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Abstract 

This study aims to optimize blockchain consensus mechanisms by integrating artificial intelligence 
techniques to address critical limitations in latency, scalability, computational efficiency, and 

security inherent in traditional protocols, such as PoW, PoS, and PBFT. The proposed model 

combines deep neural networks (DNNs) for feature extraction with deep reinforcement learning 
(DRL), specifically Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), to enable 

dynamic validator selection and real-time adjustment of consensus difficulty. The training process 

utilizes a hybrid dataset of historical blockchain records from Ethereum and Hyperledger networks 
and synthetic data from simulated attack scenarios involving Sybil, 51%, and DoS threats. 

Experimental evaluations were conducted in private and permitted environments under varying 

transactional loads. Results show a 60% reduction in confirmation latency compared to PoW, 
achieving 320 ms, and a 20% improvement over PBFT. Transaction throughput increased to 22,000 

transactions per second (TPS), and computational resource consumption was reduced by 30%. The 

model achieved an attack tolerance of up to 92%, significantly enhancing network resilience. The 
novelty of this work lies in its autonomous consensus optimization strategy, which enables adaptive 

and secure protocol behaviour without manual intervention, representing a scalable and efficient 

solution for future blockchain infrastructures. 
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1- Introduction 

Blockchain technology has emerged as a foundational infrastructure for decentralized and secure data management, 

enabling transparent, immutable, and trustless transactions across distributed systems [1]. This paradigm has transformed 

sectors such as finance, healthcare, and critical infrastructure, providing tamper-resistant environments for digital 

interaction [2]. At the heart of any blockchain system lies the consensus mechanism, which is responsible for validating 

transactions and ensuring integrity in the absence of a central authority. 

Traditional consensus protocols—such as Proof of Work (PoW), Proof of Stake (PoS), and Practical Byzantine Fault 

Tolerance (PBFT) have facilitated the success of early blockchain applications but now face significant scalability and 

efficiency bottlenecks. Proof-of-Work (PoW), employed in Bitcoin and similar platforms, offers strong security 

guarantees through computational difficulty but exhibits low transaction throughput and excessive energy consumption, 

with confirmation times frequently exceeding 1,200 ms [3]. These characteristics severely limit their applicability in 

high-frequency transaction environments. Proof of Stake (PoS) and its variants, including Delegated Proof of Stake 

(DPoS), address some of these limitations by replacing energy-intensive mining with stake-based validation. However, 

these approaches introduce new risks, such as validator centralization, Sybil attacks, and the Nothing-at-Stake problem 
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[4, 5]. PBFT, commonly used in permissioned blockchains, offers lower latency, approximately 400 ms, and resilience 

to a subset of adversarial conditions. Still, its scalability is limited due to the quadratic message complexity between 

validator nodes [6]. To address these challenges, the research community has explored enhancements to consensus 

mechanisms through optimization and the application of artificial intelligence. Heuristic approaches, such as genetic 

algorithms, particle swarm optimization, and snake optimization, have been proposed to reduce block confirmation times 

and improve validator scheduling under constrained conditions [7, 8]. Although promising, these strategies typically rely 

on static assumptions and rule-based adaptations, which limit their responsiveness to dynamic network behavior or 

evolving threats. 

Machine learning, more recently deep learning, has opened new avenues for performance-aware consensus 

management. Deep neural networks (DNNs) have been utilized to predict congestion trends in blockchain networks, 

enabling more informed transaction propagation and block generation strategies [9, 10]. However, DNNs alone do not 

interact directly with the consensus decision process, limiting their ability to reconfigure validator behavior or adjust 

protocol difficulty adaptively. Furthermore, their reliance on labeled data and static prediction limits robustness in 

adversarial or unstructured environments. 

More advanced strategies have turned to deep reinforcement learning (DRL), which enables agents to learn optimal 

decision policies in complex environments via feedback-based interactions. Models such as Deep Q-Networks (DQN) 

and Proximal Policy Optimization (PPO) have been applied in blockchain scenarios to optimize block propagation, 

detect anomalies, or automate validator selection under uncertainty [11, 12].  

