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Abstract 

Accurately predicting the air quality index significantly reduces health risks and supports urban 

environmental planning. This paper presents LRX, a hybrid predictive model, for Air Quality Index 

(AQI) prediction. The model employs Long short-term memory to capture temporal dependencies, 
Random Forest to fine-tune the features, and Extreme Gradient Boosting to enhance the final 

predictions. The objective of the study is to build a model that can accurately predict air quality 

index numbers in real time for many cities in India. The proposed model LRX design influences the 
depth of each algorithm to enhance accuracy and generalization. The experimental results show the 

model's ability to predict the AQI forecast of various cities in India with a root mean square error of 

0.014 and R2 of 0.948, performing better compared to the models individually. To enhance this, a 
Stream lit-based user interface has been developed to enable real-time AQI predictions and 

visualization. The interface incorporates tabs for interactive inputs, model selection, graphical 

representation of predicted trends, ensuring accessibility and usability, and enhancing the practical 
applicability of the proposed model. This easy-to-navigate tool not only makes the prediction 

process more accessible but also helps bridge the gap between complex model results and practical 

environmental decision-making, enhancing the overall impact of the research. This research 
contributes to air quality prediction by presenting a robust modelling approach that can be applied 

in the real world. 
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1- Introduction 

Air pollution is one of the most significant global problems, having disastrous effects on both human health and 

general environmental balance. Air pollution poses a significant threat and environmental challenge to public health, the 

atmosphere, and ecology. With the increasing sizes of cities and more industrial production coming into existence, there 

is an increase in pollutants, which leads to poor-quality air. Pollutants and fine particulate matter (PM) that contribute to 

air pollution include nitrogen dioxide (NO₂ ), carbon monoxide (CO), carbon dioxide (CO₂ ), ozone (O₃ ), and sulphur 

dioxide (SO₂ ) [1, 2]. Air quality prediction involves various factors, intricately connected to atmospheric conditions 

and exhibiting time dependencies. The Air Quality Index (AQI) is a vital tool since it gives a clearly defined way of 

measuring how bad the air is daily. Precise and appropriate estimates of AQI can enable experts, scholars, and parties to 

take preemptive measures to alleviate the hazards associated with deprived air quality. 

The AQI could alert people to decide their daily activities, such as exercise, and help policymakers formulate laws 

and policies aimed at protecting the public. But achieving high accuracy in predicting AQI is not easy because air 
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pollution is a highly variable and multi-factorial phenomenon. Generally, pollution depends on the flow of vehicular 

emissions, industrial releases, weather, and other chemical processes in the atmosphere. Moreover, there are very sharp 

changes that can be caused by unusual weather conditions (inflection points) and significant variations in air pollution 

because air itself changes over location and time [3, 4]. All these work in synergy, limiting the predictability of impacts 

on air quality, something that traditional models cannot capture adequately. Conventional air quality examination 

depends on installed ground-based instrument systems that prepare precise but repeatedly faltered and spatially 

constrained data. With collective suburbanization and developed movement, there is an expanding pressure for real-

time, analytical, and spatially widespread air quality data. This has led to a rising importance of smart paradigms that 

merge ecological data cascades, machine learning systems, and sophisticated visualization methods. 

The studies show that poor air quality can hamper these health problems and lead to increased hospitalization and 

healthcare attendance. Maximizing the understanding of AQI is vital to facilitate the appropriate formulation of public 

health policies and interventions. Subramanian et al. [5] proposed an Auto Regressive Integrated Moving Average model 

for statistical data prediction, which was incorporated with LSTM using encoder-decoder architecture, Quantum Particle 

Swarm Optimization, and XGBoost. The model showed great expertise by maintaining low error rates and high 

determination coefficients, maintaining high predictability. The authors implemented a neuro-fuzzy (neural network + 

fuzzy logic) logic to represent AQI data, training both deep neural networks (DNN) and the Markov model separately. 

The input dataset was fed to DNN and then to Markov, resulting in better accuracy than individual models. Sarkar et al. 

[6] proved that the traditional methods of autoregressive integrated moving average (ARIMA) and support vector 

regression were not able to identify the data series from the air-polluted data. As such, two models, namely EMD-SVR-

Hybrid and EMD-IMFs-Hybrid, have been proposed to estimate the AQI.  

Figure 1 reveals "Hazardous" AQI levels across northern regions; the central and western regions, including parts of 

Maharashtra and Uttar Pradesh, display "Unhealthy" levels. In contrast, southern India and northeastern areas report 

relatively cleaner air with "Good" AQI. The map highlights India’s seasonal trend, where post-monsoon air quality dips 

drastically, particularly in northern areas, as pollutants get trapped near the surface. To address and overcome the 

challenges of enhancing the accuracy of the AQI predictions, this paper introduces a hybrid model called the LRX (which 

is derived from the combination of LSTM + RFR + XGBoost) model, which incorporates a combination of three machine 

learning methods. The outcome of this study can enhance decision-making in public health and urban planning to 

improve air quality standards and increase people's health in communities. 

