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Abstract

Accurately predicting the air quality index significantly reduces health risks and supports urban
environmental planning. This paper presents LRX, a hybrid predictive model, for Air Quality Index
(AQI) prediction. The model employs Long short-term memory to capture temporal dependencies, andom Forest;

Random Forest to fine-tune the features, and Extreme Gradient Boosting to enhance the final Extreme Gradient Boosting;
predictions. Th_e object_ive of the stud_y_ is to bui_ld a model that can accurately p_redict air quality  gream Lit;

index numbers in real time for many cities in India. The proposed model LRX design influences the . .

depth of each algorithm to enhance accuracy and generalization. The experimental results show the ~ Decision-Making.

model's ability to predict the AQI forecast of various cities in India with a root mean square error of

0.014 and R? of 0.948, performing better compared to the models individually. To enhance this, a

Stream lit-based user interface has been developed to enable real-time AQI predictions and . .

visualization. The interface incorporates tabs for interactive inputs, model selection, graphical Article History:
representation of predicted trends, ensuring accessibility and usability, and enhancing the practical

applicability of the proposed model. This easy-to-navigate tool not only makes the prediction ~Received: 26 February 2025
process more acces_si_ble but a_lso helps bri_dge the gap betw_een complex model results ar_ld practical  Revised: 04  August 2025
environmental decision-making, enhancing the overall impact of the research. This research

contributes to air quality prediction by presenting a robust modelling approach that can be applied ~ Accepted: 11 August 2025
I i fel e Published: 01  October 2025

1- Introduction

Air pollution is one of the most significant global problems, having disastrous effects on both human health and
general environmental balance. Air pollution poses a significant threat and environmental challenge to public health, the
atmosphere, and ecology. With the increasing sizes of cities and more industrial production coming into existence, there
is an increase in pollutants, which leads to poor-quality air. Pollutants and fine particulate matter (PM) that contribute to
air pollution include nitrogen dioxide (NO, ), carbon monoxide (CO), carbon dioxide (CO, ), ozone (O3 ), and sulphur
dioxide (SO, ) [1, 2]. Air quality prediction involves various factors, intricately connected to atmospheric conditions
and exhibiting time dependencies. The Air Quality Index (AQI) is a vital tool since it gives a clearly defined way of
measuring how bad the air is daily. Precise and appropriate estimates of AQI can enable experts, scholars, and parties to
take preemptive measures to alleviate the hazards associated with deprived air quality.

The AQI could alert people to decide their daily activities, such as exercise, and help policymakers formulate laws
and policies aimed at protecting the public. But achieving high accuracy in predicting AQI is not easy because air
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pollution is a highly variable and multi-factorial phenomenon. Generally, pollution depends on the flow of vehicular
emissions, industrial releases, weather, and other chemical processes in the atmosphere. Moreover, there are very sharp
changes that can be caused by unusual weather conditions (inflection points) and significant variations in air pollution
because air itself changes over location and time [3, 4]. All these work in synergy, limiting the predictability of impacts
on air quality, something that traditional models cannot capture adequately. Conventional air quality examination
depends on installed ground-based instrument systems that prepare precise but repeatedly faltered and spatially
constrained data. With collective suburbanization and developed movement, there is an expanding pressure for real-
time, analytical, and spatially widespread air quality data. This has led to a rising importance of smart paradigms that
merge ecological data cascades, machine learning systems, and sophisticated visualization methods.

The studies show that poor air quality can hamper these health problems and lead to increased hospitalization and
healthcare attendance. Maximizing the understanding of AQI is vital to facilitate the appropriate formulation of public
health policies and interventions. Subramanian et al. [5] proposed an Auto Regressive Integrated Moving Average model
for statistical data prediction, which was incorporated with LSTM using encoder-decoder architecture, Quantum Particle
Swarm Optimization, and XGBoost. The model showed great expertise by maintaining low error rates and high
determination coefficients, maintaining high predictability. The authors implemented a neuro-fuzzy (neural network +
fuzzy logic) logic to represent AQI data, training both deep neural networks (DNN) and the Markov model separately.
The input dataset was fed to DNN and then to Markov, resulting in better accuracy than individual models. Sarkar et al.
[6] proved that the traditional methods of autoregressive integrated moving average (ARIMA) and support vector
regression were not able to identify the data series from the air-polluted data. As such, two models, namely EMD-SVR-
Hybrid and EMD-IMFs-Hybrid, have been proposed to estimate the AQI.

Figure 1 reveals "Hazardous" AQI levels across northern regions; the central and western regions, including parts of
Maharashtra and Uttar Pradesh, display "Unhealthy" levels. In contrast, southern India and northeastern areas report
relatively cleaner air with "Good" AQI. The map highlights India’s seasonal trend, where post-monsoon air quality dips
drastically, particularly in northern areas, as pollutants get trapped near the surface. To address and overcome the
challenges of enhancing the accuracy of the AQI predictions, this paper introduces a hybrid model called the LRX (which
is derived from the combination of LSTM + RFR + XGBoost) model, which incorporates a combination of three machine
learning methods. The outcome of this study can enhance decision-making in public health and urban planning to
improve air quality standards and increase people's health in communities.
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Figure 1. AQI map of India