The paper is organized as follows. Section 2 presents the literature review, where previous approaches in blockchain 

consensus optimization and their limitations are discussed. Section 3 describes the methodology, including the 

architecture of the AI model, the data used, and the evaluation protocols. Section 4 presents the results obtained, 

comparing the performance of the proposed model with other consensus mechanisms. Section 5 presents a discussion of 

the findings, analyzing their impact on the efficiency and security of the network. Finally, Section 6 concludes the paper 

and proposes directions for future research. Nevertheless, most DRL-based approaches have been constrained to 

simulation environments and rarely integrated into real or emulated blockchain testnets for experimental validation. 

These models often focus on isolated tasks, such as DoS mitigation or peer reputation modeling, without delivering full-

stack consensus optimization. 

The proposed model is trained on a hybrid dataset comprising historical blockchain data (Ethereum, Hyperledger 

Fabric) and synthetic logs derived from adversarial scenarios to ensure robust evaluation. It is deployed and tested in 

controlled environments using tools such as Hyperledger Caliper and Ganache, allowing for reproducible 

experimentation under variable load and attack conditions [13, 14]. Results demonstrate significant improvements: 

confirmation latency is reduced to 320 ms (a 60% improvement over PoW), maximum throughput reaches 22,000 TPS, 

and attack tolerance rises to 92%, surpassing traditional and hybrid consensus approaches [15]. 

Our contribution is bridging the gap between passive analytics and active decision-making in blockchain consensus. 

While previous models have either predicted system states or proposed static optimizations, our solution introduces an 

intelligent and autonomous control loop that actively governs real-time validator behavior and protocol configuration. 

This approach directly impacts high-demand blockchain applications, such as decentralized finance (DeFi), supply chain 

traceability, and mission-critical Internet of Things (IoT) networks, where performance, resilience, and efficiency must 

be optimized simultaneously. 

This study addresses the current limitations by proposing a hybrid artificial intelligence model that combines DNNs 

for network state representation with deep reinforcement learning (DRL) techniques for adaptive consensus 

optimization. The model is designed to operate within live blockchain environments and offers three primary 

innovations. First, it enables dynamic validator selection based on reliability, energy efficiency, and historical behavior 

metrics, thereby overcoming the static assignment problem in PoW and PoS protocols. Second, it adjusts consensus 

difficulty in real-time according to transactional load and network topology conditions, improving responsiveness to 

congestion and minimizing latency. Third, it incorporates a security-aware feedback mechanism that identifies and 

responds to Sybil, 51%, and DoS attack patterns using anomaly detection techniques integrated into the reinforcement 

learning loop. 

2- Literature Review 

The optimization of blockchain consensus mechanisms has garnered substantial research attention in recent years, 

particularly due to increasing demands for scalability, energy efficiency, and resilience to attacks. As the introduction 

highlights, traditional protocols, such as PoW, PoS, and PBFT, face well-documented throughput, latency, and 

decentralization constraints. Consequently, various lines of research have attempted to overcome these limitations 

through algorithmic enhancements and intelligent systems integration. This section categorizes and critically analyzes 

the most representative approaches into four main groups: heuristic optimization models, deep neural network-based 

predictors, deep reinforcement learning strategies, and hybrid consensus mechanisms. 
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2-1- Heuristic-Based Optimization Models 

Early attempts to enhance consensus efficiency relied on nature-inspired metaheuristics to reduce validation time and 

optimize resource allocation without fundamentally altering the protocol, for example, Taher et al. [12] proposed the 

Snake Optimization Algorithm to improve blockchain scalability by dynamically adjusting validator roles. Similarly, 

Nourmohammadi & Zhang [13] employed Particle Swarm Optimization to mitigate blockchain forks in governance 

processes. 

While these methods demonstrate improvements in specific metrics, such as block confirmation time or validator 

throughput, they generally depend on pre-established rules and static system assumptions. This limits their effectiveness 

in dynamic environments, where transaction load and adversarial behavior evolve. Moreover, heuristic solutions often 

lack real-time adaptability, which is essential in mission-critical applications like IoT or DeFi networks. 

2-2- Predictive Models Using Deep Neural Networks 

With the rise of deep learning, several researchers have explored DNNs to forecast system-level behavior. Models 

such as those proposed by Nourmohammadi & Zhang [13] and Paidipati et al. [14] utilized DNNs to predict transaction 

congestion and model network anomalies. These approaches provide insight into latent patterns within blockchain 

metrics and can guide proactive network tuning. 

However, despite their predictive strength, DNNs operate in a feed-forward, supervised learning regime, which 

inherently limits their capacity to adapt in real time. They are not decision-making agents and cannot autonomously 

reconfigure consensus parameters or select validator subsets based on context. Their reliance on historical, labeled 

datasets may also reduce performance in unseen scenarios or adversarial settings. 

