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Abstract 

The exponential increase in IoT devices within industrial networks has heightened their exposure to 

cyberattacks, with spoofing attacks posing one of the most critical threats. These attacks exploit 
communication vulnerabilities, enabling malicious entities to manipulate network traffic and 

impersonate legitimate devices, compromising system integrity and security. This study aims to 

develop an AI-driven detection and mitigation system to enhance IoT network security against 
spoofing attacks. The proposed approach integrates Convolutional Neural Networks with a 

distributed processing architecture based on Edge nodes, enabling real-time anomaly detection while 

reducing computational overhead on central servers. The system was tested in four simulated 
industrial scenarios involving up to 1,000 IoT devices and multiple concurrent attacks to validate its 

effectiveness. The evaluation included detection accuracy, response time, and system scalability 

metrics. Results indicate a detection rate of up to 95% under optimal conditions and 88% in high-
density environments. Detection and response times ranged from 150 ms to 220 ms and 300 ms to 

450 ms, respectively. Additionally, 97% of compromised devices were successfully isolated, with a 

false positive rate between 3% and 6%. This study introduces a scalable and adaptive AI-based 
framework, surpassing traditional machine learning techniques in accuracy, efficiency, and real-time 

applicability for industrial IoT security. 
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1- Introduction 

The rapid expansion of the Internet of Things (IoT) has significantly transformed industrial processes, smart cities, 

and home automation by enabling large-scale connectivity, automation, and real-time data processing [1, 2]. The number 

of IoT devices is projected to grow exponentially in the coming years, increasing the complexity of network management 

and exposing these infrastructures to severe cybersecurity threats. Among the most critical, spoofing attacks allow 

adversaries to manipulate network traffic by impersonating legitimate devices, threatening data integrity, system 

security, and operational reliability [3]. These attacks are particularly problematic in industrial environments, where real-

time data exchange is essential for automation and safety. 

Several studies have proposed different approaches for detecting and mitigating spoofing attacks in IoT networks. 

Olawale & Ebadinezhad [3] demonstrated that Intrusion Detection Systems (IDS) using Support Vector Machines 

(SVM) and Convolutional Neural Networks (CNNs) can detect anomalous behavior in healthcare IoT environments. 

However, their findings indicate that SVMs struggle with complex network topologies, leading to poor generalization 

under high-load conditions. Similarly, Prathapchandran & Janani [4] implemented a Random Forest-based trust 
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mechanism (RFTRUST) to detect sinkhole attacks in IoT environments, demonstrating its effectiveness in structured 

networks. However, their study highlighted computational latency issues, limiting its applicability in real-time industrial 

settings. Shukla et al. [5] explored anomaly detection in smart grid networks using a linear SVM combined with a 

blockchain-based model. Still, the approach faced challenges in high-density environments due to resource constraints 

and increased processing time. 

Recent advances in deep learning have introduced CNN-based anomaly detection techniques that outperform classical 

machine learning models. Abraham et al. [6]. validated the effectiveness of Random Forests (RFs) for anomaly detection 

in IoT-based smart homes, emphasizing their robustness in structured datasets. However, their study also identified high 

computational costs and response time limitations, restricting real-time applicability. Kim [7] proposed an optimization 

method for IoT device deployment but did not address security concerns related to network resilience against adversarial 

attacks. Alamatsaz et al. [8]. introduced a hybrid CNN-LSTM model for ECG-based arrhythmia detection, demonstrating 

the capability of deep learning architectures to capture intricate temporal patterns in streaming data. However, their work 

did not explore real-time detection in distributed IoT security applications, leaving a gap in the literature for adaptive, 

scalable security solutions in industrial networks. 

Despite these advances, existing solutions rely primarily on centralized architectures, which introduce single points 

of failure, increased bandwidth consumption, and high latency—factors that hinder real-time attack mitigation. This 

study proposes an AI-driven detection and mitigation system that integrates CNN models with a distributed Edge 

computing architecture to address these limitations. Unlike traditional approaches, our system distributes computational 

workloads across Edge nodes, reducing processing overhead on central servers and improving response times. This 

decentralized approach enables real-time anomaly detection, rapidly mitigating spoofing attacks without overloading 

cloud-based infrastructures. 

The system is evaluated under four simulated industrial scenarios, ranging from 100 to 1,000 IoT devices, to assess 

its scalability and effectiveness against ARP spoofing, IP spoofing, and device identity theft attacks. The results 

demonstrate that the proposed approach achieves up to 95% detection rates in optimal conditions and 88% in high-

density environments. Additionally, detection and response times remain within operational limits, ranging from 150 ms 

to 220 ms and 300 ms to 450 ms, respectively. The architecture enhances resilience against network congestion and 

mitigates potential single points of failure in industrial IoT environments. 

These findings highlight the system’s ability to enhance real-time security in industrial IoT networks, providing a 

scalable, decentralized, and adaptive solution that outperforms traditional machine learning-based methods. Future work 

will focus on optimizing computational efficiency and extending the framework to detect additional types of cyber 

threats, such as distributed denial-of-service (DDoS) attacks and advanced persistent threats (APT). 

The remainder of this article is structured as follows. Section 2 presents a literature review, discussing existing 

solutions for anomaly detection in IoT networks and their limitations. Section 3 details the proposed architecture, 

including integrating CNN models and the distributed processing framework. Section 4 describes this study's 

experimental setup, datasets, and evaluation metrics. Section 5 presents and analyzes the results obtained, comparing the 

proposed approach with existing solutions. Finally, Section 6 discusses the implications of the findings, highlights 

possible improvements, and outlines future research directions. 

2- Literature Review 

The security of IoT networks has been a growing research area due to the increasing number of connected devices 

and their susceptibility to cyberattacks, particularly spoofing attacks [9]. Several approaches have been proposed to 

detect and mitigate these threats, integrating machine learning and deep learning techniques to enhance network 

protection. However, existing solutions face persistent scalability, resource consumption, and efficiency challenges in 

high-density environments, limiting their applicability in industrial IoT settings. 

One widely explored method for anomaly detection in IoT networks is using SVMs. Long & Jinsong [10] developed 

a hybrid model combining entropy-based feature selection with SVM-based detection in software-defined networks 

(SDN), demonstrating its effectiveness in mitigating DDoS attacks. However, their findings indicate that SVM models 

are susceptible to hyperparameter configurations, leading to performance degradation under dynamic network 

conditions. Similarly, Elhag et al. [11] applied SVM-based detection models in Industrial IoT environments, but their 

results revealed a significant drop in accuracy when exposed to large-scale, high-noise datasets. These findings suggest 

that while SVMs are effective in structured and controlled environments, they fail to maintain robustness in complex, 

large-scale IoT networks. 

Another widely adopted approach is the Random Forest (RF) algorithm, which has gained popularity due to its 

capability to handle high-dimensional and heterogeneous IoT data. Maghrabi [12] proposed an RF-based network 

intrusion detection system for IoT applications, highlighting its ability to improve anomaly classification accuracy. 
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However, the study also revealed that RF-based models suffer from high computational costs and latency, making them 

less suitable for real-time security applications. In our work, we observed similar trade-offs—while RF models provided 

high detection rates, their excessive processing time limited their real-time applicability in large-scale networks. 

More recent research has focused on deep learning techniques, particularly CNNs, due to their ability to capture 

complex temporal and spatial patterns in network traffic. Kanwal et al. [13] demonstrated that CNN-based models 

outperformed traditional machine-learning approaches in detecting cyber threats in IoT environments. However, their 

study was focused on wildfire prediction, not network security, leaving a gap in research regarding CNN-based anomaly 

detection for IoT networks under real-world adversarial conditions. Our work addresses this gap by implementing CNNs 

optimized explicitly for IoT security, ensuring real-time detection of spoofing attacks with a scalable deployment 

strategy. 

Another critical area of research involves distributed processing for IoT security, which seeks to reduce the 

computational burden on central servers by leveraging Edge computing. Bukhsh et al. [14] proposed a latency-aware 

task management method in decentralized Edge environments, demonstrating that distributed processing significantly 

enhances system scalability and fault tolerance. However, their approach primarily focused on task scheduling and load 

balancing without integrating advanced security mechanisms for threat detection and mitigation. Our study extends this 

concept by incorporating CNN-based anomaly detection directly into Edge nodes, enabling a real-time, decentralized 

security framework that efficiently identifies and mitigates spoofing attacks without relying on a centralized 

infrastructure. 