 

Figure 1. AQI map of India 

2- Literature Survey 

The AQI, as mentioned, is crucial from the public health perspective and relates to respiratory and cardiovascular 

ailments. The presence of high AQI values, particularly particulate matter (PM2.5 & PM10), increases the rates of 

asthma, bronchitis, and other respiratory diseases. Sarkar et al. [6] have been conducted on the discussion below. The 

research work proposed combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models for 
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AQI prediction. The results showed that the proposed hybrid LSTM-GRU model outperforms other standalone machine 

learning models, achieving an MAE of 36.11 and an R² value of 0.84. The Random Forest Prediction algorithm [7] was 

employed in the study to predict carbon monoxide (CO) and nitrogen dioxide (NO₂ ) concentrations in the Amman-

Zarqa region of Jordan. The key influencing factors, such as relative humidity, wind direction, and land surface 

temperature, are included with MAE values ranging from 0.11 to 0.18 for CO and 3.78 to 7.30 for NO₂  models. A 

comparative analysis of deep learning algorithms [8] evaluated LSTM and achieved varying Root Mean Square (RME) 

for daily and hourly data, highlighting its potential, especially for hourly predictions. The performance of the Random 

Forest model was compared [9] with Support Vector Regression (SVR) and Artificial Neural Networks (ANN) for AQI 

prediction, and it proved that Random Forest showed high accuracy. 

The Grey Level Co-occurrence Matrix (GLCM) technique [10] was utilized for feature extraction in AQI prediction, 

optimized by the Moth Flame Optimization Algorithm (MFOA) and combined with SVR and LSTM for better predictive 

results. The LSTM model predicting AQI [11] used nine parameters in Shanghai to show high precision but faced 

overfitting due to sample imbalance, indicating that dataset choice impacts model performance. A comparison of SVR 

and Random Forest Regression (RFR) [12] revealed that RFR performed better, while SVR exhibited increasing time 

complexity with larger datasets, becoming impractical for extensive samples. The paper proposed a CNN-ILSTM model 

[13] for AQI prediction, outperforming traditional regression models. However, it struggled with extreme value 

predictions, highlighting a limitation in its applicability. A combination of grey wolf optimization and decision tree 

algorithms resulting [14] in high prediction accuracy (86%-98%) for AQI, emphasizing the importance of optimal feature 

selection, is proposed. Duan et al. [15] explored the ARIMA-DBO-CNN-LSTM model, showing potential in AQI 

prediction but facing issues with partial fitting, leading to re-averaging challenges. AQI prediction models using SVR, 

RFR, and Catboost Regression were tested in Indian cities [16], revealing a 6%-24% accuracy increase when applying 

the Synthetic Minority Oversampling Technique (SMOTE). The work highlighted conventional AQI prediction methods 

[17], recent advancements in deep learning applications, and future directions for the field's development and conducted 

[18] a general comparison of Random Forest, Linear Regression, and Naive Bayes, indicating that Random Forest 

achieved the highest accuracy, followed by Linear Regression. The potential of remotely sensed data for AQI prediction 

was explored [19], with single and multiple linear regression models demonstrating high predictability, which resulted 

in the multiple linear regression performing best. The work analyzed forecasting in Visakhapatnam using Random Forest 

and Catboost [20] and achieved high prediction accuracy, with minimal correlation differences in their performance. 

Farooq et al. [21] utilized quantum computers in conjunction with SVM for AQI prediction, achieving 97% accuracy 

with quantum SVM, indicating future potential for complex computations. Six machine learning models, including 

SVM, RF, and AdaBoost [22], were applied to predict AQI using data from Taiwan, revealing that stacking ensemble 

and AdaBoost outperformed traditional models. This paper proposed a comparative analysis of Seasonal Autoregressive 

Integrated Moving Average (SARIMA), SVM, and LSTM models [23] for AQI prediction using data collected from 

multiple air quality monitoring stations in Ahmedabad from January 2015 to January 2021. The authors also evaluated 

the models using performance metrics such as R2 Score, MSE, RMSE, and MAE. They showed that the SVM model 

with the RBF kernel outperforms other models in predicting AQI for Ahmedabad city. This model uses an LSTM layer 

to analyze Taiwan's AQI dataset and predict the concentrations of four key pollutants (PM2.5, PM10, O₃ , and NO₂ ) 

[24]. The study compared LSTM_ON to the existing XGB_NON model and found LSTM_ON to be more accurate. The 

research paper proposed a unique approach for predicting AQI using pollutant concentrations and meteorological data 

[25]. The researchers developed a three-module system that first predicts the concentration of eight key pollutants using 

ARIMA and ANN, then uses these values along with meteorological factors like wind speed and temperature to forecast 

the AQI. This system was tested against several variations of Support Vector Regression (SVR) models with different 

kernel functions and input parameters, resulting in improved accuracy of the predictions, with the linear kernel function 

performing best overall. 

A hybrid framework combined several machine learning techniques [26], utilizing wavelet decomposition for time 

series data and employing a BiLSTM model optimized with Particle Swarm Optimization, improving prediction 

accuracy. The Cuckoo Search algorithm optimized the LSTM model for AQI prediction [27], demonstrating improved 

accuracy over SVR, BP neural networks, and standard LSTM models. Daily air quality data analysis from Henan 

Province evaluated ten regression models [28] and highlighted RF and Gradient Boosting as superior in predictive 

accuracy and generalization. Gupta et al. [29], in their study of air quality trends in India, emphasized seasonal changes 

and the impact of the COVID-19 lockdown on AQI levels, with PM2.5 and PM10 showing the most significant effects. 