2-3- Deep Reinforcement Learning for Consensus Adaptation 

To address the limitations of static prediction, recent studies have adopted reinforcement learning techniques, 

particularly intensive DRL, to enable adaptive behaviour in consensus systems. Emil Selvan et al. [7] integrated a DQN 

for intrusion mitigation in blockchain nodes. At the same time, Aitchison & Sweetser [12] introduced a dual-network 

PPO framework for policy optimization in dynamic environments. 

These models demonstrated that RL agents can learn optimal actions for validator assignment or attack response 

through reward-based feedback loops. Nevertheless, most implementations remain confined to isolated tasks (e.g., attack 

mitigation) or constrained simulations, lacking full integration with a functioning blockchain consensus pipeline. Their 

evaluation typically omits performance under hybrid data conditions (historical + adversarial), which limits insights into 

their operational viability. 

2-4- Hybrid Consensus and Integrated Architectures 

Another direction involves hybrid consensus mechanisms that combine the strengths of PoW, PoS, and PBFT 

variants. Gupta et al. [15] proposed a PoW–PoS protocol to mitigate the impact of 51% attacks. While this configuration 

showed improved resistance to malicious majority takeovers, it did not address latency or validator centralization issues. 

Other works, such as those in [4], integrated blockchain with federated learning or reputation-based scoring systems to 

secure validator behaviour across domains. 

Although hybrid mechanisms introduce structural diversity and resilience, they rely on static validation logic and 

fixed threshold parameters. They lack embedded intelligence capable of perceiving environmental changes or 

continuously optimizing protocol operation. 

2-5- Identified Gaps and Proposed Direction 

The reviewed literature reveals a clear gap in delivering autonomous, adaptive, and experimentally validated 

consensus optimization mechanisms that can operate under variable load conditions and real-world threats. Most existing 

approaches either predict system behaviour without acting upon it (DNNs), respond within isolated scopes (DRL), or 

apply rule-based optimizations (heuristics) that do not generalize. 

This study proposes an integrated model that bridges the gap between prediction and adaptation. The proposed 

solution introduces a closed-loop optimization strategy by combining deep neural networks for dynamic feature 

extraction with deep reinforcement learning for validator selection and consensus difficulty adjustment. Unlike prior 

DRL applications, our model is trained on hybrid datasets incorporating real blockchain metrics and simulated attacks 

and is validated in controlled experimental environments using real blockchain platforms, such as Ethereum testnets and 

Hyperledger Fabric. 
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3- Materials and Methods 

3-1- Data Management and Preprocessing 

Data management in this study encompasses the collection, storage, and transformation of information used for AI-

based consensus protocol optimization. The process begins with acquiring data from established blockchain networks, 

transaction simulations, and security event logs. Data integrity and quality are critical to the efficiency of the AI model, 

so preprocessing and filtering strategies are implemented before incorporating them into the training process. 

Data collection is done from multiple sources to obtain representative information on the operating dynamics of 

blockchain networks. Historical data extracted from decentralized networks such as Ethereum, Hyperledger Fabric [16], 

and Binance Smart Chain [17] These include block logs, transaction validations, node energy consumption, and 

consensus performance metrics. Extraction is done through queries through blockchain-specific API interfaces, such as 

Etherscan API for Ethereum and Hyperledger Explorer for permissioned networks. This data is stored in a structured 

database that allows for further processing. 

In addition to historical data, controlled simulation scenarios are generated to evaluate the model's adaptability under 

different operating conditions. To do so, test environments are set up with varying levels of network congestion, 

variations in the number of validator nodes, and fluctuations in the transaction rate. Transaction simulation uses 

Hyperledger Caliper to measure network performance under different consensus configurations and Ganache to create 

local environments on Ethereum [18]. The simulation data feeds the AI model and optimizes its ability to adjust 

dynamically to network conditions. 

The dataset also includes security event logs associated with attack attempts within the blockchain network. For this 

purpose, specialized cybersecurity databases documenting previous attacks are integrated, such as CIC-IDS 2017, which 

contains network traffic data with labels identifying attacks such as DoS and spoofing (Sybil) [19]. Additionally, specific 

scenarios are designed in which malicious transactions are introduced into the network to analyze the response of the 

AI-optimized consensus protocol. Analyzing these events allows the detection of anomalous patterns and strengthens 

the security of the block validation system. 