2- Literature Survey

The AQI, as mentioned, is crucial from the public health perspective and relates to respiratory and cardiovascular
ailments. The presence of high AQI values, particularly particulate matter (PM2.5 & PM10), increases the rates of
asthma, bronchitis, and other respiratory diseases. Sarkar et al. [6] have been conducted on the discussion below. The
research work proposed combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models for
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AQI prediction. The results showed that the proposed hybrid LSTM-GRU model outperforms other standalone machine
learning models, achieving an MAE of 36.11 and an R2 value of 0.84. The Random Forest Prediction algorithm [7] was
employed in the study to predict carbon monoxide (CO) and nitrogen dioxide (NO, ) concentrations in the Amman-
Zarqa region of Jordan. The key influencing factors, such as relative humidity, wind direction, and land surface
temperature, are included with MAE values ranging from 0.11 to 0.18 for CO and 3.78 to 7.30 for NO, models. A
comparative analysis of deep learning algorithms [8] evaluated LSTM and achieved varying Root Mean Square (RME)
for daily and hourly data, highlighting its potential, especially for hourly predictions. The performance of the Random
Forest model was compared [9] with Support Vector Regression (SVR) and Artificial Neural Networks (ANN) for AQI
prediction, and it proved that Random Forest showed high accuracy.

The Grey Level Co-occurrence Matrix (GLCM) technique [10] was utilized for feature extraction in AQI prediction,
optimized by the Moth Flame Optimization Algorithm (MFOA) and combined with SVR and LSTM for better predictive
results. The LSTM model predicting AQI [11] used nine parameters in Shanghai to show high precision but faced
overfitting due to sample imbalance, indicating that dataset choice impacts model performance. A comparison of SVR
and Random Forest Regression (RFR) [12] revealed that RFR performed better, while SVR exhibited increasing time
complexity with larger datasets, becoming impractical for extensive samples. The paper proposed a CNN-ILSTM model
[13] for AQI prediction, outperforming traditional regression models. However, it struggled with extreme value
predictions, highlighting a limitation in its applicability. A combination of grey wolf optimization and decision tree
algorithms resulting [14] in high prediction accuracy (86%-98%) for AQI, emphasizing the importance of optimal feature
selection, is proposed. Duan et al. [15] explored the ARIMA-DBO-CNN-LSTM model, showing potential in AQI
prediction but facing issues with partial fitting, leading to re-averaging challenges. AQI prediction models using SVR,
RFR, and Catboost Regression were tested in Indian cities [16], revealing a 6%-24% accuracy increase when applying
the Synthetic Minority Oversampling Technique (SMOTE). The work highlighted conventional AQI prediction methods
[17], recent advancements in deep learning applications, and future directions for the field's development and conducted
[18] a general comparison of Random Forest, Linear Regression, and Naive Bayes, indicating that Random Forest
achieved the highest accuracy, followed by Linear Regression. The potential of remotely sensed data for AQI prediction
was explored [19], with single and multiple linear regression models demonstrating high predictability, which resulted
in the multiple linear regression performing best. The work analyzed forecasting in Visakhapatnam using Random Forest
and Catboost [20] and achieved high prediction accuracy, with minimal correlation differences in their performance.

Farooq et al. [21] utilized quantum computers in conjunction with SVM for AQI prediction, achieving 97% accuracy
with quantum SVM, indicating future potential for complex computations. Six machine learning models, including
SVM, RF, and AdaBoost [22], were applied to predict AQI using data from Taiwan, revealing that stacking ensemble
and AdaBoost outperformed traditional models. This paper proposed a comparative analysis of Seasonal Autoregressive
Integrated Moving Average (SARIMA), SVM, and LSTM models [23] for AQI prediction using data collected from
multiple air quality monitoring stations in Ahmedabad from January 2015 to January 2021. The authors also evaluated
the models using performance metrics such as R2 Score, MSE, RMSE, and MAE. They showed that the SVM model
with the RBF kernel outperforms other models in predicting AQI for Ahmedabad city. This model uses an LSTM layer
to analyze Taiwan's AQI dataset and predict the concentrations of four key pollutants (PM2.5, PM10, O3 , and NO, )
[24]. The study compared LSTM_ON to the existing XGB_NON model and found LSTM_ON to be more accurate. The
research paper proposed a unique approach for predicting AQI using pollutant concentrations and meteorological data
[25]. The researchers developed a three-module system that first predicts the concentration of eight key pollutants using
ARIMA and ANN, then uses these values along with meteorological factors like wind speed and temperature to forecast
the AQI. This system was tested against several variations of Support Vector Regression (SVR) models with different
kernel functions and input parameters, resulting in improved accuracy of the predictions, with the linear kernel function
performing best overall.

A hybrid framework combined several machine learning techniques [26], utilizing wavelet decomposition for time
series data and employing a BiLSTM model optimized with Particle Swarm Optimization, improving prediction
accuracy. The Cuckoo Search algorithm optimized the LSTM model for AQI prediction [27], demonstrating improved
accuracy over SVR, BP neural networks, and standard LSTM models. Daily air quality data analysis from Henan
Province evaluated ten regression models [28] and highlighted RF and Gradient Boosting as superior in predictive
accuracy and generalization. Gupta et al. [29], in their study of air quality trends in India, emphasized seasonal changes
and the impact of the COVID-19 lockdown on AQI levels, with PM2.5 and PM10 showing the most significant effects.
A Bidirectional LSTM (BiLSTM) [30] with an attention mechanism was proposed to enhance feature extraction for AQI
prediction, resulting in improved accuracy compared to standard LSTM models. Though various studies and experiments
have been carried out, the accurate prediction of the AQI value remains challenging. As such, in this paper, we propose
the LRX model to improve the accuracy of prediction.