A Bidirectional LSTM (BiLSTM) [30] with an attention mechanism was proposed to enhance feature extraction for AQI 

prediction, resulting in improved accuracy compared to standard LSTM models. Though various studies and experiments 

have been carried out, the accurate prediction of the AQI value remains challenging. As such, in this paper, we propose 

the LRX model to improve the accuracy of prediction. 

3- Implementation of LRX (LSTM + RFR + XGB) Model 

This paper proposes a hybrid machine learning model for AQI forecasting to improve the accuracy and reliability of 

predictions. The model begins with collecting and preprocessing historical AQI data and other relevant features. The 

stages involved in the LRX model are (i) cleaning the data, (ii) encoding categorical variables, (iii) scaling the features 

to ensure consistency, and (iv) readiness for model training. 
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3-1- Air Quality Dataset 

The experiment is carried out in the city_day.Csv dataset. The dataset consists of 29,531 entries, each representing 

daily air quality data for various cities in India. The data consists of multiple pollutants and their concentrations, as well 

as calculated AQI values. The dataset is available at the link below: city_day.csv (kaggle.com). The specific features 

used in the dataset are PM2.5, PM10, NO, NO2, NH3, CO, SO2, O3, BENZENE and XYLENE, where AQI is the target. 

In the dataset no meteorological features such as temperature and humidity are included in the dataset, which restricts 

the proposed model range and generalizability. The sample raw dataset is shown in Table 1, while the different levels of 

AQI for the public are shown in Table 2. 

Table 1. AQI value and conforming ambient concentrations for the identified pollutants 

City Date PM 2.5 PM 10 NO NO2 NH3 CO SO2 O3 
BENZ 

ENE 

XYL 

ENE 
AQI 

AQI_ 

BUCKET 

AMD 1/1/15 73.24 141.6 0.92 18.22 23.48 0.92 27.64 133.36 0 0 166.46 Poor 

BLR 2/1/15 30.65 70.46 3.26 17.33 20.36 0.33 3.54 10.73 0.56 0 91 Moderate 

MAA 3/1/15 173.5 48.55 16.3 15.39 4.59 1.17 9.2 11.35 0.17 0 333 Poor 

DELHI 4/1/15 313.2 607.9 69.16 36.39 33.85 15.2 9.25 41.68 14.36 9.84 472 Severe 

HYD 5/1/15 47.03 93 3.7 17.19 24.94 0.3 2.58 30.34 0.41 1.11 120 moderate 

Table 2. AQI index value, rating and their health impacts 

AQI Rating Health impact 

0-50 GOOD It's a great time for outdoor activities! 

51-100 MODERATE You can go outside, but sensitive groups should take precautions. 

101-150 SATISFACTORY Low immune people should limit prolonged outdoor exertion. 

151-200 POOR Everyone should limit prolonged outdoor exertion. 

200-300 VERY POOR Avoid outdoor activities. 

More than 300 SEVERE Stay indoors and avoid all outdoor activities, use medical standard mask 

In Figure 2, the two images compare the summary statistics of the raw and pre-processed air quality data. Forward-

filling gaps were used to fill in the missing values in the raw data. The overall structure of the dataset appears stable 

post-preprocessing, with no major changes in statistical properties such as means, standard deviations, and quartile 

ranges. This suggests that the pre-processing has not dramatically altered the underlying distribution of the data. 

  

Figure 2. Summary statistics of raw and processed data 

3-2- Pre-Processing 

Label encoding converts non-numeric variables, like city names, into numerical values, as shown in Equations 1 and 

2. The gaps present in the data are pre-processed through the forward-fill (𝑓𝑓𝑖𝑙𝑙()) technique to ensure the dataset has 

no gaps present, as shown in Equations 3 and 4. 

𝑙𝑎𝑏𝑒𝑛𝑐𝑜𝑑 = 𝐿𝑎𝑏𝐸𝑛𝑐𝑜𝑑()  (1) 

𝑑𝑎𝑡𝑎𝑐𝑖𝑡𝑦𝑒𝑛𝑐𝑜𝑑 =  𝑙𝑎𝑏𝑒𝑛𝑐𝑜𝑑 . 𝑓𝑖𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑑𝑎𝑡𝑎𝑐𝑖𝑡𝑦)  (2) 

https://www.kaggle.com/datasets/hirenvora/city-daycsv
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Let the dataset, d = {x1, x2,…,xn} where some of the values xi may be missing (𝑁𝑎𝑁). 

𝑋𝑖 = {
𝑥𝑖−1, 𝑋𝑖 = 𝑁𝑎𝑁

𝑥𝑖 , 𝑋𝑖 ≠ 𝑁𝑎𝑛
  (3) 

𝑖𝑛𝑝𝑑𝑎𝑡𝑎 = 𝑖𝑛𝑝𝑑𝑎𝑡𝑎 . 𝑓𝑓𝑖𝑙𝑙()  (4) 

The MinMaxScaler technique is used to normalize the data, rescaling the feature values between 0 and 1 for the 

scaling process. This technique enhances LRX performance by ensuring all features are on a similar scale, especially 

when working with multiple machine learning models. By minimizing the scale difference, as shown in Equations 5 to 

7 these models can better learn the underlying patterns. 