The preprocessing of the acquired data guarantees the effectiveness of the AI model in optimizing consensus. A 

cleaning process eliminates duplicate records, irrelevant transactions, and inconsistent data. Subsequently, normalization 

is applied to key variables such as transaction confirmation time, the number of active validators, and energy 

consumption, ensuring that the values are within a range suitable for training the model. Data transformation also 

includes generating features using time series analysis techniques to capture trends and variations in network activity. 

The processed data is stored in a distributed infrastructure that facilitates real-time access and analysis. InterPlanetary 

File System (IPFS) is used for decentralized management of historical records, and PostgreSQL is used for structured 

manipulation of information relevant to the AI model [20]. This combination allows for efficient integration with the 

consensus optimization system, ensuring that data processing is scalable and secure. 

Feature selection is performed using dimensionality reduction techniques, such as Principal Component Analysis 

(PCA) and neural network-based Autoencoders, to identify the most relevant variables that impact consensus efficiency. 

Table 1 presents the main variables used in consensus optimization, detailing their description and impact on blockchain 

network performance. The correlation between attributes such as the number of validators and confirmation latency is 

analyzed to improve the model's predictive capacity, allowing dynamic adjustments based on network conditions and 

ensuring that the optimized protocol responds effectively to changes in blockchain activity. 

Table 1. Key Variables in Consensus Optimization 

Variable Description Impact on Consensus Optimization 

Number of validators Number of nodes participating in the validation process. Affects decentralization and efficiency in decision-making. 

Confirmation latency Time required for a transaction to be validated and added to the block. Determines the speed and responsiveness of consensus. 

Transaction rate Number of transactions processed per second. Related to scalability and network load. 

Energy consumption Energy is used in block validation and protocol execution. A key factor in sustainability and resource optimization. 

Block size The amount of data stored in each block of the blockchain. Influences performance and block propagation in the network. 

Attack frequency Number of attack attempts detected in a time interval. Allows for evaluating the security and adaptability of consensus. 

Detection success rate Percentage of attacks detected and mitigated by the system. Indicator of the robustness of the integrated security model. 

Load variability Fluctuations in network activity over time. Allows for dynamic adjustment of consensus parameters. 

The combined dataset used in this study includes approximately 1.5 million blockchain transactions collected between 

January 2021 and December 2023, extracted at regular hourly intervals using APIs such as Etherscan and Hyperledger 

Explorer. This historical dataset was partitioned into 70% for training, 15% for validation, and 15% for testing. In 



Emerging Science Journal | Vol. 9, No. 4 

Page | 1890 

addition, more than 60,000 synthetic transactions were generated across 50 simulation scenarios using Hyperledger 

Caliper and Ganache, with validator nodes ranging from 10 to 1,000 and throughput levels varying from 100 to 50,000 

TPS. Regarding security events, 4,500 labeled attack instances from the CIC-IDS 2017 dataset were adapted to the 

blockchain context by mapping network anomalies to validator and transaction behaviors, such as node flooding for DoS 

and identity replication for Sybil attacks. These integrated data sources ensure a balanced and comprehensive training 

foundation, facilitating performance optimization and anomaly detection within the consensus model. 

3-1-1- Data Preprocessing and Cleaning 

Preprocessing the acquired data ensures the quality of the information used in AI-based consensus protocol 

optimization. This process encompasses eliminating redundant data, normalizing variables, and detecting anomalies in 

the network. 

The first stage consists of the elimination of redundant data and the filtering of fraudulent transactions. Since 

blockchain records contain multiple copies of the same information due to the system's distribution, hashing-based 

deduplication algorithms are employed, ensuring that each stored transaction is unique [21]. In addition, digital signature 

analysis is applied to identify repeated or inconsistent operations. A supervised classification model is used to detect 

fraudulent transactions, trained with historical data sets containing malicious transaction labels, such as those associated 

with double-spending attacks or block collision attempts. 

Once the data has been filtered, the most relevant variables are normalized and transformed for integration into the 

AI model. Confirmation latency, transaction rate, and energy consumption show significant variations, so min-max 

scaling is applied to bring the values to a range between 0 and 1. Logarithmic transformations or Z-score normalization 

stabilize the variance and improve the model's learning capacity in cases where the data distribution presents asymmetry. 