3- Implementation of LRX (LSTM + RFR + XGB) Model

This paper proposes a hybrid machine learning model for AQI forecasting to improve the accuracy and reliability of
predictions. The model begins with collecting and preprocessing historical AQI data and other relevant features. The
stages involved in the LRX model are (i) cleaning the data, (ii) encoding categorical variables, (iii) scaling the features
to ensure consistency, and (iv) readiness for model training.
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3-1- Air Quality Dataset

The experiment is carried out in the city day.Csv dataset. The dataset consists of 29,531 entries, each representing
daily air quality data for various cities in India. The data consists of multiple pollutants and their concentrations, as well
as calculated AQI values. The dataset is available at the link below: city_day.csv (kaggle.com). The specific features
used in the dataset are PM2.5, PM10, NO, NO2, NH3, CO, SO,, O3, BENZENE and XYLENE, where AQI is the target.
In the dataset no meteorological features such as temperature and humidity are included in the dataset, which restricts
the proposed model range and generalizability. The sample raw dataset is shown in Table 1, while the different levels of
AQI for the public are shown in Table 2.

Table 1. AQI value and conforming ambient concentrations for the identified pollutants

City Date PM25 PM10 NO NO2 NH3 Cco SOz O3 BEENNEZ )EOI\(IIE_ AQI BS‘CQIL_ET
AMD 1/1/15 73.24 141.6 092 1822 2348 092 27.64 133.36 0 0 166.46 Poor
BLR 2/1/15 30.65 70.46 326 1733 2036 033 354 10.73 0.56 0 91 Moderate
MAA  3/1/15 1735 48.55 163 1539 459 117 9.2 11.35 0.17 0 333 Poor
DELHI  4/1/15 313.2 607.9 69.16 36.39 3385 152 9.25 41.68 14.36 9.84 472 Severe
HYD 5/1/15 47.03 93 3.7 1719 2494 03 2.58 30.34 0.41 111 120 moderate
Table 2. AQI index value, rating and their health impacts
AQI Rating Health impact
0-50 GOOD It's a great time for outdoor activities!
51-100 MODERATE You can go outside, but sensitive groups should take precautions.
101-150 SATISFACTORY  Low immune people should limit prolonged outdoor exertion.
151-200 POOR Everyone should limit prolonged outdoor exertion.
200-300 VERY POOR Avoid outdoor activities.
More than 300 SEVERE Stay indoors and avoid all outdoor activities, use medical standard mask

In Figure 2, the two images compare the summary statistics of the raw and pre-processed air quality data. Forward-
filling gaps were used to fill in the missing values in the raw data. The overall structure of the dataset appears stable
post-preprocessing, with no major changes in statistical properties such as means, standard deviations, and quartile

ranges. This suggests that the pre-processing has not dramatically altered the underlying distribution of the data.
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Figure 2. Summary statistics of raw and processed data
3-2-Pre-Processing

Label encoding converts non-numeric variables, like city names, into numerical values, as shown in Equations 1 and
2. The gaps present in the data are pre-processed through the forward-fill (ffill()) technique to ensure the dataset has

no gaps present, as shown in Equations 3 and 4.
labgpcoqa = LabEncod() Q)
)

datacityencod = labencod-fittransform(datacity)
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Let the dataset, d = {X1, X,...,xn} Where some of the values x; may be missing (NaN).
_ Xi_1, Xi = NaN
Xi= { x;, X; # Nan ©)
MPaata = MPaata- fFILO 4)

The MinMaxScaler technique is used to normalize the data, rescaling the feature values between 0 and 1 for the
scaling process. This technique enhances LRX performance by ensuring all features are on a similar scale, especially
when working with multiple machine learning models. By minimizing the scale difference, as shown in Equations 5 to
7 these models can better learn the underlying patterns.

Let x be the feature value, Xmin be the minimum value of the feature, and Xmax be the maximum value of the feature.

(X—Xmin)
X = —— 5
scaled Xmax—Xmin ( )
Scalerfeature = MinMaxscqier ) (6)
Xscaled = Scalerfeature-fittransform(x) (7

The advantage of using this approach is that it eliminates noisy data from the raw data while maintaining data
consistency, ensuring that LRX receives pre-processed and normalized data input, which benefits its prediction accuracy.

Table 3 shows the dataset after being pre-processed to get its features extracted and fed into the LRX model.