While existing research has contributed significantly to IoT security, significant challenges remain. SVM-based 

models lack scalability, RF-based approaches suffer from high computational latency, CNNs have not been widely 

explored in real-time IoT threat detection, and Edge computing solutions have yet to integrate adaptive deep learning 

models for security applications. This study addresses these gaps by proposing a CNN-based distributed security 

architecture that improves detection accuracy, optimizes computational efficiency, and enhances the resilience of IoT 

networks against spoofing attacks. 

3- Material and Methods 

3-1- Description of the Experimental Environment 

This study designed an experimental environment in an industrial facility to evaluate the effectiveness of an AI-based 

spoofing detection and mitigation system in IoT networks [15]. The environment includes a variety of IoT devices, a 

specific network topology, and controlled attack simulation, all implemented in a technical and detailed manner to reflect 

real-world conditions. 

3-1-1- IoT Devices Used 

Representative devices from the industrial environment were selected, including sensors, actuators, and 

communication nodes, with technical characteristics that allow for evaluation of the performance of the proposed system. 

The sensors used were the DHT22 model for temperature and humidity measurement. These sensors offer an operating 

range of -40°C to 80°C for temperature and 0% to 100% for humidity, with a precision of ±0.5°C and ±2%, respectively. 

They operate with a supply voltage of 3.3V to 6V and provide a serial digital output at 1 Hz, facilitating their integration 

with microcontrollers. In addition, BMP280 pressure sensors were used, capable of measuring in a range of 300 hPa to 

1100 hPa with an absolute precision of ±1 hPa and a resolution of 0.16 hPa, operating at 3.3V and communicating via 

I2C or SPI. The actuators consisted of SSR-25 DA solid-state relays, capable of handling currents up to 25A at 250V 

AC. A 3-32V DC signal controls these relays and responds less than 10 ms, allowing efficient control of industrial 

equipment such as electric motors and lighting systems. 

ESP32 microcontrollers were used for communication nodes, equipped with a dual-core 240 MHz processor, 520 KB 

of SRAM, 802.11 b/g/n Wi-Fi, and Bluetooth 4.2 BLE connectivity [16]. These devices feature integrated cryptography, 

including AES and RSA encryption accelerators and random number generation, which are essential for implementing 

communication security measures [17]. 

3-1-2- Network Topology 

The topology of the IoT network deployed in the industrial facility was designed to reflect the complexity and 

security requirements inherent in this environment. Figure 1 presents the layout of key components and their 

interconnections. In this configuration, sensors and actuators are strategically distributed in various plant sections, 

connected to ESP32 nodes that act as local gateways. These nodes collect data from the sensors and manage the 

actuators, performing local processing to minimize latency and network traffic. Communication between the nodes 

and the central server is established using the MQTT protocol, recognized for its efficiency on resource-constrained 

devices [18]. 
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Figure 1. Topology of the IoT network implemented in the industrial facility, highlighting the devices' arrangement and 

interconnections 

The central server, equipped with a 3.4 GHz Intel Core i7 processor and 16 GB of RAM, operates under the Ubuntu 

20.04 LTS system. This server hosts an MQTT broker to manage communications and houses the detection algorithms 

based on Artificial Intelligence (AI). Communication between the nodes and the server is carried out through a wireless 

network protected with WPA2-Enterprise, using authentication based on X.509 digital certificates to guarantee the 

devices' identities. 

The network infrastructure is logically segmented by VLANs configured on Cisco Catalyst 2960 manageable 

switches, allowing IoT traffic to be isolated from the rest of the corporate network. In addition, firewall rules are 

implemented on Cisco ISR 4321 routers to control access and monitor traffic, allowing only the connections necessary 

for the system's operation. This architecture ensures efficient and secure communication between IoT devices and the 

central server, maintaining the integrity and confidentiality of data in a complex industrial environment. 

3-1-3- Spoofing Attack Simulation 

To evaluate the system's resilience to spoofing attacks, test scenarios were designed where different types of attacks 

were emulated in a controlled manner. In the ARP Spoofing attacks, the Ettercap tool [19] was used on an attacking 

machine with a Kali Linux operating system [20]. In addition, the network nodes' ARP caches are poisoned, which 

allows the interception and modification of traffic between the devices and the central server. This simulates an attacker 

who positions himself in the middle of the communication to capture sensitive data or inject malicious information. 

For IP Spoofing attacks, the Scapy library in Python is used, which allows the generation of packets with falsified IP 

addresses. The attacker sends messages to the central server pretending to be a legitimate node, trying to access restricted 

resources or send unauthorized commands to the actuators. Packet sequences were configured to imitate the typical 

behavior of the devices but with slight variations to evaluate the detection capacity of the system. 

In the Device Spoofing attacks, an ESP32 node was compromised to extract its credentials and certificates. Using this 

information, a malicious device was configured that attempted to establish communication with the central server using 

the stolen credentials [21]. The goal is to assess whether the system can detect behavioral discrepancies, such as 

differences in the device's physical characteristics (e.g., MAC addresses) or atypical communication patterns. 

During all tests, measures were implemented to ensure the security and integrity of the systems. The attacks were 

carried out at scheduled times and under supervision, isolating the sections of the network involved to avoid unwanted 

effects on the industrial facility's operations. The data generated, including traffic logs, event logs, and system responses, 

were collected for further analysis. 

The information obtained during the attacks' simulation trains and validated the AI-based detection models. 

Supervised and unsupervised machine learning techniques were applied to identify abnormal patterns and suspicious 

behaviors, tuning the algorithms to improve precision and reduce the false positive rate. 

3-2- Data Collection and Preprocessing 

Data collection and preprocessing are key to developing intrusion detection systems in industrial IoT networks. These 

phases ensure the information used is accurate, consistent, and suitable for training AI models. To ensure diversity and 

representativeness, the data set used in this study integrates real and synthetic network traffic from multiple sources, 

including controlled laboratory environments and publicly available datasets specialized in IoT network anomalies. 
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3-2-1- Network Traffic Capture 

Data traffic is captured on the industrial facility’s IoT network to analyze network behavior and detect potential 

anomalies. This real-world traffic collection is complemented by publicly available datasets, namely IoT-23, 

CICIoT2023, and RT-IoT2022, which provide a diverse representation of IoT threats. 

• IoT-23 Dataset: A widely used dataset that includes benign and malicious traffic from various IoT devices, 

covering real-world attack scenarios such as botnet intrusions and spoofing. 

• CICIoT2023 Dataset: Developed by the Canadian Institute for Cybersecurity, this dataset incorporates different 

types of attacks, including DDoS, reconnaissance, and spoofing, while simulating interactions from over 100 IoT 

devices. 

• RT-IoT2022 Dataset: Provides attack scenarios applied to IoT networks, including SSH brute force, DDoS, and 

port scanning. 

These datasets ensure a balance between the real world and simulated traffic, allowing the model to generalize 

effectively to different network conditions. 

To further enhance data diversity, network traffic was captured over 30 days using Wireshark, an open-source tool 

renowned for inspecting packets in-depth and providing detailed visibility into network traffic. The capture was 

performed at strategic points in the network, covering both the ESP32 nodes and the central server. The collection 

parameters were configured to record all incoming and outgoing packets, including headers and payloads, allowing for 

a detailed analysis of communication protocols and patterns. 

3-2-2- Extracted Features 

Several features are extracted from the captured network traffic that act as key indicators to identify possible spoofing 

attacks [22]. These features are grouped into several categories, each providing specific information about the network's 

behavior and the devices involved. The frequencies and sequences of messages exchanged between devices were 

analyzed for communication patterns. Detecting anomalies in these patterns may indicate malicious activities, such as 

spoofing attempts. An unexpected increase in message frequency from a device could suggest that it has been 

compromised [23]. For response times, the time intervals between requests and responses on the network were measured. 