To improve data quality, anomaly detection techniques based on Isolation Forest and One-Class SVM are 

implemented. These techniques allow the identification of records with atypical patterns in network activity. These 

techniques are complemented by a time series analysis using autoregressive models (ARIMA), which will enable the 

detection of anomalous variations in transaction load or validator activity. Data with significant deviations are flagged 

for review or elimination before being incorporated into the consensus optimization model. 

3-1-2- Structure and Storage 

The acquired data is stored in a distributed infrastructure that guarantees integrity, availability, and security in 

managing transaction records and security events. Figure 1 represents the process from data acquisition to its integration 

with the AI model, detailing each key stage. The storage strategy combines distributed and structured database 

technologies, optimizing the efficient handling of information in blockchain environments. 

 

Figure 1. Data Management and Preprocessing Flow 

IPFS allows transaction records to be stored in a decentralized manner, ensuring their availability on the network 

without relying on centralized servers [22]. In the case of highly dynamic records, such as the evolution of the network 

load, BigchainDB is used, which allows rapid information consultation in a distributed environment. Implementing 

homomorphic encryption schemes reinforce the security of the stored data. These schemes enable operations on 

encrypted data without decrypting it, reducing the risk of exposing sensitive information. In addition, an anonymization 

mechanism based on masking techniques and SHA-3 cryptographic hashing is incorporated, ensuring the privacy of 

network participants. 

Integration with real-time analysis tools allows dynamic optimization of consensus. A distributed processing pipeline 

is implemented using Apache Kafka, which receives events from the network in real time, analyzes them, and updates 

the AI models based on system state changes. This allows the consensus protocol to adaptively respond to variations in 

network activity by adjusting key parameters such as the validation threshold or block confirmation difficulty. 
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3-1-3- Feature Generation for AI 

Feature generation is a process used to improve the accuracy of the AI model in optimizing consensus. It involves a 

rigorous selection of key attributes that directly impact the performance and security of the blockchain network. Key 

features include transaction rate, confirmation latency, energy consumption, and the number of active validators. These 

variables are extracted directly from blockchain records and complemented with derived data, such as variability in 

network load and frequency of attack attempts. To ensure that the selected features are representative and not redundant, 

correlation analysis using a Pearson correlation matrix and independence tests using a Chi-square on categorical 

variables are applied. 

The analysis of relationships between variables is carried out using machine learning techniques, such as Random 

Forest Feature Importance, which allows a weight to be assigned to each variable based on its relevance in predicting 

the state of the network. In addition, deep learning-based feature selection models are integrated, where an autoencoder 

trained with historical records allows for reducing the dimensionality of the data set, retaining only the most relevant 

information. 

To optimize data processing and improve model efficiency, dimensionality reduction techniques such as PCA and 

embedding techniques with recurrent neural networks (RNNs) are applied. PCA allows for reducing the number of 

features without losing critical information. At the same time, the embedding generated by RNNs captures the temporal 

evolution of blockchain network activity, improving the AI model's ability to predict changes in the network and 

dynamically adjust consensus. 

3-2- Artificial Intelligence Model for Consensus Optimization 

The AI model designed to optimize the blockchain consensus protocol combines deep neural networks and 

reinforcement learning to improve transaction validation efficiency and network security. Integrating heuristic 

optimization techniques allows for dynamic adjustment of consensus parameters based on network load and validator 

activity, ensuring a balance between decentralization, processing speed, and attack resistance. 

3-2-1- AI Model Architecture 

The model architecture comprises a DNN for feature extraction and a DRL agent based on the Proximal Policy 

Optimization (PPO) algorithm for optimizing consensus strategies. The DNN layer captures patterns in high-dimensional 

metrics, including confirmation latency, transaction rate, block density, validator energy consumption, and anomaly 

flags. These features are extracted from the system state vector for the DRL agent [23]. 

The DRL agent uses PPO due to its stability in environments with continuous state spaces and bounded discrete 

actions. PPO ensures policy improvement through clipped surrogate objectives, which maintain a balance between 

exploration and convergence efficiency. The action space includes: (1) selecting optimal validators based on historical 

reliability and recent behavior, and (2) dynamic adjustment of consensus parameters such as quorum size, propagation 

timeout, and block difficulty. 