Let 𝑥 be the feature value, xmin be the minimum value of the feature, and xmax be the maximum value of the feature. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
(𝑋−𝑋𝑚𝑖𝑛)

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (5) 

𝑠𝑐𝑎𝑙𝑒𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  𝑀𝑖𝑛𝑀𝑎𝑥𝑠𝑐𝑎𝑙𝑒𝑟()  (6) 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑠𝑐𝑎𝑙𝑒𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒 . 𝑓𝑖𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥)  (7) 

The advantage of using this approach is that it eliminates noisy data from the raw data while maintaining data 

consistency, ensuring that LRX receives pre-processed and normalized data input, which benefits its prediction accuracy. 

Table 3 shows the dataset after being pre-processed to get its features extracted and fed into the LRX model. 

Table 3. Dataset after preprocessing 

City Date PM2.5 PM10 NO NO2 NH3 CO SO2 O3 
BENZ 

ENE 

XYL 

ENE 
AQI 

CITY_ 

ENCODE 

AMD 1/1/15 73.24 141.6 0.92 18.22 23.48 0.92 27.64 133.36 0 0 166.46 0 

BLR 2/1/15 30.65 70.46 3.26 17.33 20.36 0.33 3.54 10.73 0.56 0 91 1 

MAA 3/1/15 173.5 48.55 16.3 15.39 4.59 1.17 9.2 11.35 0.17 0 333 2 

DELHI 4/1/15 313.2 607.9 69.16 36.39 33.85 15.2 9.25 41.68 14.36 9.84 472 3 

HYD 5/1/15 47.03 93 3.7 17.19 24.94 0.3 2.58 30.34 0.41 1.11 120 4 

3-3- Model Execution 

The execution of LRX occurs in three stages (LSTM→RFR→XGB). Each stage has a specific role in improving the 

overall accuracy and predictability. 

3-3-1- LSTM 

LSTM is the first model in the LRX pipeline. As a recurrent neural network (RNN), LSTM excels at capturing long-

term dependencies in the data. LSTM is configured with 100 hidden units (hidunits), 4 classes (Numclass), 1 input (trsize), 

and trained for 10 epochs (epsize) with a batch size (bhsize) of 32. The LSTM captures temporal patterns by analyzing 

historical AQI data and predicting future values based on past trends. 

3-3-2- Random Forest 

After LSTM generates the initial predictions, the output is fed into RFR. In general, RFR is an ensemble learning 

method that uses multiple decision trees to improve prediction accuracy. Each tree is trained on a different subset of 

data, and their results are averaged to increase generalizability and prevent overfitting. The model uses 100 trees to refine 

the LSTM predictions. The RFR ensures that tabular data is processed and enhances the interpretability of the results by 

handling non-linear relations between features. 

3-3-3- XGB 

The final step involves training XGB on the output of RFR. XGB is a gradient boosting algorithm known for its 

performance and speed. It optimizes the predictions by applying boosting techniques to reduce errors iteratively. XGB 

is configured with a learning rate 0.1 and a maximum depth of 6 for each tree. XGB refines the predictions further, 

accounting for any patterns overlooked by LSTM and RFR. 

3-4- Creation of the Streamlit user Interface: 

A web-based interface was developed using Streamlit to enhance accessibility and interaction with the hybrid LRX 

model for AQI prediction. This interface allows users to input relevant data, execute the model, and view the prediction 
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results clearly and intuitively, as shown in Figure 3. The design focused on providing both functionality and 

customization, ensuring the application is user-friendly for individuals with varying levels of technical expertise. 

  

 

 

Figure 3. Streamlit user interface tabs for AQI prediction 

 Page Configuration 

The UI was designed to enhance user experience along with tabs to enhance navigation through the many input and 

output parts, improving the interface's usability. 

 Dark and Light Theming 

The interface allows users to toggle between dark and light modes, catering to user preferences. This toggle was 

implemented to improve user comfort. At the same time, the dark mode is used to save battery and is easy on the eyes, 

and while used in the dark, the light mode provides a bright contrast, which makes it easy to see the screen under bright 

environments or while using outside. 

 User Interactivity and Input Handling 

The interface allows users to choose the data (city) for AQI prediction, which the LRX model processes. The results 

are presented in the interface, enabling immediate feedback. The interface also ensures that users can modify inputs and 

view updated predictions without needing to refresh or restart the application. 

 Display of AQI Predictions and Visualizations 

The results of the AQI predictions are presented in graphical formats, providing an understanding of the prediction 

trends over time or across various locations. Additionally, performance metrics, such as R-squared and RMSE values, 

offer insights into the model's accuracy and reliability. 

The flowchart in Figure 4 provides a clear and concise visual representation of the application's structure and features, 

making it easy to understand how the system operates. It helps outline the functionalities such as loading the data, 

building the model, predicting AQI, comparing cities, and analyzing trends, giving the users a roadmap of how to interact 

with the interface. This helps navigate and ensure users know where to go for specific tasks such as predicting AQI or 

comparing cities. The architecture diagram shown in Figure 5 provides a high-level overview of an AQI prediction 

system, illustrating the end-to-end workflow. It shows how data is collected from a database, pre-processed, and then 

input into LRX model that collectively uses models like LSTM, Random Forest, and XGBoost for training and 

prediction. The prediction module processes incoming data to forecast the city's AQI, which is then deployed via 

Streamlit for user interaction through a web interface. Ensuring a seamless integration from data input to real-time AQI 

prediction and user access. Algorithm LRX mode explains the functionality of the model. 
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Figure 4. General flow of working project 

 