Table 3. Dataset after preprocessing

City Date PM25 PM10 NO NO, NH; CO SO, Os BEENNEZ >E(\I\GII£ AQI EﬁIC-ZrOYISE
AMD  1/1/15 7324 1416 092 1822 2348 092 27.64 133.36 0 0 166.46 0
BLR 2/1/15 3065 7046 326 17.33 2036 0.33 354 10.73 0.56 0 91 1
MAA  3/1/15 1735 4855 163 1539 459 117 9.2 11.35 0.17 0 333 2
DELHI 4/1/15 3132 6079 69.16 36.39 3385 152 925 4168 1436  9.84 472 3
HYD  5/1/15 47.03 93 3.7 1719 2494 03 2.58 30.34 041 111 120 4

3-3-Model Execution

The execution of LRX occurs in three stages (LSTM—RFR—XGB). Each stage has a specific role in improving the
overall accuracy and predictability.

3-3-1- LSTM

LSTM is the first model in the LRX pipeline. As a recurrent neural network (RNN), LSTM excels at capturing long-
term dependencies in the data. LSTM is configured with 100 hidden units (hidunits), 4 classes (NUmciass), 1 input (trsize),
and trained for 10 epochs (epsize) With a batch size (bhsize) of 32. The LSTM captures temporal patterns by analyzing
historical AQI data and predicting future values based on past trends.

3-3-2- Random Forest

After LSTM generates the initial predictions, the output is fed into RFR. In general, RFR is an ensemble learning
method that uses multiple decision trees to improve prediction accuracy. Each tree is trained on a different subset of
data, and their results are averaged to increase generalizability and prevent overfitting. The model uses 100 trees to refine
the LSTM predictions. The RFR ensures that tabular data is processed and enhances the interpretability of the results by
handling non-linear relations between features.

3-3-3- XGB

The final step involves training XGB on the output of RFR. XGB is a gradient boosting algorithm known for its
performance and speed. It optimizes the predictions by applying boosting techniques to reduce errors iteratively. XGB
is configured with a learning rate 0.1 and a maximum depth of 6 for each tree. XGB refines the predictions further,
accounting for any patterns overlooked by LSTM and RFR.

3-4-Creation of the Streamlit user Interface:

A web-based interface was developed using Streamlit to enhance accessibility and interaction with the hybrid LRX
model for AQI prediction. This interface allows users to input relevant data, execute the model, and view the prediction
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results clearly and intuitively, as shown in Figure 3. The design focused on providing both functionality and
customization, ensuring the application is user-friendly for individuals with varying levels of technical expertise.

LRX Model for AQI Prediction

Dataset Preview

€ Air Quality Index (AQI) Prediction App

Predict AQI using ML models and visualize the trends in a beautiful dashboard

Dark Mode

PredictAQI  AQITrends City Comparison  Performance Analysis  Pollution Graph

Training the LSTM model.

Select a City:

Training the Random Forest and XGBoost models.
Choose acity:

Model Performance Metrics
Chennai

e . LRX Model Performance Metrics
AQI Prediction Results for Chennai

®score s
Predicted current AQI for Chennai: 74.10 0.947 0.014

Yearly AQI Trends for All Districts

—e— Amritsar

Pollution Analysis Dashboard Py Bengaluru
e~ Chennai
i —e— Hyderabad
[ eas » Jsio « J oo« Jwoa  Joow x P « o« § 502 < J 03 x | e« J rotoene < ] sere <] —e— Jaipur
Trends Over Time 140

Distribution Analysis Correlation Analysis

Average AQI
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3
i i
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P
' of 4
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|

2024 2025 2026 2027 2028 2029
Year

Figure 3. Streamlit user interface tabs for AQI prediction

e Page Configuration

The Ul was designed to enhance user experience along with tabs to enhance navigation through the many input and
output parts, improving the interface's usability.

¢ Dark and Light Theming

The interface allows users to toggle between dark and light modes, catering to user preferences. This toggle was
implemented to improve user comfort. At the same time, the dark mode is used to save battery and is easy on the eyes,
and while used in the dark, the light mode provides a bright contrast, which makes it easy to see the screen under bright
environments or while using outside.

e User Interactivity and Input Handling

The interface allows users to choose the data (city) for AQI prediction, which the LRX model processes. The results
are presented in the interface, enabling immediate feedback. The interface also ensures that users can modify inputs and
view updated predictions without needing to refresh or restart the application.

¢ Display of AQI Predictions and Visualizations

The results of the AQI predictions are presented in graphical formats, providing an understanding of the prediction
trends over time or across various locations. Additionally, performance metrics, such as R-squared and RMSE values,
offer insights into the model's accuracy and reliability.

The flowchart in Figure 4 provides a clear and concise visual representation of the application's structure and features,
making it easy to understand how the system operates. It helps outline the functionalities such as loading the data,
building the model, predicting AQI, comparing cities, and analyzing trends, giving the users a roadmap of how to interact
with the interface. This helps navigate and ensure users know where to go for specific tasks such as predicting AQI or
comparing cities. The architecture diagram shown in Figure 5 provides a high-level overview of an AQI prediction
system, illustrating the end-to-end workflow. It shows how data is collected from a database, pre-processed, and then
input into LRX model that collectively uses models like LSTM, Random Forest, and XGBoost for training and
prediction. The prediction module processes incoming data to forecast the city's AQI, which is then deployed via
Streamlit for user interaction through a web interface. Ensuring a seamless integration from data input to real-time AQI
prediction and user access. Algorithm LRX mode explains the functionality of the model.
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Figure 5. Architecture diagram of hybrid AQI prediction model

