612 gas sensor is susceptible
to methane, propane, and butane gases. TGS 2620 is highly sensitive to organic solvent vapours, and TGS 826 is highly
sensitive to ammonia gas. Some of the compounds in these gases are found in decaying blood cockles.

When the sensor interacts with volatile compounds emitted by the sample, each sensor responds with a different
voltage, forming an exclusive pattern for each detected sample, thus enabling the detection of quality changes [28]. The
mechanism of the gas sensor in responding to the gases emitted by the sample is illustrated in Figure 7.
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Figure 7. Gas Array Sensor System Mechanism [21]
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The mechanism of the gas array sensor system to produce a voltage begins when the metal oxide crystal SnO, (Tin
dioxide) is heated to a specific temperature in the air. Oxygen is absorbed on the surface of the crystal with a negative
charge caused by the presence of an electron donor on the surface of the crystal. This electron donor is sent to the
absorbed oxygen, resulting in a positively charged space layer. This creates a surface potential that inhibits the flow of
electrons, producing electrical resistance [29].

The amount of oxygen adsorbed on the semiconductor surface in samples containing reducing gases decreases. This
reduction lowers the height of the barrier wall. Decreased barrier wall height reduces the sensor’s resistance to the
reducing gas. Therefore, the higher the concentration of gas detected in free air, the lower the resistance value.

The voltage value is proportional to the current and resistance. However, the current plays a more dominant role in
the sensor mechanism than the resistance. During the fresh air sensing process, O, particles bind to the sensor material,
causing resistance to increase and the current value to decrease. On the other hand, when the sensed air sample contains
pollutants, the O, in the previous air will attract the reducing gases (pollutants), causing the current and voltage to
increase.

The sample testing mechanism can be seen in Figure 8. The first step that must be taken is to carry out a characteristic
test. Characteristic tests involve response tests, accuracy tests, and precision tests. In the response test, H,S material was
used to test the sensor's response because H,S is one of the compounds produced during the shellfish decomposition
process. The test results show that the sensor can provide varying responses as the ppm H,S concentration increases,
indicating good response capability. In the accuracy test, H,S is inhaled several times, and the tolerance of the
measurement results is calculated within the range of 90%-110% of the previous response results. The results
demonstrate that the tool can provide accurate results within this range [30].

Samples are tested using sensors that have undergone the preheating process. The process within the electronic nose
system begins with detecting the sample's smell by the sensor array. The sensor responds to the gas emitted by the
sample. It detects signals resulting from energy changes, such as converting smell to electrical energy in voltage. The
sensor is made of metal oxide semiconductor material. Changes in the electrical properties of the metal oxide
semiconductor are caused by interaction with gas molecules initiated by the absorption of oxygen in the semiconductor.
The oxygen absorption process captures electrons from the conduction band [31].

Then, the data in the form of transactions is processed by a pattern recognition system. The sensing process starts
from the aroma detected by the sensor array. Analog data is then converted into digital data by an analog-to-digital
converter (ADC) to be stored on the computer for further analysis. Data from the ADC is processed so that the pattern
recognition engine can analyze the signal more efficiently. The pattern recognition process classifies and predicts
samples of unknown types. Figure 8 shows the sample testing mechanism.
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Figure 8. Sample testing mechanism

In this research, a method used to reduce features in the resulting data is Principal Component Analysis (PCA). PCA
is a mathematical method that represents the variations within a dataset using several factors. Several main components,
typically called principal components (PC), are linear data transformations to produce new variable spaces. As a result,
PC1 contains more data variations than PC2, and so on [32]. The process of using PCA involves several stages. First,
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data from a variety of samples is compiled. Then, a PCA pre-process is conducted by creating a covariance for each
component based on the 6 TGS gas sensor variables. The following formula is used to create the covariance [33].

cov(x,y) = Xiti(x1 = X) (1 = ) @

The covariance matrix is used to find the eigenvalues. In the process of finding eigenvalues and determining
eigenvectors, you can use the following formula:

IM—2AI|=0 2)
Mv = Av 3)

where; M: covariance matrix, A: eigenvalues, I: identity matrix and v: eigenvectors.

The aim of data analysis using PCA is to reduce the dimensions of correlated or related variables into fewer variables
that are not linearly correlated to explain the variations that occur with as few main components as possible. The number
of sensors in the electronic nose is represented by the number of variables in the PCA process. These variables are then
reduced to two dimensions: the main component (PC1) and the second principal component (PC2). These two reduced
components represent the percentage of significant variation values from the overall data variation. Visualizations in
two-dimensional graphs are created to analyze and interpret the information qualitatively. The selection of PC1 and PC2
is based on the 2 eigenvectors with the highest eigenvalues, with a cumulative variation value of 93.81% of the total
data. The two PCs will be used as new coordinate axes representing six sensor variations. The initial transformation
involves converting the data into a 45000x6 matrix, which is then multiplied by the eigenvector with the highest
eigenvalue, forming a 6x2 matrix, resulting in a 45000x2 matrix transformation [34].