Figure 5. Architecture diagram of hybrid AQI prediction model 
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3-5- Algorithm 1: LRX Model (Combining LSTM + Random Forest + XGBoost Appraoches) 

1. Input: processed data Sidata 

2. Output: final predictions Pidata 

3. Initialise LSTM 

4. Initialise Trfea, trsize = 1, hidunits = 100, Numclass = 4, epsize = 10, bhsize = 32, lstmlabel 

5. Train label = 80%, Test label = 20% 

6. Initialize the LSTM layers lstmlayers 

7. Initialize LSTM training options lstmoptions 

8. Train LSTM 

9. Label = unique(label) 

10. For xx= 1 : leng(Label): 

Class = find(label == Label(xx)) 

Convert lstmlabel = cat(lstmlabel) 

Net = trainNet(Trfea,lstmlabel,lstmoptions) 

Traincut = length(class) – traincut 

Traindata = [traindata; trainfea; class(1:Traincut)] 

#Predict LSTM 

       11. PredictLSTM = classify(Net, Traindata, bhsize) 

#Initialize RFR with trees  

       12. Ntrees = 100 

#Train RFR on LSTM output  

       13. Tforest = train(RF,PredictLSTM) 

#Predict RFR 

       14. PredictRF = RF.predict(Tforest) 

#Initialize XGB with learning rate lr = 0.1, max depth d = 6 

#Train XGB on RFR 

       15. TXGB = train(XGB,PredictRF) 

#Predict XGB 

       16. PredictXGB = XGB.predict(TXGB) 

#Final prediction 

       17. Pdata = PredictXGB 

The processed data are fed as input in line 1 and the expected final output of the algorithm is mentioned in line 2. The 

LSTM is initialized in line 3. To make predictions, the LRX algorithm combines the strengths of LSTM, RFR, and XGB 

and the first, parameters of the LSTM are initialized in line 4, i.e., number of training features (Trfea), number of hidden 

units (hidunits), number of classes (Numclass), batch size (bhsize), and number of epochs (epsize). The data is then 

divided into a training set and a testing set with 80% and 20% samples respectively in line 5 to ensure that there is a 

sufficient amount of data for training as well as validating the model. The two LSTM layers are initialized in lines 6 & 

7 and three training options are configured in them. 

The rigorous training of the LSTM model is done on the training data and special class labels (Label) from lines 8 to 

10, ensure that it is able to learn the temporal dependencies in the data. A LSTM network is created by the trainNet 

function and a specific number of features (Trfea) are combined with their corresponding class labels (lstmlabel). The 

output of the LSTM network is used by the classify function in line 11 to assign labels to the test data (Traindata). The 

RFR model is initialized on line 12 with a hundred decision trees. Line 13 trains the RFR model on the LSTM predictions. 

This model is an ensemble-based model that uses at least two non-linear relationships in the data to improve its stability 

and the highly accurate predict function of the Random Forest model generates predictions from the RFR in line 14. 

The output of the RFR model is passed to the XGBoost (XGB) model, which is initialized in line 15 with 

hyperparameters such as a learning rate (lr = 0.1) and a maximum depth (d = 6). The XGB model is trained on the RFR 

predictions using gradient boosting, which fine-tunes the predictions and reduces errors. Final predictions are obtained 

in line 16, where the predict function of XGBoost generates the results. In line 17, these final predictions (Pdata) 

represent the ensemble output of the hybrid LRX model. This step-by-step approach enables the LRX model to harness 

the temporal analysis capability of LSTM, the non-linear modeling strength of RFR, and the fine-tuning power of 

XGBoost, providing an effective and scalable solution for predictive tasks. 

4- Results and Experiments 

4-1- Analysis of Dataset 

In Figure 6, the heatmap reveals the correlation between various air pollutants. To examine the interrelation among 

various air contaminants, a correlation heatmap was generated by Pearson correlation co-efficient. Figure 6 depicted the 

intensity and paths of linear correlation amongst the eleven contaminants: PM2.5, PM10, NO, NO2, NOx, NH3, CO, 

SO2, O3, BENZENE and XYLENE. Pollutants such as NO & NO2 with r = 0.46 and NO & NOx with r=0.75 has a 

strong positive correlation due to the strong substance response of all three component NO, NO2 and NOx. Also, the 

reaction between NO2 and NOx with r=0.57 indicate a good correlation. When few components such as PM 2.5 & PM10 

with r=0.56 and NH3&NO2 with r= 0.35 are correlated, it results in a moderate correlation. Two pollutants SO2 and 

Benzene with r=0.02 results in low correlation as per the heatmap generated. High positive correlations (closer to 1, in 

dark red) indicate pollutants that increase or decrease together and strong negative correlations (closer to -1, in dark 
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blue) indicate pollutants that move in opposite directions. This suggests some pollutants behave similarly under specific 

environmental conditions, which might hint at their common sources or atmospheric interactions. The pollutants showing 

high correlations can be further investigated to determine if they arise from similar sources or environmental processes. 

This helps in designing targeted interventions to reduce specific types of pollution. 