Page | 2460



Emerging Science Journal | Vol. 9, No. 5

3-5-Algorithm 1: LRX Model (Combining LSTM + Random Forest + XGBoost Appraoches)

. Input: processed data Sidata
. Output: final predictions Piagata
. Initialise LSTM
. Initialise Trfea, tTrsize = 1, hidunits = 100, Numciass = 4, €psize = 10, Dbhsize = 32, lstmiavel
. Train label = 80%, Test label = 20%
Initialize the LSTM layers lstmMiayers
. Initialize LSTM training options lstmeptions
. Train LSTM
Label = unique (label)
0. For xx= 1 : leng(Label):
Class = find(label == Label (xx))
Convert lstmiaver = cat (lstmiavel)
Net = trainwet (Trfea, 1Stmiave1, 1Stmoptions)
Traineut = length(class) - traincu
Traindata = [traindata; trainfea; class(l:Traincut)]
#Predict LSTM
11. Predictismy = classify(Net, Traingata, Dhsize)
#Initialize RFR with trees
12. Ntrees = 100
#Train RFR on LSTM output
13. Tforest = train (RF,Predictism)
#Predict RFR
14. Predictrr = RF.predict (Tsorest)
#Initialize XGB with learning rate lr = 0.1, max depth d = 6
#Train XGB on RFR
15. Txee = train (XGB,Predictrr)
#Predict XGB
16. Predictxes = XGB.predict (Txee)
#Final prediction
17. Pdata = Predictxes

H O o Jo U b wN -

The processed data are fed as input in line 1 and the expected final output of the algorithm is mentioned in line 2. The
LSTM is initialized in line 3. To make predictions, the LRX algorithm combines the strengths of LSTM, RFR, and XGB
and the first, parameters of the LSTM are initialized in line 4, i.e., number of training features (Trfea), number of hidden
units (hidunits), number of classes (Numclass), batch size (bhsize), and number of epochs (epsize). The data is then
divided into a training set and a testing set with 80% and 20% samples respectively in line 5 to ensure that there is a
sufficient amount of data for training as well as validating the model. The two LSTM layers are initialized in lines 6 &
7 and three training options are configured in them.

The rigorous training of the LSTM model is done on the training data and special class labels (Label) from lines 8 to
10, ensure that it is able to learn the temporal dependencies in the data. A LSTM network is created by the trainNet
function and a specific number of features (Trfea) are combined with their corresponding class labels (Istmlabel). The
output of the LSTM network is used by the classify function in line 11 to assign labels to the test data (Traindata). The
RFR model is initialized on line 12 with a hundred decision trees. Line 13 trains the RFR model on the LSTM predictions.
This model is an ensemble-based model that uses at least two non-linear relationships in the data to improve its stability
and the highly accurate predict function of the Random Forest model generates predictions from the RFR in line 14.

The output of the RFR model is passed to the XGBoost (XGB) model, which is initialized in line 15 with
hyperparameters such as a learning rate (Ir = 0.1) and a maximum depth (d = 6). The XGB model is trained on the RFR
predictions using gradient boosting, which fine-tunes the predictions and reduces errors. Final predictions are obtained
in line 16, where the predict function of XGBoost generates the results. In line 17, these final predictions (Pdata)
represent the ensemble output of the hybrid LRX model. This step-by-step approach enables the LRX model to harness
the temporal analysis capability of LSTM, the non-linear modeling strength of RFR, and the fine-tuning power of
XGBoost, providing an effective and scalable solution for predictive tasks.

4- Results and Experiments
4-1- Analysis of Dataset

In Figure 6, the heatmap reveals the correlation between various air pollutants. To examine the interrelation among
various air contaminants, a correlation heatmap was generated by Pearson correlation co-efficient. Figure 6 depicted the
intensity and paths of linear correlation amongst the eleven contaminants: PM2.5, PM10, NO, NO2, NOx, NH3, CO,
SO2, 03, BENZENE and XYLENE. Pollutants such as NO & NO2 with r = 0.46 and NO & NOx with r=0.75 has a
strong positive correlation due to the strong substance response of all three component NO, NO2 and NOXx. Also, the
reaction between NO2 and NOx with r=0.57 indicate a good correlation. When few components such as PM 2.5 & PM10
with r=0.56 and NH3&NO2 with r= 0.35 are correlated, it results in a moderate correlation. Two pollutants SO2 and
Benzene with r=0.02 results in low correlation as per the heatmap generated. High positive correlations (closer to 1, in
dark red) indicate pollutants that increase or decrease together and strong negative correlations (closer to -1, in dark
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blue) indicate pollutants that move in opposite directions. This suggests some pollutants behave similarly under specific
environmental conditions, which might hint at their common sources or atmospheric interactions. The pollutants showing
high correlations can be further investigated to determine if they arise from similar sources or environmental processes.
This helps in designing targeted interventions to reduce specific types of pollution.