Significant deviations in these times may signal interference or spoofing attempts, as an attacker could introduce 

additional latencies by intercepting and retransmitting messages. 

For digital signatures, cryptographic signatures present in packets are verified to ensure data authenticity. The absence 

or alteration of these signatures may indicate unauthorized manipulation, suggesting a possible spoofing attack [24]. 

Additionally, source and destination IP and MAC addresses of each packet were recorded and analyzed. Inconsistencies, 

such as duplications or unexpected changes in these addresses, can indicate spoofing attacks, where an attacker attempts 

to impersonate another legitimate device on the network. 

The ports and protocols used in communications were also identified. Unusual or unauthorized ports or protocols may 

indicate malicious activity, as attackers often employ non-standard techniques to avoid detection. To ensure feature 

diversity across different network environments, future work will explore dynamically adapting feature selection to 

various IoT architectures and communication protocols. Table 1 summarizes the main features extracted and their 

relevance in detecting spoofing attacks. 

Table 1. Features Analyzed for Identity Theft Detection 

Category Features Analyzed Indicators of Attack 

Communication Patterns 
Frequency and sequence of 

messages between devices 

Atypical behaviors that suggest 

malicious activity 

Response Times 
Time intervals between 

requests and responses 

Significant deviations that indicate 

interference or impersonation attempts 

Digital Signatures 
Verification of cryptographic 

signatures in packets 

Alterations or absences that suggest 

unauthorized tampering 

IP and MAC Addresses 
Recording of source and 

destination addresses 
Duplications or inconsistencies that 

indicate possible impersonation 

Ports and Protocols 
Identification of ports and 

protocols used 

Unusual or unauthorized uses that may 

indicate malicious activity 

Analysis of these features allows for identifying atypical behaviors that could indicate malicious activity, such as 

significant deviations in the time intervals between requests and responses or source and destination addresses that 

suggest spoofing. Integrating these features into detection models improves the precision and effectiveness of identifying 

spoofing attacks in industrial IoT network environments. 
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3-2-3- Data Cleaning and Normalization 

Before feeding the AI models, data cleaning and normalization techniques are applied to ensure quality and 

consistency. 

• Missing data treatment is performed by imputing missing values with the arithmetic means, preserving dataset 

integrity. 

• Noise and outlier removal is conducted using standard deviation analysis, excluding values beyond three standard 

deviations from the mean, reducing the impact of anomalous readings [25].  

• Feature normalization is applied using the Min-Max technique, scaling features to [0,1], facilitating convergence 

and improving model performance. 

While these techniques improve dataset quality, real-world industrial environments often introduce more 

unpredictable noise sources, which current datasets may not fully capture. To further bridge the gap between synthetic 

and real-world data, we plan to incorporate transfer learning approaches, where models pre-trained on controlled datasets 

are fine-tuned with real-time IoT traffic captured from industrial networks. 

3-3- Implementation of Artificial Intelligence Algorithms 

AI algorithm implementation focuses on accurate anomaly detection in industrial IoT networks by integrating 

advanced machines and deep learning models. Each stage of the implementation, from model selection to performance 

evaluation, is designed to maximize efficiency and minimize false positives and negatives. 

3-3-1- Model Selection 

Algorithm selection considers both theoretical performance and problem-specific characteristics. SVM, RF, and CNN 

are used due to their complementary capabilities. 

SVMs, which search for an optimal hyperplane to separate classes, are ideal for high-dimensional spaces. 

Mathematically, the model is optimized by solving: 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝒞 ∑ 𝜉𝑖

𝑛

𝑖=1

 (1) 

Subject to:  

𝑌𝑖 (𝑊 ∙ 𝑋𝐼 + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 ≥ 0 (2) 

where 𝑌𝑖 is the class label for sample 𝑖, and 𝑋𝑖 is its feature vector, W and b are the model parameters, 𝜉𝑖 are the slack 

variables to handle misclassified points, and C is the hyperparameter that regulates the compromise between maximizing 

margin and minimizing errors. 

Random Forest, an ensemble method based on multiple decision trees, combines predictions from individual trees by 

majority voting. This reduces the risk of overfitting and improves robustness. The construction of each tree involves 

random sampling of features and records, which is mathematically defined as: 

�̂� =  
1

𝑀
∑ ℎ𝑚(𝑥)

𝑀

𝑚=1

 (3) 

where ℎ𝑚(𝑥) represents the prediction of the mm-th tree, and MM is the total number of trees. 

CNNs were selected to capture spatial and temporal patterns in network traffic. Each convolutional layer performs an 

operation defined by: 

𝑦 = 𝑓(𝑊 ∗ 𝑥 + 𝑏) (4) 

where W are the learned filters, * denotes the convolution operation, b is the bias, and ff is a nonlinear activation function 

such as ReLU. 

3-3-2- Model Training 

Training started with splitting the dataset into 70% for training and 30% for testing, ensuring a balanced representation 

of regular and anomaly classes. K-fold cross-validation (k=5) was applied to enhance model robustness and prevent 

overfitting, allowing the evaluation of generalization across different dataset partitions. In this process, the dataset is 

split into k partitions, where each partition is used as a test set once, while the remaining k-1 partitions are used for 

training. The final performance metric was calculated as the average of the individual metrics of each partition: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 =  
1

𝑘
∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝑘

1=1

 (5) 

Metric𝑖 represents the metric evaluated on the 𝑖-th partition of the validation set, such as precision, recall, or AUC-

ROC. 

Hyperparameter tuning was performed using Grid Search, exploring combinations of parameters such as kernel and 

C in SVM, maximum depth and number of trees in Random Forest, and filter size and learning rate in CNN—the 

optimization process aimed to maximize detection precision while minimizing classification errors. 

Federated Learning (FL) was integrated into the model training process to enhance adaptability and data privacy. It 

allows distributed training across multiple Edge nodes while preserving local data confidentiality. Unlike conventional 

centralized learning, FL enables each Edge node to train a regional model using its network traffic data without 

transmitting raw data to the central server. Instead, only model weight updates are periodically shared and aggregated 

through a Federated Averaging (FedAvg) process, ensuring global model improvement without compromising data 

privacy. 

Each Edge node trained its own CNN model locally using network traffic data specific to its environment. The trained 

model weights were periodically sent to an aggregation server, where an updated global model was computed by 

averaging the contributions from multiple Edge nodes. This new model was then redistributed back to the nodes, 

allowing them to refine their detection capabilities while keeping the raw data localized. 

The integration of FL in this system provided multiple advantages. By preventing raw data transmission, FL enhanced 

privacy, reducing the risk of sensitive network information being exposed. Training models on local data improved 

adaptability to different IoT environments, as each node learned from its own traffic patterns and attack scenarios. 

Additionally, minimizing the amount of data exchanged with the central server reduced network bandwidth 

consumption, optimizing overall communication efficiency. 

Despite these advantages, FL introduced new computational and latency challenges. The need for periodic model 

synchronization between nodes introduced additional delays, impacting real-time detection capabilities. Edge nodes with 

limited resources required optimizations to perform frequent model updates, so implementing model compression 

techniques and lightweight CNN architectures is necessary. Evaluating FL’s impact on detection precision and response 

times was essential, particularly in large-scale IoT deployments with thousands of interconnected devices. 

3-3-3- Performance Evaluation 

The evaluation of the models included key metrics to measure their effectiveness. Precision, defined as the proportion 

of correct predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑝 + 𝐹𝑃
 (5) 

where TP are true positives, TN true negatives, FP false positives, and FN false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

While specificity measured the ability to identify regular instances correctly: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

Meanwhile, the area under the ROC curve (AUC-ROC) provides a comprehensive measure of the model's ability to 

distinguish between classes. An AUC-ROC closer to 1 indicates optimal performance. 

3-4- Integration of the Detection System into the IoT Network 

Integrating the detection system into the industrial IoT network was carefully designed to ensure seamless interaction 

between devices, network infrastructure, and AI modules. This system combines advanced analytics capabilities with 

effective incident management, balancing safety and performance. 