 

Figure 6. Heatmap of pollutants correlations 

The time series plot in Figure 7 shows the fluctuations of different pollutants from January to April 2020. It depicts 

the time-series image of the intensity readings of various 12 atmosphere contaminants specifically for PM2.5, PM10, 

NO, NO2, NOx, NH3, CO, SO2, O3, TOLUENE, BENZENE and XYLENE. The graph is plotted with days’ timelines 

in the x-axis and range of intensity values varying from 0 to 100. Each contaminant is embodied by a highlighted line, 

lead to substantially dense and intersecting form because of the occurrence and inconsistency of the data. The pattern 

formed shows that contaminants were captured on a regular basis either daily or weekly, indicating variations in 

concentrations over time because of various factors such as meteorological conditions, transportation or industrial 

happenings. Though the graph portrays the dynamics of the contaminants in a certain period no clear cyclical or seasonal 

pattern exists, but all pollutants exhibit much variability across the time frame. This could suggest varying environmental 

or anthropogenic influences during this period, leading to irregular peaks and troughs in pollutant concentrations. No 

distinct seasonal trends are immediately visible, indicating the need for more granular analysis (e.g., looking at specific 

meteorological data) to identify the drivers behind these fluctuations and reduce them to improve AQI. 

 

Figure 7. Pollutants graph over time 
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The plot shown in Figure 8 compares the pollutant distributions before and after pre-processing using a log scale for 

concentration. Using logarithmic range on the x-axis and density on the y-axis, the graph has compared original dataset 

and the pre-processed dataset. The solid lines correspond to the original dataset, while the dashed lines represent the pre-

processed dataset. For most pollutants (e.g., PM2.5, PM10, NOx, Benzene, CO, SO2, O3), the solid and dashed lines are 

quite close, indicating that pre-processing has preserved the core distributions of the data. There is a slight difference at 

lower concentrations in pollutants like PM2.5, NOx, and Xylene. The distribution of the original dataset regularly 

appears crooked or uneven spreading with hard points or extended lines representing the incidence of outliers. Pre-

processed dataset seems to have smoothed or broadened some peaks compared to the original dataset. For NH3 and CO, 

the original dataset shows sharp spikes that are less pronounced in pre-processed dataset. Pre-processing may have 

reduced some of these spikes, possibly by handling outliers or filling missing data, which makes the distribution of pre-

processed dataset more uniform. 

 

Figure 8. Pollution concentration distribution variability 

The density plot in Figure 9 compares the Air Quality Index (AQI) distribution for raw and pre-processed data. The 

x-axis embodies the AQI values and the y-axis indicates the pollution density distribution variability, which replicates 

how regularly values hit in the data. Both raw data and pre-processed data are skewed on the right, yet the pre-processed 

data is less spread out and appears smoother, so it has fewer noisy values. The pre-processed data shows a smoother 

distribution with fewer outliers, suggesting that the pre-processing removed noise or extreme values. Both distributions 

indicate a high concentration of AQI values, implying that most of the recorded air quality is within the "good" or 

"moderate" range. There are some instances of poor air quality (higher AQI), but they appear less frequent after pre-

processing. The pre-processed AQI data reduces noise and gives a clearer picture of air quality trends, which is important 

for model prediction. 

 

Figure 9. Distribution of AQI 
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In summary, pre-processing has preserved the fundamental characteristics of the dataset while making slight 

adjustments that improve data consistency and reduce the impact of outliers or missing data, making the dataset more 

suitable for analysis and model training.  

4-2-Performance Metrics 

The metrics used in our research work are R2 and RMSE. 

R2 measures how well the regression model aligns with the observed data. A higher R2 value indicates a strong model 

fit, as shown by Equation 8. 

𝑅2 =
𝑆𝑟𝑒𝑔

𝑆𝑡𝑙
  (8) 

The sum of squares due to regression, represented as Sreg (explained sum of squares), indicates how well the regression 

model fits the data. The total sum of squares (Stl) reflects the overall variation in the observed data used in the regression 

model. Sreg measures the model’s explanatory power, while Stl captures the total variability in the data. 

RMSE reflects how closely the data clusters around the line of best fit shown by Equation 9. 

𝑅𝑀𝑆𝐸 =  √∑
(𝑌𝑖−𝑌𝑖

′)2

𝑛

𝑛
𝑖=1   (9) 

where Yi is the observed value, Yi
’ is the corresponding predicted value, and n is the number of observations used. 

4-2- Models Performance 

The hybrid LRX model implemented to predict AQI values has achieved an impressive performance, with an R2 of 

0.948 and a Root Mean Squared Error (RMSE) of 0.014 as shown in Figure 10. The high coefficient of determination 

R2 of 0.948 indicates that the hybrid model explains 94.8% of the variance in the AQI data, which suggests that the 

model has successfully captured the underlying relationships in the data. The low RMSE of 0.014 shows that the error 

in predicting AQI values is minimal, demonstrating the LRX’s precision in AQI forecasting, bolstering the viability of 

hybrid approaches in addressing multi-faceted environmental problems, like AQI forecasting.  

 

Figure 10. Performance metrics 

This figure also highlights the efficiency of the training process for the hybrid model, as it successfully integrates the 

temporal dependencies captured by LSTM with the robustness of Random Forest and the fine-tuning capabilities of 

XGBoost. By combining these complementary strengths, the hybrid LRX model effectively overcomes the limitations 

of standalone approaches. Figure 10 is a testament to the practicality of leveraging hybrid methodologies in addressing 

multi-dimensional environmental challenges, such as air quality management and prediction. The results validate the 

LRX model as a promising tool for real-world applications where accurate AQI forecasting is critical for policymaking 

and public health. 