Pollutant Correlations
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Figure 6. Heatmap of pollutants correlations

The time series plot in Figure 7 shows the fluctuations of different pollutants from January to April 2020. It depicts
the time-series image of the intensity readings of various 12 atmosphere contaminants specifically for PM2.5, PM10,
NO, NO2, NOx, NH3, CO, SO2, O3, TOLUENE, BENZENE and XYLENE. The graph is plotted with days’ timelines
in the x-axis and range of intensity values varying from 0 to 100. Each contaminant is embodied by a highlighted line,
lead to substantially dense and intersecting form because of the occurrence and inconsistency of the data. The pattern
formed shows that contaminants were captured on a regular basis either daily or weekly, indicating variations in
concentrations over time because of various factors such as meteorological conditions, transportation or industrial
happenings. Though the graph portrays the dynamics of the contaminants in a certain period no clear cyclical or seasonal
pattern exists, but all pollutants exhibit much variability across the time frame. This could suggest varying environmental
or anthropogenic influences during this period, leading to irregular peaks and troughs in pollutant concentrations. No
distinct seasonal trends are immediately visible, indicating the need for more granular analysis (e.g., looking at specific
meteorological data) to identify the drivers behind these fluctuations and reduce them to improve AQI.

Pollutants Over Time
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Figure 7. Pollutants graph over time
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The plot shown in Figure 8 compares the pollutant distributions before and after pre-processing using a log scale for
concentration. Using logarithmic range on the x-axis and density on the y-axis, the graph has compared original dataset
and the pre-processed dataset. The solid lines correspond to the original dataset, while the dashed lines represent the pre-
processed dataset. For most pollutants (e.g., PM2.5, PM10, NOx, Benzene, CO, SO2, O3), the solid and dashed lines are
quite close, indicating that pre-processing has preserved the core distributions of the data. There is a slight difference at
lower concentrations in pollutants like PM2.5, NOx, and Xylene. The distribution of the original dataset regularly
appears crooked or uneven spreading with hard points or extended lines representing the incidence of outliers. Pre-
processed dataset seems to have smoothed or broadened some peaks compared to the original dataset. For NH3 and CO,
the original dataset shows sharp spikes that are less pronounced in pre-processed dataset. Pre-processing may have
reduced some of these spikes, possibly by handling outliers or filling missing data, which makes the distribution of pre-
processed dataset more uniform.

Advanced Distribution Comparison: Pollutants from Original Dataset vs Preprocessed Dataset
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Figure 8. Pollution concentration distribution variability

The density plot in Figure 9 compares the Air Quality Index (AQI) distribution for raw and pre-processed data. The
x-axis embodies the AQI values and the y-axis indicates the pollution density distribution variability, which replicates
how regularly values hit in the data. Both raw data and pre-processed data are skewed on the right, yet the pre-processed
data is less spread out and appears smoother, so it has fewer noisy values. The pre-processed data shows a smoother
distribution with fewer outliers, suggesting that the pre-processing removed noise or extreme values. Both distributions
indicate a high concentration of AQI values, implying that most of the recorded air quality is within the "good" or
"moderate" range. There are some instances of poor air quality (higher AQI), but they appear less frequent after pre-
processing. The pre-processed AQI data reduces noise and gives a clearer picture of air quality trends, which is important
for model prediction.

Distribution Comparison: AQI
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Figure 9. Distribution of AQI
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In summary, pre-processing has preserved the fundamental characteristics of the dataset while making slight
adjustments that improve data consistency and reduce the impact of outliers or missing data, making the dataset more
suitable for analysis and model training.

4-2-Performance Metrics
The metrics used in our research work are R? and RMSE.
RZ measures how well the regression model aligns with the observed data. A higher R? value indicates a strong model

fit, as shown by Equation 8.

RZ — Srﬁ (8)

St

The sum of squares due to regression, represented as Sreq (explained sum of squares), indicates how well the regression
model fits the data. The total sum of squares (Sy) reflects the overall variation in the observed data used in the regression
model. Sreg measures the model’s explanatory power, while Sy captures the total variability in the data.

RMSE reflects how closely the data clusters around the line of best fit shown by Equation 9.

RYAY
RMSE = |y i 9)

n

where Y; is the observed value, Y; is the corresponding predicted value, and n is the number of observations used.

4-2- Models Performance

The hybrid LRX model implemented to predict AQI values has achieved an impressive performance, with an R? of
0.948 and a Root Mean Squared Error (RMSE) of 0.014 as shown in Figure 10. The high coefficient of determination
R? of 0.948 indicates that the hybrid model explains 94.8% of the variance in the AQI data, which suggests that the
model has successfully captured the underlying relationships in the data. The low RMSE of 0.014 shows that the error
in predicting AQI values is minimal, demonstrating the LRX’s precision in AQI forecasting, bolstering the viability of
hybrid approaches in addressing multi-faceted environmental problems, like AQI forecasting.

Training the LSTM model...

Training the Random Forest and XGBoost models...

R? for Hybrid Model: 0.948

RMSE for Hybrid Model: 0.014

Figure 10. Performance metrics

This figure also highlights the efficiency of the training process for the hybrid model, as it successfully integrates the
temporal dependencies captured by LSTM with the robustness of Random Forest and the fine-tuning capabilities of
XGBoost. By combining these complementary strengths, the hybrid LRX model effectively overcomes the limitations
of standalone approaches. Figure 10 is a testament to the practicality of leveraging hybrid methodologies in addressing
multi-dimensional environmental challenges, such as air quality management and prediction. The results validate the
LRX model as a promising tool for real-world applications where accurate AQI forecasting is critical for policymaking
and public health.