3-4-1- Detection System Architecture 

The detection system is based on a distributed architecture that combines local processing on Edge nodes with 

advanced analysis on a central server. IoT devices, such as sensors and actuators, generate network traffic initially sent 

to Edge nodes. These nodes, equipped with basic processing capabilities, perform preliminary analysis tasks to identify 

suspicious patterns and reduce the load on the leading network. 
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The central server hosts advanced AI models that perform deep anomaly detection and event classification. This 

server interacts with an MQTT broker that facilitates efficient and secure communication between the distributed 

devices and the server [26]. The architecture is complemented by a centralized database, which stores historical 

records to train and update AI models, and an incident response module responsible for executing automated or 

manual actions in case of attack detection. Figure 2 presents this architecture, highlighting the interaction between 

the different components. 

 

Figure 2. The architecture of the Integrated Detection System in the IoT Network. 

3-4-2- Incident Response Procedures 

The Incident Response module operates as the core of mitigation actions. When an attack, such as a phishing attempt, 

is detected, the module triggers predefined procedures, including isolating the compromised device, reconfiguring 

policies on the network infrastructure, and notifying security personnel. 

Adaptive policy-based rules are used to automate these responses. For example, in the event of an increase in the 

frequency of suspicious messages from a specific device, the module can temporarily disconnect the associated 

Edge node to prevent the attack's spread. This process is complemented by the generation of real-time alerts, which 

include technical details of the detected event, such as the IP address of the attacker and the nature of the malicious 

traffic. 

3-4-3- Performance Impact Assessment 

Implementing the sensing system involves a thorough assessment of its impact on the overall performance of the IoT 

network. Key metrics such as latency, resource consumption, and scalability were analyzed to ensure enhanced security 

does not compromise critical operations. 

On the latency side, Edge nodes significantly reduce the time needed to process data locally before sending it to the 

central server. This approach distributes the workload, keeping response times within acceptable limits for industrial 

applications [27]. Furthermore, resource consumption at the Edge nodes and the central server was optimized through 

efficient data processing and compression techniques. The system's scalability is achieved through the modular design 

of the architecture, which allows the integration of new devices and the expansion of sensing capabilities without 

affecting existing performance. This ensures that the system can adapt to the growing demands of an ever-evolving IoT 

network. 

3-5- Evaluation of the Effectiveness of the Detection System 

The detection system's evaluation was structured in two stages: stress and scalability tests to analyze its performance 

under different scenarios and a methodological comparative analysis to validate its effectiveness against other existing 

detection solutions. These stages were designed to ensure the system meets the operational and security requirements 

expected in industrial IoT networks. 
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3-5-1- Stress Testing and Scalability 

Stress testing aims to assess the system's ability to handle increasing traffic volumes and an increasing number of 

connected devices. A controlled environment was implemented using traffic simulators such as Apache JMeter and 

synthetic data generators based on statistical distributions replicating authentic IoT traffic patterns. Devices are 

configured to generate events that mimic normal activities and anomalies, such as spoofing patterns. 

In each iteration of the tests, the number of devices gradually increased from 50 to 1000 while keeping the data 

generation intervals and traffic characteristics constant. The evaluation included average system latency, packet 

processing time at the Edge nodes and the central server, and resource consumption (CPU, memory, and bandwidth). 

These metrics were recorded using monitoring tools, such as Prometheus and Grafana, integrated into the system [28, 

29]. To ensure scalability, additional tests were performed simulating the dynamic addition of new devices to the 

network. This procedure assessed the system's ability to adapt its detection processes without interruptions or significant 

performance degradation. In addition, aspects such as load redistribution across Edge nodes and the central server's 

ability to handle concurrent requests were analyzed. 

3-5-2- Comparative Analysis 

The comparative analysis was designed to validate the system's effectiveness in terms of precision, efficiency, and 

resource consumption by comparing it with alternative solutions. This procedure involved implementing representative 

models based on recurrent neural networks (RNN) and traditional rule-based methods run under the same experimental 

conditions. 

The methodological approach included preparing the dataset for the three systems, ensuring an identical partition into 

training and test sets. Standardized metrics, such as precision, sensitivity, and specificity, were implemented to evaluate 

each system's performance in classifying events. These metrics were calculated based on the predictions generated by 

the models and the actual values noted in the test data. 

Additionally, parameters related to the response time of each system were analyzed using automated tools that 

recorded the intervals from the detection of an event to the execution of corresponding actions. This methodological 

analysis identified the differences in latency inherent to the approaches used. As a final element, an evaluation framework 

was designed to measure resource consumption in each solution. This procedure considered CPU and memory 

measurement on Edge devices and the central server, employing specific profiling tools, such as htop and iotop, which 

provided detailed data on resource usage at the process level [30]. 

3-6- Ethical and Privacy Considerations 

Implementing a detection system in industrial IoT networks involves handling large volumes of data that may contain 

sensitive information related to an organization's critical devices or processes, although not directly linked to humans. 

Therefore, it is essential to ensure that the measures adopted comply with ethical standards and privacy regulations. 

3-6-1- Sensitive Data Management 

The detection system was designed to adhere to best practices in data handling, ensuring data privacy and integrity at 

all process stages. Although the collected data does not include information directly related to humans, it may expose 

details about the operational infrastructure or communication patterns in the IoT network, which could be considered 

sensitive information. Advanced anonymization techniques were implemented to protect this data. Each captured data 

packet goes through a pseudonymization process that replaces the IP and MAC addresses of the devices with unique 

identifiers generated using secure hash functions, such as symmetric encryption (SHA-256) [31]. This ensures that the 

information cannot be directly traced to a specific device without access to the corresponding decryption keys. 

Additionally, the data stored in the central database is encrypted using AES-256 algorithms. This approach ensures 

that the data is inaccessible in the event of unauthorized access to physical or logical storage. During transmission, the 

TLS 1.3 protocol protects data in transit, preventing man-in-the-middle attacks [32]. 

Implementing restricted access policies achieved compliance with international regulations, such as the General Data 

Protection Regulation (GDPR). Only authorized administrators can access the processed data, and all access is logged 

by an audit system that documents every action performed. 

3-6-2- Informed Consent 

Although this project does not directly involve human users, ethical practices are required to ensure transparency and 

consent from stakeholders such as industrial IoT network administrators and those responsible for the technological 

infrastructure. To this end, a documented consent protocol was developed that clearly defines the system's objectives, 

data collection types, and measures implemented to protect privacy. 
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Before implementing the system, those responsible for the industrial environment received a detailed briefing 

specifying how the data would be handled and the tools used for anomaly detection. This document also included clauses 

on the secure deletion of collected data after meeting the study's objectives or periodically to prevent unnecessary 

accumulation. 

Transparency in the implementation process was also ensured through briefings with administrators, where queries 

were resolved, and ethical measures were presented in detail. These procedures ensured that the organizations fully 

understood the system's scope and implications, promoting trust in its operation. 

4- Results 

4-1- Evaluation of the Performance of the Detection System 

The detection system evaluation was carried out using a previously preprocessed dataset that includes IoT network 

traffic from recognized sources in the scientific community, thus reinforcing the validity of the results. The IoT-23 

Dataset stands out among the selected datasets, as it captures benign, and malware traffic executed on IoT devices in a 

controlled environment. This set was complemented by the CICIoT2023 Dataset, developed by the Canadian Institute 

for Cybersecurity, which includes multiple types of attacks, such as DDoS, surveillance, and spoofing, along with diverse 

traffic generated by over 100 IoT devices. 

These data were combined with samples from the RT-IoT2022 Dataset, which incorporates real-world attack 

scenarios on IoT devices, such as SSH brute force, DDoS, and port scanning with Nmap, reflecting common patterns in 

industrial IoT networks. Approximately 100,000 samples were worked with, evenly distributed between normal and 

anomalous events, ensuring a balanced representation for training and evaluating the models. 

The data was subjected to 5-fold cross-validation (k=5) to ensure that performance metrics were statistically robust 

and representative across different dataset partitions. Additionally, controlled noise levels ranging from 0% to 50% were 

introduced in the test samples to analyze the impact of varying levels of disturbances on model performance. This step 

was critical in determining each model’s robustness under real-world industrial conditions, where network noise is a 

common challenge. These techniques and the inclusion of data from recognized sources provide a solid foundation for 

evaluating the detection system in industrial IoT networks. 