The variations in the resulting data are expressed as each eigenvalue divided by the total eigenvalue. From the PCA
calculations, the eigenvalues of each PC were obtained as follows: PC1, PC2, PC3, PC4, PC5, and PC6 were 51007.2693,
10501.3151, 1989.4922, 1411.1199, and 573.3292, respectively. The variation values of each PC, namely PC1, PC2,
PC3, PC4, PC5, and PC6 were 77.8187%, 16.0212%, 3.0352%, 2.1528%, 0.8746%, and 0.0971%, respectively.

The classification process uses the Support Vector Machine (SVM) method. SVM is a machine learning method
based on the principle of Structural Risk Minimization (SRM), aiming to find the best hyperplane that separates two
classes in the input space. This research divides the classes into blood clams with fresh and non-fresh profiles. Data
collected from the electronic nose, reduced by PCA, is used to build the machine learning database. The database is
randomly divided into training subsets, representing approximately 80% of the total data, and testing subsets,
representing approximately 20% of the total data. The test data is not used during the model development stage but is
reserved exclusively for determining the model's performance [35].

In SVM, non-linear data classification uses a kernel trick, which can separate low-dimensional data and convert it
into a higher-dimensional space [5]. The kernel function in SVM has several types, such as the linear kernel, polynomial
kernel, and radial basis function (RBF). Each kernel function has its limitations when classifying high-dimensional data.
The polynomial kernel and RBF are most suitable for classifying high-dimensional non-linear data [36]. There are
several mathematical stages involved in the SVM algorithm. The first step is to determine the regression model function
using a specific function:

—w e (Exit B) @)
yi—wE() —b < E+F;
sty wEx)+b—y, <E+E 5)

§€>0(=1234..m)

where: w = Vector weight; ¢ = Penalty factor; &i = Relaxation component X7, a; (y; — &) — X%, a;(y;€); €(X)= Linear
transformation function; b = Offset; € = Upper limit of error.

Then, in determining the model optimization, the equation is used:

1 * * *
max —-3_1(ai — a)(aj — adk(X, X) + Ty af (v — &) — XLy a;(vie) ©)
m m *
i=1a; = Xizq 4 }
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To determine the regression of the SVM function, use the following equation:

f)=2%1(a; — a;) k(X;, X) + b (8)

Page | 2590



Emerging Science Journal | Vol. 9, No. 5

2
xl-—x]-
262

Kk (Xi, Xj) = exp(— )=exp (-yXi - Xj2), y>0 ©)

Finding the optimal values for parameters (C) and (gamma) is crucial in determining the hyperplane. These two
parameters are essential in governing how the data will be divided by the hyperplane. Therefore, searching for the values
of (C) and (gamma) that provide optimal results is recommended.

After conducting the training and testing process on SVM, the accuracy results were 89.6% for data with PCA and
91.44% for non-PCA data. With these figures, SVM can be considered effective in classifying variations in blood cockle
samples with fresh and non-fresh profiles. The accuracy value is obtained by calculating the True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN) values derived from the confusion matrix. The accuracy of
SVM classification on variations in blood cockle sample profiles can be seen in Table 6.

Table 6. SVM Classification Accuracy

TP FP
Fresh
6501 42
PCA Data
FN TN
Not Fresh
894 1563
TP FP
Fresh
6542 1
Non-PCA Data
FN TN
Not Fresh
796 1661
The accuracy value can be calculated using the equation:
Accuracy — (True Positive (TP)+True Negative (TN)) (10)

(True Positive(TP)+True Negative(TN)+False Positive(FP)+False Negative(FN))

Apart from accuracy, as a result of this research, the SVM model was also reviewed from other evaluations such as
Precision, Recall, and F1-Score, as summarized in Table 7. The results show that the SVM model developed in this
research has an accuracy of 89.66% for data using PCA and 91.44% for non-PCA data.

Table 7. Table of evaluation results

Sample Precision Recall F1-Score
Fresh 88% 99% 93%
PCA Data
Not Fresh 97% 64% 7%
Fresh 89% 100% 94%
Non-PCA Data
Not Fresh 100% 68% 81%

After creating an SVM machine-learning model to classify blood cockle profiles based on temperature and shelf
life variations, a second machine-learning tool was developed to predict blood cockle profiles with variations in
shelf life at room temperature or outside the cooler or freezer. Based on the results of the computational analysis, it
can be observed that blood cockles began to be categorized as "Not Fresh" on the second to fifth day. The SVM
machine learning model can predict the profile of blood cockles based on their shelf life with an average accuracy
of 94.26%.