The hybrid approach takes advantage of the strengths of all three models (LSTM, RFR, and XGBoost). The proposed
LRX model is compared with three individual models: LSTM, RF, and XGBoost. When the data is fed into all four
models, the results achieved are shown in Table 4. As per the results achieved, the LSTM scored the least R2. The three
remaining models, RF, XGBoost, and LRX, achieved almost similar R2 values; however, the proposed LRX model is
likely to score the highest R2 of 0.948. Regarding the RMSE value, it should be lesser for the model to perform better.
As per Table 4, LSTM has the highest RMSE value, and the proposed model LRX has the least RMSE value compared
to the other models. By comparing the performances of R2 and RMSE, the proposed model LRX is efficient compared
to the other individual models. The Streamlit interface is structured to facilitate a seamless experience when comparing
model performances. Dedicated tabs highlight detailed metrics for each model, including a side-by-side visualization of
R2 and RMSE scores in interactive charts. A custom feature enables users to upload their datasets and visualize predicted
AQI trends across selected time intervals, emphasizing the strengths of the LRX model. Unlike traditional static result
presentations, this interactive approach empowers users to dynamically validate the model's efficiency. Beyond its
impressive R2 of 0.948 and low RMSE of 0.014, the hybrid LRX model exhibits several distinct advantages that enhance
its performance and applicability in AQI forecasting.
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Table 4. Model performances

Model R? RMSE
LSTM 0.873 0.021
Random Forest 0.946 0.016
XGBoost 0.943 0.014

LRX (proposed) 0.948 0.014

The LRX model's accuracy and real-time interactivity enable timely and data-driven decision-making.
Environmental managers or policymakers can rely on these predictions to take proactive measures to improve air
quality, ensuring better public health outcomes by preventing harmful AQI levels before they occur. Unlike
standalone models that might overfit or underperform when exposed to new data, the hybrid approach improves
generalization. The LRX model better adapts to different environmental conditions and datasets by combining
multiple learning strategies, making it more reliable across diverse scenarios. The significant reduction in RMSE
indicates that the LRX model's predictions are far more precise than individual models. This ensures that forecasted
AQI values closely align with real-world data, offering high accuracy and reducing the margin of error in important
environmental predictions, such as air quality management.

Integrating multiple models within the hybrid structure makes the LRX system highly scalable. As AQI datasets grow
or new data sources are incorporated (e.g., additional environmental factors), the model can be retrained or updated
without losing performance. Its flexibility in handling varied data types (e.g., time-series, categorical) ensures
applicability in a wide range of forecasting tasks. The user-friendly Streamlit interface enhances accessibility by allowing
users to upload their datasets, visualize predictions, and explore performance metrics interactively. The real-time
visualization allows users to test and validate the model’s efficiency dynamically, providing an intuitive and informative
user experience that traditional methods of static result presentation lack. The interactivity enables stakeholders to make
better decisions based on the model's outputs, promoting trust in the model’s predictive capabilities.

4-3-SHAP -Built Interpretability and the Model Valuation

Even though the suggested hybrid model is intricate, its results remain easy to interpret because of SHAP (Shapley
additive explanations). To explain an individual prediction, SHAP created a waterfall plot, and to show how all features
contribute, SHAP used beeswarm, summary, and feature importance plots. Figure 11 makes it very clear which
characteristics influence the predicted AQI. The level of clear information from this data makes it easy for decision-
makers to understand the importance of different factors impacting pollution in policymaking. Figure 11 comprises 4
graphs depicting (a) Actual vs. Predicted AQI, (b) SHAP summary plot, (c) Feature Importance, and (d) SHAP waterfall
model. Figure 11-a shows that the predicted AQI values are very close to the real ones, reflected in R2 = 0.9588, and
shows the gaps between the values that are expected and the values that are measured. Also, the residues are almost near
to zero, indicating that the proposed model is not inclined, and thus the proposed model can be applied to the new dataset
also. Figure 11-b shows how each feature affects the way the model makes predictions, and the values in
AQI_Bucket_encoded, PM2.5, and CO tend to have the most impact on what the prediction model says about AQI.
Figure 11-c depicts the bar chart that emphasizes the significance of the feature centered on the SHAP importance scale.
Figure 11-d depicts the SHAP waterfall plot that demonstrates what different variables played in the prediction that the
AQI reached a value of 1454.97. The baseline (average log-AQI) is used to predict, and most of the increase is driven
by Feature 13 and Feature 6, which impact it the most positively. Certain features contribute less, but nonetheless}, a
small number have very weak negative impacts. It clearly shows what leads to high AQI, which helps make focused
decisions on environmental protection activities. Collectively, Figure 11 indicates that the proposed model has both a
high accuracy (R?) and is understandable through SHAP values. The top three pollutants, PM2.5, CO, and PM10,
combined with the location and the AQI categories, are shown to be the most significant factors in determining AQI—
giving useful advice for making data-based AQI policies.