Table 2 presents the performance metrics of the SVM, RF, and CNN models under two qualitative noise levels: low 

("Low") and high ("High"). These noise categories reflect realistic conditions in industrial IoT networks, from relatively 

stable environments to those with more significant disturbances due to interference, faulty devices, or malicious traffic. 

Each row in the table summarizes the average performance metrics of the models based on multiple iterations, ensuring 

that the reported values capture overall trends rather than isolated results. 

Table 2. Model Performance Metrics Under Different Noise Levels 

Model Noise Level Precision (%) Sensitivity (%) Specificity (%) AUC-ROC 

SVM Low 90 88 91 0.89 

SVM High 85 83 86 0.85 

Random Forest Low 92 90 93 0.91 

Random Forest High 88 85 89 0.87 

CNN Low 95 93 94 0.96 

CNN High 91 89 92 0.92 

The results indicate that CNN consistently outperforms SVM and Random Forest across different noise levels. 

Notably, under high noise conditions, the CNN model maintains an AUC-ROC of 0.92, a precision of 91%, and a 

sensitivity of 89%, demonstrating its superior capability to handle adverse conditions. In contrast, SVM and RF exhibit 

a more pronounced drop in sensitivity and specificity under high-noise scenarios, highlighting their vulnerability to noisy 

data. These findings suggest that deep learning-based approaches, particularly CNNs, offer more stable performance in 

challenging industrial IoT environments with frequent network disturbances. 

Figure 3 includes two complementary graphs that allow a more visual understanding of the results. Graph (A) shows 

the variation in sensitivity and specificity of the models in a continuous range of noise levels, from 0% to 50%. On the 

other hand, graph (B) illustrates the discriminative capacity of the models, highlighting how noise affects their 

performance. 
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Figure 3. Sensitivity and Specificity Analysis with Continuous Noise Levels and ROC Curves; Graph A: Sensitivity and 

Specificity according to Noise Levels; Graph B: Comparative ROC Curves for SVM, Random Forest and CNN Models 

The trends observed in Graph A confirm that CNNs maintain a more controlled performance degradation 

compared to SVM and RF models. While CNN exhibits a moderate decrease in sensitivity and specificity as noise 

increases, both SVM and RF show a more pronounced decline, particularly when noise surpasses 30%. This 

highlights CNNs' higher adaptability in handling real-world IoT network conditions where unpredictable 

disturbances may be present. 

Similarly, Graph B reinforces CNN’s superior performance, with its ROC curve maintaining a higher AUC-ROC 

value (close to 0.96 in low-noise conditions and 0.92 in high-noise environments). This demonstrates its ability to 

distinguish between normal and anomalous traffic with high reliability, even under adverse conditions. On the other 

hand, the ROC curves for SVM and RF display a more significant drop in performance, confirming their sensitivity to 

variations in data quality. 

Combining datasets from IoT-23, CICIoT2023, and RT-IoT2022 and introducing realistic noise conditions, this study 

provides a robust and comprehensive evaluation of anomaly detection performance in industrial IoT networks. These 

findings highlight the advantages of CNN-based approaches for maintaining detection accuracy in real-world 

deployments where network disturbances and adversarial conditions are inevitable. 

4-2- Scalability Analysis 

The scalability analysis evaluated how the proposed system responds to increasingly connected devices and growing 

network traffic, simulating realistic conditions in an industrial IoT environment. Key performance metrics, including 

average latency, CPU and memory utilization, and processing capacity, were analyzed to determine the system's 

efficiency and robustness under different configurations. 

The system was tested under five configurations, ranging from 50 to 1,000 connected devices. Each configuration 

generated heterogeneous traffic patterns with variable transmission rates, reflecting diverse real-world IoT deployments. 

To ensure statistical reliability, each configuration was subjected to 5,000 iterations, capturing fluctuations in system 

behavior and minimizing anomalies. Latency, CPU usage, memory consumption, and processing capacity were 

monitored in real-time using specialized tracking tools, allowing precise analysis of system behavior under increasing 

loads. 

Table 3 summarizes the performance metrics, illustrating the system's response to load levels. As connected devices 

increase, latency rises from 25 ms (50 devices) to 150 ms (1,000 devices), following a nearly linear trend. CPU and 

memory usage also increase proportionally, reaching 85% CPU utilization and 1,280 MB of memory in the highest-load 

scenario. Additionally, processing capacity (throughput) decreases from 200 to 100 requests per second, indicating the 

impact of higher loads on system responsiveness. 
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Table 3. System Performance Metrics Under Different Device Loads 

Number of Devices 
Average Latency 

(ms) 

CPU Usage 

(%) 

Memory Usage 

(MB) 

Processing Capacity 

(Requests/s) 

50 25 30 256 200 

200 45 40 512 180 

500 75 60 768 150 

800 110 75 1024 120 

1000 150 85 1280 100 

Multiple optimization strategies have been incorporated to ensure that Edge nodes with limited computing power can 

effectively handle CNN-based detection models. First, model compression techniques such as quantization and pruning 

have been applied to reduce the computational complexity of CNN inference, minimizing memory usage and processing 

time. Quantization reduces model precision to lower-bit representations, significantly decreasing memory requirements 

while maintaining detection accuracy. Conversely, Pruning removes redundant neurons and connections, optimizing 

computational efficiency without degrading model performance. 

Second, inference acceleration methods have been employed, including edge-specific optimizations such as 

TensorFlow Lite and ONNX Runtime. These frameworks allow lightweight CNN deployments on constrained hardware 

by leveraging hardware acceleration mechanisms in modern Edge devices, such as ARM-based Neural Processing Units 

(NPUs). This ensures that CNN inference can be executed efficiently without introducing excessive latency or resource 

overhead. 

Third, an adaptive workload distribution mechanism has been implemented to dynamically allocate processing tasks 

between Edge nodes and the central server based on real-time resource availability. Under low-load conditions, Edge 

nodes handle most detection tasks independently, reducing reliance on centralized computing. However, as 

computational demand increases, processing tasks are offloaded to the central server to prevent individual nodes from 

becoming bottlenecks. This hybrid processing strategy balances resource utilization and ensures continuous real-time 

operation even in high-density IoT environments. 

Figure 4 presents two graphs that visually depict the impact of device load on system performance. These graphs 

provide deeper insights into how latency, resource usage, and processing capacity evolve as the number of devices 

increases. 

 

Figure 4. System Scalability Analysis, Graph A: Average Latency Variation Based on the Number of Connected Devices, 

Graph B: Resource Usage and Processing Capacity Based on Device Load 

Graph A shows that average latency increases progressively as the number of devices grows, from 25 ms to 150 ms. 

This trend is expected due to the additional computational workload introduced by an increasing number of devices and 

higher network traffic. However, the relationship remains linear, indicating that the system efficiently distributes requests 

across nodes and the central server. Unlike non-optimized architectures where latency grows exponentially, the 

controlled growth observed here suggests that the proposed system successfully mitigates the impact of high loads 

through effective request handling and resource distribution. 
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Graph B examines CPU and memory usage alongside processing capacity under varying load conditions. CPU 

utilization starts at 30% for 50 devices and reaches 85% for 1,000 devices, showing a proportional increase as expected 

in resource-intensive IoT environments. However, the system maintains stable operation even at maximum load, 

suggesting that computational efficiency remains within acceptable margins. Memory consumption scales from 256 MB 

to 1,280 MB as connected devices increase, maintaining a controlled and predictable growth pattern that aligns with the 

system’s dynamic resource allocation strategies. The lack of abrupt increases suggests that memory usage is efficiently 

managed, preventing unnecessary bottlenecks. Processing capacity exhibits a predictable decline, decreasing from 200 

to 100 requests per second as the number of devices increases. This drop highlights the expected impact of handling 

larger workloads but remains within an operationally viable range, ensuring the system does not experience failure or 

excessive performance degradation. 