The state input to the agent consists of a 𝑛-dimensional vector 𝑆𝑡 including normalized metrics for: 

• Validator participation history 

• Confirmation time variance 

• Network congestion indicators 

• Node trust scores 

• Anomaly detection signals 

The action output 𝐴𝑡 includes discrete actions: 

• Add/remove validator 𝑖  

• Increase/decrease consensus threshold 

• Reassign the block leader role 

The reward function is defined as follows 

𝑅𝑡 = −𝛼 ∙ 𝐿𝑡 − 𝛽 ∙ 𝐶𝑡 + 𝛾 ∙ 𝐷𝑡 − 𝛿 ∙ 𝐹𝑡  (1) 
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where: 

• Lt: confirmation latency at time t 

• Ct: CPU usage by validators 

• Dt: decentralization coefficient (calculated via entropy of validator distribution) 

• Ft: validation failure rate 

• α, β, γ, δ: tunable weight coefficients 

The decentralization coefficient Dt is derived from the Shannon entropy of validator participation over recent 

consensus rounds: 

𝐷𝑡 = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1   (2) 

where 𝑝𝑖 is the proportion of validation contributions made by node 𝑖, this term ensures that the agent is penalized when 

validator selection becomes concentrated in a few nodes, thus enforcing fairness and diversity in validator participation. 

The model’s training uses stochastic gradient descent with an Adam optimizer. The policy and value networks are 

updated using mini-batches and clipped objectives, ensuring bounded policy changes. Cross-validation uses K-folds on 

synthetic and real-world data, ensuring generalization across network loads and attack scenarios. Figure 2 depicts the 

overall architecture and data flow, highlighting the interaction between input processing, DNN-based feature extraction, 

PPO-based decision-making, and action deployment in the blockchain network. 

 

Figure 2. AI Model Architecture 

The model's learning is based on minimizing a cost function, which is defined as a combination of confirmation 

latency, energy consumption, and validation failure rate. Stochastic gradient descent (SGD) is used with Adam and 

RMSProp optimizers to optimize this process, ensuring an efficient update of the network weights. The optimization 

metric evaluates the impact of each adjustment on the network's stability, penalizing decisions that compromise 

decentralization or security and maintaining a balance between performance and resilience against attacks. 

3-2-2- Model Training and Tuning Techniques 

The model is trained using a hybrid dataset of historical records from real blockchain networks and synthetic data 

generated through controlled simulations. For accurate data acquisition, transaction records and performance metrics are 

extracted from Ethereum (using Etherscan API), Hyperledger Fabric (using Hyperledger Explorer), and Binance Smart 

Chain (via BscScan API). This data includes information on block confirmation latency, transaction rate per second, 

history of successful and failed validations, and energy consumption of validator nodes. 

In addition to complementing the model training, synthetic data is generated by implementing a simulation 

environment based on Hyperledger Caliper and Ganache. In this environment, variable load scenarios are set up, in 

which the number of transactions per second, the number of validator nodes, and the difficulty of consensus are 

dynamically modified. This data provides the model with sufficient information to learn to dynamically optimize 

consensus, adapting to actual conditions and adverse events that may compromise the stability of the blockchain network. 
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To improve model generalization, hyperparameter tuning strategies are implemented, exploring combinations of 

neural network depths, learning rates, and activation functions using grid search and Bayesian optimization. 

Regularization is performed using dropout and batch normalization, avoiding overfitting specific patterns in the training 

data [24]. Model convergence is assessed through K-fold cross-validation, ensuring the learned strategies are consistent 

across different datasets. Metrics such as the success rate in predicting efficient validators, reduction in confirmation 

latency, and stability of energy consumption are monitored, ensuring that the optimized model outperforms traditional 

consensus protocols. 

The training process was conducted with neural network depths ranging from 3 to 8 layers, learning rates varying 

from 0.001 to 0.00001, and activation functions including ReLU, tanh, and Leaky ReLU. Grid search was initially used 

to narrow viable configurations, followed by Bayesian optimization to identify the most effective combination of 

convergence speed and generalization. The Adam optimizer trained the selected model for 100 epochs with a batch size 

128. The dataset was split into 70% for training, 15% for validation, and 15% for testing. K-fold cross-validation with 

K = 5 was employed to evaluate model stability across data partitions. Each fold included a balanced mix of regular and 

adversarial transactions. The main evaluation metrics included: 

• Average confirmation latency (ms) = mean time between transaction emission and validation. 

• Transaction throughput (TPS) = total transactions confirmed / time interval. 