Figure 12 shows a comparison of the performance metrics of the individual models versus the LRX model. The graph
clearly shows the LRX model achieving the highest Rz and lowest RMSE, outperforming all standalone models tested.
The orange line in Figure 12 tracks the coefficient of determination (R2) for each model. It rises steadily from LSTM
(0.873) to random forest (0.946), then remains constant for XGBoost (0.943) before reaching its peak with the hybrid
LRX model (0.948). The upward trend demonstrates how the hybrid model improves upon the variance explanation
capabilities of standalone models. Likewise, the blue line represents the RMSE for each model. The values start higher
for LSTM (0.021) and drop progressively for Random Forest (0.016) and XGBoost (0.014), with the hybrid model
maintaining the same minimal RMSE as XGBoost (0.014). The declining trend reflects the reduction in prediction errors
as we move to more advanced or hybrid techniques. The lines illustrate the complementary strengths of the hybrid
approach, thus demonstrating its robustness and efficiency.
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Figure 12. Performance comparison graph

The integration of LSTM’s strength in temporal sequence learning, Random Forest’s robustness in handling non-
linear relationships, and XGBoost’s ability to fine-tune and enhance prediction have enabled the LRX model to leverage
the best of all three algorithms. This synergy highlights the importance of adopting hybrid approaches that work in sync
to achieve Great results in predictive modelling

The analysis of future AQI trends, depicted in Figure 13, provides valuable insights into air quality patterns across
six major cities, Bengaluru, Chennai, Chandigarh, Delhi, Lucknow, and Mumbai, over the forecasted years 2024 to 2029.
The graph highlights variations in AQI trends among these cities, underscoring the importance of localized interventions
in air quality management. Delhi and Lucknow emerge as significant concerns, with high AQI values throughout the
observation period. Despite this, an encouraging downward trend by 2029 indicates potential improvements, likely due
to the implementation of air quality control measures. Bengaluru and Chennai consistently exhibit better air quality, as
shown by lower AQI values and a steady decline over the years. This trend reflects the effectiveness of existing measures
and a potentially cleaner environment in these regions. The general declining trend of AQI in most cities toward 2029
may suggest implementing effective air quality control measures. However, the persistent challenges in cities like Delhi
necessitate a more focused and aggressive approach, including stricter regulations, enhanced monitoring, and innovative
solutions to address local and regional pollution sources. Such efforts are critical to achieving sustainable improvements
in air quality for heavily polluted urban centres.
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Figure 13. Future AQI predictions
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The key findings from this study are as follows:

Hybrid Modelling: The LRX model proposed in this study can combine the strengths of LSTM, RFR, and XGBoost,
allowing it to perform better in terms of prediction accuracy and prediction error than any of these models separately.
This is good because it allows the LRX model to overcome limitations related to temporal constraints and feature
selection, which enhances the accuracy of the AQI forecasting models.

Performance Superiority: Performance metrics such as Rz and RMSE showcase the superiority of the LRX model
over each of the models on its own. In this case, even though LSTM achieves an R? of 0.873 and RMSE stands at 0.021,
the hybrid model does much better on both statistics, significantly illustrating its usability on difficult tasks such as
forecasting AQI values.

Scalability and Practical Application: The LRX model’s low error rates and high accuracy suggest its practical
applicability in real-world air quality monitoring systems. This research demonstrates the potential of hybrid machine
learning approaches to provide actionable insights into urban air quality management. The results presented in this paper
contribute to the growing field of air quality modelling by demonstrating the effectiveness of hybrid techniques.

5- Conclusion

This paper proposes a hybrid AQI prediction model based on the LRX approach, which combines LSTM, Random
Forest Regressor (RFR), and XGBoost. Compared to standalone models, the LRX model has shown great promise in
predicting AQI values. The hybrid approach exploits the strengths of each component; as a result, the LRX model
achieves an R2 of 0.948 and an RMSE of 0.014, exceeding its standalone counterparts. Furthermore, the comparative
analysis of standalone models LSTM, RFR, and XGBoost reinforces the hybrid model’s superiority, as evidenced by its
ability to achieve higher accuracy and lower error rates. This highlights the LRX model's robustness in capturing
complex temporal patterns and non-linear relationships, demonstrating its adaptability to real-world AQI prediction
scenarios. The hybrid approach mitigates the limitations of individual techniques, maximizing predictive accuracy by
combining the temporal pattern recognition of LSTM, the stability of RFR, and the fine-tuning capability of XGBoost.
This suggests that the LRX model is effective in AQI forecasting and could be further enhanced by incorporating
additional features such as meteorological data. Future research could focus on refining the model's scalability for real-
time prediction, making it more applicable for continuous monitoring and actionable air quality management strategies.
In addition to the predictive model, a Streamlit-based interface was implemented to provide a user-friendly platform for
exploring AQI trends and making predictions. The interface enables real-time interaction, visualization of data trends,
and accessibility for non-technical users, ensuring the model's applicability in practical urban planning and public health
scenarios. This integration bridges the gap between advanced predictive techniques and real-world usability. Despite
promising results, limitations must be acknowledged, and future research is proposed to enhance the LRX model further.
A drawback of the LSTM model is that it relies on a large amount of historical data for training. The LRX model is
computationally demanding since it integrates three different machine learning approaches. Further research should
concentrate on enhancing LRX for operating under limited resources or finding lighter alternatives that can attain
performance and computational efficiency close to LRX.
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