The results indicate that the system can handle increasing device loads without experiencing exponential latency 

growth, confirming its scalability. The nearly linear increase in latency reflects a well-balanced resource allocation 

strategy that prevents network congestion and avoids performance degradation. The increase in CPU and memory usage 

remains proportional to the number of devices, ensuring that resources are utilized efficiently. Even under the highest 

load configuration, the system remains operational and responsive. The decline in processing capacity as the number of 

devices grows highlights a natural limitation in handling concurrent requests but does not compromise the system's 

overall stability. These findings confirm that the proposed system is scalable, robust, and capable of adapting to 

increasing network demands without excessive resource exhaustion or critical failures.  

The scalability analysis demonstrated that the proposed system efficiently manages increasing IoT network loads of 

up to 1,000 connected devices, maintaining controlled latency and resource consumption growth. However, the study 

does not include experimental validation for larger-scale deployments with tens of thousands of devices, which would 

introduce additional challenges regarding computational load and network traffic distribution. Scaling beyond this range 

would require additional optimizations, such as hierarchical Edge processing architectures, model partitioning, or 

adaptive resource allocation strategies to balance detection performance and real-time processing requirements. Future 

work will evaluate the system under extended scalability conditions, considering high-density IoT deployments where 

thousands of devices communicate simultaneously. This will involve further testing with distributed Edge architectures 

and dynamic workload management to minimize latency spikes while preserving detection accuracy. 

4-3- Comparison of AI Models 

The SVM, RF, and CNN models were compared using three key metrics: precision, response time, and resource 

consumption (CPU and memory). These metrics were evaluated under low and high noise conditions to simulate realistic 

IoT network environments and assess each model's robustness in handling data variability. Table 4 presents the 

quantitative results of the key metrics for each model, calculated as an average of 5,000 iterations per model, ensuring 

statistical reliability and reducing variability in performance measurements. 

Table 4. Comparison of AI Models Under Low and High Noise Conditions 

Model Condition Precision (%) Response Time (ms) CPU Usage (%) Memory Usage (MB) 

SVM Low Noise 90 30 40 280 

SVM High Noise 85 40 50 320 

Random Forest Low Noise 92 35 45 330 

Random Forest High Noise 88 45 55 380 

CNN Low Noise 95 20 55 430 

CNN High Noise 91 30 65 470 

The CNN model demonstrated superior precision in low-noise conditions, achieving 95%, while Random Forest and 

SVM obtained 92% and 90%, respectively. Under high-noise conditions, all models experienced a decline in precision, 

but CNN maintained the highest accuracy at 91%, outperforming Random Forest at 88% and SVM at 85%. This 

highlights CNN’s ability to manage complex and noisy data more effectively than traditional machine learning models, 

making it particularly suited for industrial IoT environments where network traffic often includes high levels of 

anomalies and noise. 

Regarding response time, CNN consistently exhibited lower value than the other models. Even under high noise, 

CNN maintained an average response time of 30 ms, compared to 40 ms for SVM and 45 ms for Random Forest. This 

faster processing speed enhances its suitability for real-time applications, where rapid anomaly detection and response 

are critical. However, the improved performance of CNN comes at the cost of higher resource consumption. Under high 

noise conditions, CNN required 65% CPU utilization and 470 MB of memory, whereas SVM and RF consumed 50%, 

320 MB, and 55% and 380 MB, respectively. This trade-off between computational efficiency and accuracy must be 

considered when deploying AI-driven security solutions in IoT networks with resource-constrained devices. 
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Figure 5 presents three graphs visually comparing the models' performance across different noise levels. Graph A 

illustrates model precision under low and high noise conditions, revealing that while all models experience a decline in 

precision due to noise, CNN consistently maintains a higher accuracy, reinforcing its superior generalization capabilities. 

 

Figure 5. Comparative Performance of AI Models in IoT Networks, Graph A: Precision of the Models According to Noise 

Levels., Graph B: Variability in Response Time Under Different Noise Levels., Graph C: Resource Consumption Under 

Different Noise Levels. 

Graph B examines response time variations across different noise levels. The results indicate that CNN maintains the 

most stable response time across low and high noise conditions. In contrast, SVM and Random Forest exhibit more 

significant fluctuations, particularly in high-noise environments. This stability in response time is crucial for real-time 

IoT applications, where rapid decision-making is required to mitigate security threats. 

Graph C analyzes CPU and memory consumption for each model under low and high noise conditions. The results 

confirm that CNN, while consuming more resources, provides a proportional increase in performance, with higher 

precision and lower response time. In contrast, SVM and RF exhibit lower resource usage but fail to match CNN's 

effectiveness under challenging conditions. These findings suggest that CNN is the most robust option for anomaly 

detection in IoT networks, provided that the available infrastructure can support its computational demands. 

The comparative analysis confirms that CNN is the most effective model for IoT security applications, offering the 

highest precision and fastest response times across varying noise conditions. However, its increased computational cost 

may necessitate optimization strategies when deployed in resource-constrained environments. The balance between 

accuracy, response time, and resource consumption is crucial in selecting the appropriate AI model for a given industrial 

IoT scenario. 

4-4- Impact on IoT Network Performance 

The assessment of IoT network performance impact focused on analyzing how the system deployment affects key 

metrics, including latency, resource usage, and traffic distribution between Edge nodes and the central server. These 

results provide a comprehensive view of system behavior in high-load industrial environments where network efficiency 

and scalability are crucial. 

Table 5 presents the latency, resource usage, and traffic distribution values before and after system deployment, 

incorporating a percentage analysis of the observed changes to quantify the system’s impact. The results indicate that 

the deployment introduces a 66.67% average latency increase from 30 ms to 50 ms. This increase is attributable to the 

additional real-time detection and analysis processes, which introduce computational overhead to the standard data flow. 

However, the increase remains within acceptable margins for most industrial applications, ensuring system functionality 

is not compromised despite the additional processing requirements. 

Table 5. System Impact on IoT Network Performance 

Metric Before System After System Change (%) 

Latency (ms) 30 50 +66.67 

CPU Usage (%) 10 25 +150.00 

Memory Usage (MB) 100 300 +200.00 

Edge Processing Traffic (%) 30 70 +133.33 

Central Server Traffic (%) 70 30 -57.14 

The system deployment results in a 150% increase in CPU usage, from 10% to 25%, and a 200% increase in memory 

consumption, from 100 MB to 300 MB. These increments reflect the computational cost of executing detection 
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algorithms, particularly on Edge nodes with limited processing capabilities. While these increases are significant, 

redistributing processing loads away from the central server mitigates potential network congestion and improves overall 

scalability. 

The most notable improvement is observed in traffic distribution. The proportion of locally processed traffic increases 

from 30% to 70%, significantly reducing the burden on the central server, which now handles only 30% of the traffic 

instead of the previous 70%. This redistribution optimizes network efficiency and scalability, allowing the system to 

handle larger device loads without overwhelming central processing resources. 

Figure 6 presents three graphs that provide a detailed visualization of the system's impact. Graph A illustrates the 

increase in average latency after system deployment, showing a linear growth pattern from 30 ms to 50 ms as the number 

of devices increases. This behavior confirms the predictable nature of the additional computational overhead introduced 

by real-time processing, ensuring the system remains stable as the load increases. The controlled increase suggests that 

the architecture is well-designed to handle scalability without significant degradation in performance. 

 

Figure 6. Analysis of the Impact on the Performance of the IoT Network, Graph A: Latency Before and After System 
Implementation; Chart B: Distribution of Processed Traffic on Edge Nodes and the Central Server; Graph C: Increase in 
Resource Use. 

Graph B highlights the shift in traffic distribution between Edge nodes and the central server, showing a progressive 

increase in locally processed traffic. As the number of connected devices increases, the proportion of traffic handled by 

the Edge nodes grows consistently, reaching 80% with 1,000 devices. This result confirms that the decentralized 

processing approach effectively offloads the central infrastructure, enhancing the overall resilience and efficiency of the 

network. 

Graph C presents an increase in CPU and memory usage as the number of devices grows. CPU usage remains within 

a controlled range, suggesting that processing optimizations help prevent excessive computational strain, even under 

high device loads. Memory usage increases significantly, which aligns with the system’s design and leverages Edge 

computing resources to support real-time detection without excessive reliance on the central server. 