The hybrid approach takes advantage of the strengths of all three models (LSTM, RFR, and XGBoost). The proposed 

LRX model is compared with three individual models: LSTM, RF, and XGBoost. When the data is fed into all four 

models, the results achieved are shown in Table 4. As per the results achieved, the LSTM scored the least R2. The three 

remaining models, RF, XGBoost, and LRX, achieved almost similar R² values; however, the proposed LRX model is 

likely to score the highest R² of 0.948. Regarding the RMSE value, it should be lesser for the model to perform better. 

As per Table 4, LSTM has the highest RMSE value, and the proposed model LRX has the least RMSE value compared 

to the other models. By comparing the performances of R2 and RMSE, the proposed model LRX is efficient compared 

to the other individual models. The Streamlit interface is structured to facilitate a seamless experience when comparing 

model performances. Dedicated tabs highlight detailed metrics for each model, including a side-by-side visualization of 

R² and RMSE scores in interactive charts. A custom feature enables users to upload their datasets and visualize predicted 

AQI trends across selected time intervals, emphasizing the strengths of the LRX model. Unlike traditional static result 

presentations, this interactive approach empowers users to dynamically validate the model's efficiency. Beyond its 

impressive R² of 0.948 and low RMSE of 0.014, the hybrid LRX model exhibits several distinct advantages that enhance 

its performance and applicability in AQI forecasting. 
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Table 4. Model performances 

Model R2 RMSE 

LSTM 0.873 0.021 

Random Forest 0.946 0.016 

XGBoost 0.943 0.014 

LRX (proposed) 0.948 0.014 

The LRX model's accuracy and real-time interactivity enable timely and data-driven decision-making. 

Environmental managers or policymakers can rely on these predictions to take proactive measures to improve air 

quality, ensuring better public health outcomes by preventing harmful AQI levels before they occur. Unlike 

standalone models that might overfit or underperform when exposed to new data, the hybrid approach improves 

generalization. The LRX model better adapts to different environmental conditions and datasets by combining 

multiple learning strategies, making it more reliable across diverse scenarios. The significant reduction in RMSE 

indicates that the LRX model's predictions are far more precise than individual models. This ensures that forecasted 

AQI values closely align with real-world data, offering high accuracy and reducing the margin of error in important 

environmental predictions, such as air quality management. 

Integrating multiple models within the hybrid structure makes the LRX system highly scalable. As AQI datasets grow 

or new data sources are incorporated (e.g., additional environmental factors), the model can be retrained or updated 

without losing performance. Its flexibility in handling varied data types (e.g., time-series, categorical) ensures 

applicability in a wide range of forecasting tasks. The user-friendly Streamlit interface enhances accessibility by allowing 

users to upload their datasets, visualize predictions, and explore performance metrics interactively. The real-time 

visualization allows users to test and validate the model’s efficiency dynamically, providing an intuitive and informative 

user experience that traditional methods of static result presentation lack. The interactivity enables stakeholders to make 

better decisions based on the model's outputs, promoting trust in the model’s predictive capabilities. 

4-3-SHAP -Built Interpretability and the Model Valuation 

Even though the suggested hybrid model is intricate, its results remain easy to interpret because of SHAP (Shapley 

additive explanations). To explain an individual prediction, SHAP created a waterfall plot, and to show how all features 

contribute, SHAP used beeswarm, summary, and feature importance plots. Figure 11 makes it very clear which 

characteristics influence the predicted AQI. The level of clear information from this data makes it easy for decision-

makers to understand the importance of different factors impacting pollution in policymaking. Figure 11 comprises 4 

graphs depicting (a) Actual vs. Predicted AQI, (b) SHAP summary plot, (c) Feature Importance, and (d) SHAP waterfall 

model. Figure 11-a shows that the predicted AQI values are very close to the real ones, reflected in R² = 0.9588, and 

shows the gaps between the values that are expected and the values that are measured. Also, the residues are almost near 

to zero, indicating that the proposed model is not inclined, and thus the proposed model can be applied to the new dataset 

also. Figure 11-b shows how each feature affects the way the model makes predictions, and the values in 

AQI_Bucket_encoded, PM2.5, and CO tend to have the most impact on what the prediction model says about AQI. 

Figure 11-c depicts the bar chart that emphasizes the significance of the feature centered on the SHAP importance scale. 

Figure 11-d depicts the SHAP waterfall plot that demonstrates what different variables played in the prediction that the 

AQI reached a value of 1454.97. The baseline (average log-AQI) is used to predict, and most of the increase is driven 

by Feature 13 and Feature 6, which impact it the most positively. Certain features contribute less, but nonetheless}, a 

small number have very weak negative impacts. It clearly shows what leads to high AQI, which helps make focused 

decisions on environmental protection activities. Collectively, Figure 11 indicates that the proposed model has both a 

high accuracy (R²) and is understandable through SHAP values. The top three pollutants, PM2.5, CO, and PM10, 

combined with the location and the AQI categories, are shown to be the most significant factors in determining AQI—

giving useful advice for making data-based AQI policies. 

Figure 12 shows a comparison of the performance metrics of the individual models versus the LRX model. The graph 

clearly shows the LRX model achieving the highest R² and lowest RMSE, outperforming all standalone models tested. 