The TGS 826 gas sensor plays a dominant role in distinguishing samples with different temperature variations from
the sensitivity tests conducted on the sensors. The TGS 2610, TGS 2602, and TGS 2611 gas sensors also provided
significant differences in detecting blood cockle samples. However, the TGS 2620 and TGS 2600 gas sensors did not
provide a good voltage response, with the TGS 2620 gas sensor being particularly ineffective at differentiating blood
cockle samples. This is because the TGS 826, TGS 2610, TGS 2602, and TGS 2611 sensors have high sensitivity in
detecting odorous gases such as ammonia, H2S, methane, propane, and butane [37]. These gases are associated with the
decomposition process of fish and shellfish. NH3, H2S, and SO2 compounds are found in the final stages of fish and
shellfish decomposition, indicating the presence of active spoilage microbes in shellfish [38].

Previous research on electronic noses (E-noses) used biofilm bacterial samples with six sensors: TGS 826, TGS 2600,
TGS 2602, TGS 2611, TGS 2610, and TGS 2620 [28]. These sensors could detect biofilm bacteria in dental and oral

Page | 2591



Emerging Science Journal | Vol. 9, No. 5

diseases, as indicated by high delta ADC values [4]. The PCA method to detect the quality of three types of freshwater
fish with a gas sensor array (TGS 826, TGS 2600, TGS 2602, TGS 2611, TGS 2610, and TGS 2620), achieving
cumulative variation values of 98.7% for pomfret, 98.8% for catfish, and 99.5% for tilapia [4]. A gas sensor array (MQ2,
MQ3, MQ7, MQ8, MQ135, and MQ136) with the SVM method obtained an accuracy value of 98.61% [5]. Three types
of marine biota were stored at room temperature with time variations of 2 hours for 30 hours, achieving 99% accuracy
using the K-NN method [39].

The current research, which uses gas array sensors (TGS 2600, TGS 2602, TGS 2611, TGS 2610, TGS 2620, and
TGS 826) with PCA and SVM analysis methods, successfully classifies blood cockles, resulting in a cumulative
percentage of the two main components of 93.83% and an accuracy level of 88.66% using the SVM-PCA method and
91.44% for non-PCA [40].

The study considered environmental factors like humidity, air pressure, and potential contaminants. Control measures
and baseline corrections were applied to minimize their impact on sensor readings. The storage conditions, including
temperature and time, were carefully controlled during the study. These conditions were designed to mimic common
storage practices for blood cockles, ensuring that the experiment accurately reflected real-world scenarios. By regulating
these factors, the study aimed to produce reliable and consistent results relevant to typical cockle storage practices. The
study involved sampling multiple individual cockles for each storage condition to ensure a representative analysis. By
using a larger sample size, we aimed to improve the robustness of the data and account for any potential variability
between individual cockles, enhancing the statistical significance of the results [41]. The results obtained from this
research are good compared to previous studies. However, this research still has some limitations. Differences in storage
conditions (temperature and storage time) can affect sensors' detection and classification results. Samples stored at room
temperature with time variations proved more optimal for sensor detection. Additionally, the SVM-PCA method shows
lower accuracy than the SVM method in previous research, likely due to the lower quality of data produced from the
sensor, affecting PCA’s ability to reduce data dimensions and retain critical information effectively [1].

5- Conclusion

The study demonstrated that the electronic nose utilizing the TGS 2600, TGS 2602, TGS 2611, TGS 2612, TGS 2620,
and TGS 826 gas sensor array effectively detected odor variations in blood cockle profiles. Computational analysis using
Principal Component Analysis (PCA) successfully reduced the six sensor variables into two principal components,
explaining 93.83% of the cumulative variation. Principal Component 1 contributed 77.82%, and Principal Component 2
accounted for 16.02% of the variation, highlighting the ability of PCA to condense the sensor data while retaining critical
information. The results showed that using SVM machine learning, the blood cockle profiles could be classified with
89.66% accuracy when PCA was applied and 91.44% accuracy when PCA was not used. These findings emphasize that
PCA contributes to efficient classification, but the direct sensor data also offers strong performance. Further analysis
with the SVM model indicated that the blood cockles could be classified as 'not fresh' from the second day onwards,
achieving an impressive 94.26% accuracy. This finding suggests that the electronic nose, based on the gas sensor array,
can reliably differentiate between fresh and non-fresh blood cockles based on odor profiles, making it a valuable tool for
food freshness monitoring. Overall, the electronic nose system shows great promise for application in food quality
control, particularly in detecting spoilage and ensuring product freshness.
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