The analysis confirms that while system integration introduces measurable impacts on latency and resource 

consumption, these effects are effectively counterbalanced by improvements in network efficiency. The shift in traffic 

distribution towards Edge processing significantly reduces the load on central infrastructure, ensuring the network 

remains scalable and adaptable to growing IoT demands. 

4-5- Incident Response Validation 

To validate the proposed system's performance, four simulated scenarios were designed to represent different levels 

of network complexity and load. These scenarios assessed the system's capability to detect and mitigate spoofing 

attempts, ensuring the evaluation reflected realistic and controlled conditions. Each scenario introduced variations in the 

number of connected devices, the intensity of the attacks, and the noise level in the captured data, allowing for a 

comprehensive performance assessment under diverse operational conditions. 

In the first scenario, the network consisted of 100 IoT devices and simulated low intensity spoofing attempts, targeting 

only a single node. This scenario established baseline performance under optimal conditions. The results indicated a 

high detection rate of 95%, with an average detection time of 150 ms and a response time of 300 ms. Additionally, 97% 

of the compromised devices were successfully isolated, with a false positive rate of 3%, demonstrating the system’s 

accuracy in low-complexity environments. 

The second scenario doubled the number of devices to 200, introducing multiple simultaneous attempts to increase 

attack complexity. Under these conditions, the detection rate slightly decreased to 92%, while detection and response 
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times increased to 180 ms and 350 ms, respectively. Despite this, the system maintained a high effectiveness rate in 

isolating compromised devices, reaching 94%, with a false positive rate of 4%, confirming its resilience against 

increasing attack intensity. 

The third scenario expanded the network to 500 IoT nodes, with spoofing attacks targeting multiple nodes in different 

network segments. The detection rate remained stable at 90%, with detection and response times rising to 200 ms and 

400 ms, respectively. Although the percentage of successfully isolated devices slightly declined to 92%, the system 

exhibited strong adaptability to more complex attack patterns, with a false positive rate increasing slightly to 5%. 

In the fourth scenario, the system was subjected to extreme conditions, with 1,000 IoT nodes and high-intensity 

attacks co-occurring at multiple points in the network. The detection rate decreased to 88%, while detection and response 

times rose to 220 ms and 450 ms, respectively. The percentage of correctly isolated devices was 89%, with a false 

positive rate of 6%. These results highlight the system's operational limits in high-density environments, emphasizing 

the need for further optimization in resource allocation and distributed processing to maintain high detection rates under 

extreme conditions. 

Table 6 presents the results obtained in these scenarios, providing a detailed comparison of key metrics, including 

detection rate, detection and response time, percentage of correctly isolated devices, and false positive rate. 

Table 6. Validation Results in Simulated Scenarios. 

Scenario 
Detection Rate 

(%) 

Correctly Isolated 

Devices (%) 

False Positive 

Rate (%) 

Scenario 1 95 97 3 

Scenario 2 92 94 4 

Scenario 3 90 92 5 

Scenario 4 88 89 6 

Figure 7 visually represents detection and response times across different scenarios, illustrating how these key 

metrics vary as network complexity increases. 

 

Figure 7. Comparison of Detection and Response Times by Scenario 

The results confirm that the system remains highly effective in detecting and mitigating spoofing attacks across 

different levels of network complexity. Graph A in Figure 7 illustrates the variations in detection and response times, 

revealing a consistent increase in latency as attack complexity rises. While this trend is expected due to the additional 

processing required for analyzing and responding to threats, the overall response time remains within acceptable 

thresholds for industrial IoT applications. The system's ability to maintain detection rates above 88% even under extreme 

conditions demonstrates its robustness in handling real-world attack scenarios. However, the increase in response time 

in high-density networks suggests potential areas for improvement in computational efficiency and distributed 

processing strategies. 

The effectiveness of compromised device isolation remains high across all scenarios, exceeding 89% even in the most 

complex environments, reinforcing the system’s ability to contain security threats. The slight rise in false positive rates 

under more intense attack conditions suggests that further fine-tuning of the detection model could help balance 

sensitivity and specificity, optimizing performance under high network loads. 
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The overall findings confirm that the proposed system provides a reliable and scalable solution for IoT network 

security, capable of detecting and mitigating spoofing attacks in various conditions. Detection accuracy remains 

consistently high, and response times remain within acceptable operational limits. However, as network size and attack 

intensity increase, latency and computational overhead also grow, suggesting the need for optimization in distributed 

processing strategies.  

5- Discussion 

The results obtained in this study align with and expand upon trends reported in existing literature, particularly 

regarding the limitations of traditional machine learning approaches and the advantages of deep learning-based solutions 

for IoT security. Prior works, such as those by Alaghbari et al. [33] and Altulaihan et al. [34], demonstrated the 

effectiveness of SVMs and RFs in detecting anomalies in IoT networks, particularly in environments with stable traffic 

patterns and moderate loads. However, these studies also highlighted significant challenges related to scalability, 

response time, and computational resource consumption under high-load conditions, which were similarly observed in 

this study. In high-complexity scenarios, SVM and RF models exhibited a decline in detection rates, an increase in 

response time, and higher computational overhead, confirming their limitations in large-scale industrial IoT networks 

[35]. 

In contrast, the CNN-based approach implemented in this study effectively overcame these challenges, achieving 

consistently high detection rates, even in scenarios involving multiple simultaneous attacks. The results align with 

Alamatsaz et al. [8], who demonstrated that CNNs can capture complex patterns in network traffic, improving detection 

precision while reducing false positives. The findings further reinforce that deep learning architectures can offer superior 

anomaly detection capabilities in dynamic and noisy environments where traditional machine learning models struggle. 

A key innovation introduced in this study is the distributed processing architecture leveraging Edge nodes as primary 

detection points, representing a significant advancement over traditional centralized approaches. This architecture aligns 

with the findings of Maghrabi [12], who emphasized the importance of decentralized computing for improving 

scalability and reducing latency in IoT networks. The proposed system effectively delegates detection and mitigation 

tasks to Edge nodes, reducing the computational burden on central servers and enhancing scalability. The results 

demonstrate that this approach enables real-time threat detection while maintaining system efficiency in networks with 

up to 1,000 connected devices. 

Beyond scalability, the results indicate that Edge processing also mitigates the impact of increased attack complexity, 

a challenge widely acknowledged in industrial IoT environments—existing studies, such as Kumar et al. [9] and Bukhsh 

et al. [14], have explored the role of Edge computing in distributed threat detection; however, their implementations 

primarily focused on load balancing and general anomaly detection rather than targeted spoofing attack mitigation. This 

study's findings extend this knowledge by demonstrating how, when integrated into an Edge computing framework, 

CNN-based detection models can efficiently detect and isolate malicious activity while minimizing false positives. 

Although the proposed system has demonstrated robust detection performance, one key challenge in real-world 

deployment is ensuring that the dataset used for model training accurately represents actual IoT network conditions. This 

study used publicly available datasets, including IoT-23, CICIoT2023, and RT-IoT2022, to train and evaluate detection 

models. These datasets incorporate a wide range of attack scenarios and IoT traffic patterns, contributing to the 

representativeness of the experiments. However, industrial IoT environments exhibit even more significant variability 

regarding device heterogeneity, traffic behaviors, and attack sophistication. 

One limitation of the data sets is that they do not fully capture complex, large-scale industrial networks with diverse 

real-world device interactions and security threats. While they provide a strong foundation, future work will focus on 

reducing the gap between simulated and real traffic by collaborating with IoT device manufacturers and industrial 

partners to collect live traffic data from production environments. This will enable the model to generalize more 

effectively to unseen attack patterns and network anomalies. 