The orange line in Figure 12 tracks the coefficient of determination (R²) for each model. It rises steadily from LSTM 

(0.873) to random forest (0.946), then remains constant for XGBoost (0.943) before reaching its peak with the hybrid 

LRX model (0.948). The upward trend demonstrates how the hybrid model improves upon the variance explanation 

capabilities of standalone models. Likewise, the blue line represents the RMSE for each model. The values start higher 

for LSTM (0.021) and drop progressively for Random Forest (0.016) and XGBoost (0.014), with the hybrid model 

maintaining the same minimal RMSE as XGBoost (0.014). The declining trend reflects the reduction in prediction errors 

as we move to more advanced or hybrid techniques. The lines illustrate the complementary strengths of the hybrid 

approach, thus demonstrating its robustness and efficiency. 
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(a) Actual Vs Predicted 

  

(b) SHAP summary plot (c) Feature Importance 

 

(d) SHAP Waterfall model 

Figure 11. Model Evaluation using SHAP 
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Figure 12. Performance comparison graph 

The integration of LSTM’s strength in temporal sequence learning, Random Forest’s robustness in handling non-

linear relationships, and XGBoost’s ability to fine-tune and enhance prediction have enabled the LRX model to leverage 

the best of all three algorithms. This synergy highlights the importance of adopting hybrid approaches that work in sync 

to achieve Great results in predictive modelling 

The analysis of future AQI trends, depicted in Figure 13, provides valuable insights into air quality patterns across 

six major cities, Bengaluru, Chennai, Chandigarh, Delhi, Lucknow, and Mumbai, over the forecasted years 2024 to 2029. 

The graph highlights variations in AQI trends among these cities, underscoring the importance of localized interventions 

in air quality management. Delhi and Lucknow emerge as significant concerns, with high AQI values throughout the 

observation period. Despite this, an encouraging downward trend by 2029 indicates potential improvements, likely due 

to the implementation of air quality control measures. Bengaluru and Chennai consistently exhibit better air quality, as 

shown by lower AQI values and a steady decline over the years. This trend reflects the effectiveness of existing measures 

and a potentially cleaner environment in these regions. The general declining trend of AQI in most cities toward 2029 

may suggest implementing effective air quality control measures. However, the persistent challenges in cities like Delhi 

necessitate a more focused and aggressive approach, including stricter regulations, enhanced monitoring, and innovative 

solutions to address local and regional pollution sources. Such efforts are critical to achieving sustainable improvements 

in air quality for heavily polluted urban centres. 

 

Figure 13. Future AQI predictions 
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The key findings from this study are as follows: 

Hybrid Modelling: The LRX model proposed in this study can combine the strengths of LSTM, RFR, and XGBoost, 

allowing it to perform better in terms of prediction accuracy and prediction error than any of these models separately. 

This is good because it allows the LRX model to overcome limitations related to temporal constraints and feature 

selection, which enhances the accuracy of the AQI forecasting models. 

Performance Superiority: Performance metrics such as R² and RMSE showcase the superiority of the LRX model 

over each of the models on its own. In this case, even though LSTM achieves an R² of 0.873 and RMSE stands at 0.021, 

the hybrid model does much better on both statistics, significantly illustrating its usability on difficult tasks such as 

forecasting AQI values. 

Scalability and Practical Application: The LRX model’s low error rates and high accuracy suggest its practical 

applicability in real-world air quality monitoring systems. This research demonstrates the potential of hybrid machine 

learning approaches to provide actionable insights into urban air quality management. The results presented in this paper 

contribute to the growing field of air quality modelling by demonstrating the effectiveness of hybrid techniques.  

5- Conclusion 

This paper proposes a hybrid AQI prediction model based on the LRX approach, which combines LSTM, Random 

Forest Regressor (RFR), and XGBoost. Compared to standalone models, the LRX model has shown great promise in 

predicting AQI values. The hybrid approach exploits the strengths of each component; as a result, the LRX model 

achieves an R² of 0.948 and an RMSE of 0.014, exceeding its standalone counterparts. Furthermore, the comparative 

analysis of standalone models LSTM, RFR, and XGBoost reinforces the hybrid model’s superiority, as evidenced by its 

ability to achieve higher accuracy and lower error rates. This highlights the LRX model's robustness in capturing 

complex temporal patterns and non-linear relationships, demonstrating its adaptability to real-world AQI prediction 

scenarios. The hybrid approach mitigates the limitations of individual techniques, maximizing predictive accuracy by 

combining the temporal pattern recognition of LSTM, the stability of RFR, and the fine-tuning capability of XGBoost. 

This suggests that the LRX model is effective in AQI forecasting and could be further enhanced by incorporating 

additional features such as meteorological data. Future research could focus on refining the model's scalability for real-

time prediction, making it more applicable for continuous monitoring and actionable air quality management strategies. 

In addition to the predictive model, a Streamlit-based interface was implemented to provide a user-friendly platform for 

exploring AQI trends and making predictions. The interface enables real-time interaction, visualization of data trends, 

and accessibility for non-technical users, ensuring the model's applicability in practical urban planning and public health 

scenarios. This integration bridges the gap between advanced predictive techniques and real-world usability. Despite 

promising results, limitations must be acknowledged, and future research is proposed to enhance the LRX model further. 

A drawback of the LSTM model is that it relies on a large amount of historical data for training. The LRX model is 

computationally demanding since it integrates three different machine learning approaches. Further research should 

concentrate on enhancing LRX for operating under limited resources or finding lighter alternatives that can attain 

performance and computational efficiency close to LRX. 
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