Additionally, future research will explore integrating transfer learning techniques, where models pre-trained on 

controlled datasets are fine-tuned using real-time IoT traffic captured from operational networks. This approach would 

allow the system to adapt to evolving threats without requiring complete retraining, ensuring long-term reliability in 

practical deployments. Another enhancement explored in this study is the integration of Federated Learning (FL) to 

decentralize model training and improve system adaptability. Unlike centralized training approaches that require direct 

access to raw network data, FL allows each Edge node to train its own CNN model locally while only transmitting model 

weight updates to a central aggregation server. This method significantly enhances data privacy, preventing sensitive 

network traffic from being exposed beyond the local environment. Moreover, FL reduces network bandwidth 

consumption by limiting the data exchanged with the central server. 
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However, FL introduces new computational and latency challenges that require careful consideration. While it 

enhances privacy and local adaptability, the need for periodic synchronization between Edge nodes and the aggregation 

server can introduce additional delays, potentially affecting real-time detection capabilities. Additionally, Edge nodes 

with limited processing power may struggle to handle frequent model updates, necessitating optimization techniques 

such as model compression or lightweight CNN architecture. In preliminary evaluations, the integration of FL 

demonstrated comparable detection precision to traditional centralized training approaches while offering improved 

scalability for large-scale IoT deployments. However, response times exhibited slight increases due to model 

synchronization overhead, suggesting that further optimizations are needed to balance detection accuracy and real-time 

performance in federated settings. Future research will focus on refining FL strategies, such as adaptive model 

aggregation and asynchronous update mechanisms, to mitigate these latency issues while maintaining high detection 

rates. 

Regarding the system's overall effectiveness, although detection rates remained high across all scenarios, the observed 

increase in false positive rates in more complex cases (up to 6%) suggests further improvements in model optimization 

and training data diversity. Implementing advanced hyperparameter tuning techniques and incorporating a broader 

dataset with an increased representation of real-world IoT network variations could help mitigate this issue. Additionally, 

while response times remain within acceptable industrial thresholds, further load distribution optimization among Edge 

nodes could enhance system responsiveness under extreme conditions. 

Despite the improvements offered by this approach, certain limitations must be considered when interpreting the 

results. The dataset used for training and evaluation combines simulated and real-world data captured in a controlled 

environment. While this ensures diversity and representativeness, real-world IoT deployments exhibit significantly 

greater traffic patterns, device configurations, and attack sophistication variability. Consequently, generalizing these 

results to all IoT networks requires additional validation in diverse operational settings.  

Moreover, the simulated scenarios assume a homogeneous distribution of IoT devices and attack vectors, which may 

not fully replicate the complexity of real-world deployments. In practical settings, IoT devices vary widely in processing 

power, network connectivity, and security protocols, which could impact the system's detection accuracy and efficiency. 

Additionally, the attack simulations in this study focused exclusively on spoofing attempts, while other prevalent threats, 

such as distributed DDoS attacks and APT, remain unaddressed [36]. Future studies should consider expanding the scope 

of attack scenarios to provide a more comprehensive evaluation of the system's robustness. 

Another aspect to consider is the consumption of computational resources, particularly at Edge nodes. Although the 

results showed that the system maintains acceptable performance in terms of latency and memory usage, implementing 

CNN models on capacity-limited devices might not be feasible in extremely constrained IoT networks [37]. This 

limitation aligns with findings from Alamatsaz et al. [8] and Bukhsh et al. [14], who emphasized that computationally 

intensive deep learning models may not always be feasible for lightweight IoT deployments. Future research could 

explore model compression techniques, such as pruning and quantization, to reduce computational overhead without 

compromising detection accuracy. 

Despite these limitations, the findings of this study provide valuable insights into the design and implementation of 

AI-based threat detection systems for IoT networks. The integration of CNNs with an Edge computing framework 

represents a significant step forward in addressing key challenges related to IoT security, particularly in terms of response 

time, scalability, and computational efficiency [38]. Additionally, implementing resource-efficient inference techniques, 

such as CNN model compression (quantization and pruning) and adaptive workload distribution, has proven effective in 

optimizing the computational overhead at Edge nodes. These strategies allow real-time inference to be executed without 

overwhelming resource-constrained devices, ensuring that detection accuracy is maintained while preventing system 

bottlenecks. The findings suggest that the proposed optimizations contribute to a balanced trade-off between 

computational efficiency and detection precision, making the approach viable for large-scale industrial IoT networks. 

These results establish a solid foundation for future advancements in IoT security, highlighting the potential of AI-driven 

distributed architectures to enhance the resilience of large-scale industrial networks. 

While the results confirm the system’s ability to maintain stable operation in networks of up to 1,000 connected IoT 

devices, further evaluation is required to determine its behavior under significantly larger-scale deployments. In practical 

industrial environments, IoT networks can reach tens of thousands of devices, posing new challenges in traffic 

management, computational efficiency, and threat detection under extreme conditions. 

Future optimizations will explore multi-tier Edge architectures, hierarchical model aggregation, and adaptive 

load-balancing techniques to improve performance in large-scale settings. Additionally, federated learning and 

distributed inference strategies could minimize communication overhead and enhance system scalability. While the 

current study provides a strong foundation for detecting and mitigating spoofing attacks in IoT networks, extending 

to more extensive infrastructures will require further empirical validation and system refinement to ensure real-

world applicability on a global scale. 
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6- Conclusions 

This study presents a solution for detecting and mitigating spoofing attacks in IoT networks by integrating CNN with 

a distributed architecture based on Edge nodes. The results demonstrate the proposed system's effectiveness, highlighting 

its ability to operate in complex and high-density environments and balance precision, response time, and scalability. 

These features position it as a viable solution for industrial applications and other critical environments where IoT 

network security is essential. 

One of the main contributions of this work is validating the system in simulated scenarios that replicate realistic 

conditions. Regarding detection rate, the system reached 95% in low-complexity scenarios and 88% in high-load 

conditions and multiple simultaneous attacks. These results highlight the system's robustness, even in the face of the 

increasing complexity of the threats evaluated. Using CNN allows for capturing complex patterns in traffic data, 

improving anomaly detection precision compared to traditional methods such as SVMs and Random Forests. 

The distributed design, which delegates processing tasks to Edge nodes, proved to be fundamental for the scalability 

and efficiency of the system. This architecture significantly reduced the load on the central server, improving the 

distribution of processed traffic while maintaining acceptable response times. In scenarios with up to 1,000 connected 

devices, detection and response times gradually increased from 150 to 220 ms and 300 to 450 ms, respectively, 

demonstrating a robust response to high device density and simultaneous attacks. These metrics underline the importance 

of distributed processing in addressing scalability challenges in industrial IoT networks. 

Another relevant aspect is the low false positive rate observed in all scenarios, ranging between 3% and 6%. This 

metric is crucial to ensure that the alerts generated are relevant and actionable, minimizing the impact on the network's 

regular operation. Furthermore, the system successfully isolated between 97% and 89% of compromised devices, 

highlighting its effectiveness in containing threats once detected. These capabilities are essential to ensure the operational 

continuity of IoT networks in critical industrial environments. 

Despite these achievements, the study also identified limitations that must be addressed in future research. One of the 

main constraints was the dataset used, which included both simulated data and data captured in controlled environments. 

Although this combination provided diversity in traffic patterns, it does not fully represent the variability of IoT networks 

in real deployments. The lack of heterogeneity in IoT device capabilities and attack configurations also simplified some 

aspects of the experimental design, which could have influenced the results. 

Additionally, this study recognizes that IoT devices vary widely in computational capacity, which can impact the 

deployment of CNN models on resource-constrained nodes. Future research should explore optimization techniques such 

as model compression, quantization, and lightweight architectures to ensure efficient inference without compromising 

detection accuracy. Further enhancements could involve integrating federated learning, allowing distributed model 

training across Edge nodes while preserving data privacy. This would improve adaptability and detection precision while 

minimizing communication overhead. 

Another area of interest is scalability beyond the tested 1,000-device configuration. While the system maintained 

strong performance at this scale, larger industrial deployments could introduce additional challenges in traffic 

management, computational load, and detection reliability. Future work should investigate hierarchical Edge 

architectures and adaptive resource allocation mechanisms to optimize performance in extensive IoT networks. 

Extending the system to detect other attack types, such as DDoS attacks and advanced persistent threats, would 

enhance its applicability. Dynamic prioritization techniques and real-time resource allocation could improve 

responsiveness under high-load conditions. These directions for future research will help refine and expand the system, 

ensuring its effectiveness in increasingly complex industrial IoT environments. 
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