• Attack detection rate (%) = number of correctly detected attacks / total attacks introduced. 

• Energy efficiency (%) = reduction in average consumption compared to PoW baseline. 

These metrics were calculated after each training iteration and used as input to the policy update in the DRL module, 

ensuring real-time feedback integration into the consensus adaptation logic. 

3-2-3- Integration with the Consensus Protocol 

The AI model is integrated directly into the blockchain consensus mechanism, allowing for the adaptive selection of 

validators based on network load and each node's historical reliability. A validator prioritization algorithm is defined as 

one in which nodes with better stability in block validation and lower energy consumption are more likely to be selected, 

avoiding biases towards validators with high computational capacity but low commitment to decentralization. 

The consensus difficulty level is dynamically adjusted using an adaptation function based on reinforcement learning. 

This function analyzes the block propagation speed and automatically adjusts the validation parameters. This approach 

reduces latency without compromising security, optimizing network performance in real-time. 

In addition, the model includes an attack detection and mitigation module, trained to identify anomalies in node 

activity and suspicious transactions. Outlier detection techniques based on Isolation Forest and Generative Adversarial 

Networks (GANs) are employed to recognize fraud attempts, Sybil attacks, and collusion patterns in block validation 

[25]. When an anomaly is detected, the model generates alerts and adjusts consensus rules to prevent the impact of a 

possible attack, strengthening the system's security. 

3-3- Experimental Environment and Blockchain Network Configuration 

The experimental environment is designed to evaluate the impact of consensus optimization using AI on blockchain 

networks under different configurations. A distributed infrastructure is implemented that allows the execution of multiple 

tests with variations in transactional load, the number of validators, and consensus parameters. 

3-3-1- Network Infrastructure 

The network infrastructure used in the experiments is based on three types of blockchain environments, each selected 

based on its characteristics and the kind of implementation required. First, Ethereum is used in its public and test network 

versions, specifically Ethereum Testnet (Goerli and Sepolia). It provides a decentralized environment with smart 

contracts based on the Ethereum Virtual Machine (EVM). Second, Hyperledger Fabric is implemented as a permissioned 

solution with control over the network nodes, using a Kubernetes-based environment with multiple peers and a Raft-

based computer for consensus coordination. Finally, a private blockchain is set up using Hyperledger Besu, where nodes 

are distributed in a local network, allowing controlled experiments with full tuning of the consensus parameters. 

The network's total number of nodes and validators varies depending on the topology configured for each experiment. 

The relationship between the number of active validators and the processing capacity of the blockchain network is 

mathematically modeled from the TPS rate. The equation gives the network capacity. 

𝑇𝑃𝑆 =
𝐵

𝑇𝑐+
𝑁

𝑉
∙𝐷

  (3) 
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where B represents the block size in several transactions, Tc is the average confirmation time of a block, N is the total 

number of nodes in the network, V is the number of active validators, and D corresponds to the adjusted computational 

difficulty of the consensus. The network's efficiency depends on the ratio of nodes to validators and the difficulty level 

set in the consensus protocol. A more significant number of validators can improve decentralization but can also increase 

the latency and computational cost of validating transactions. 

3-3-2- Consensus Protocols Evaluated 

The impact of the AI-optimized model is evaluated by comparing it with different consensus protocols widely used 

in blockchain networks. First, PoW is implemented on Ethereum Testnet, measuring the block confirmation time and 

the computational cost required for validation. PoS is analyzed on Ethereum 2.0, where the validation process is based 

on the validators' balance, and the system's efficiency in energy consumption is evaluated. 

DPoS is implemented in a Hyperledger Besu-based environment to evaluate effective decentralization, analyzing the 

relationship between the number of delegates and consensus stability. Fault tolerance is studied using the PBFT protocol 

on Hyperledger Fabric, analyzing the network's resilience to malicious nodes and communication failures [26]. Finally, 

the AI-optimized protocol is implemented on the private blockchain, where validator selection is performed dynamically 

using the proposed AI model. 

The performance of each protocol is evaluated based on key metrics such as average validation latency, number of 

transactions processed per second, and resistance to Sybil and 51% attacks [27]. The tests allow for comparing the 

efficiency of the optimized protocol with traditional consensus mechanisms, identifying improvements in speed, 

security, and adaptability. 

3-3-3- Tools and Libraries Used 

The implementation of the experimental environment requires the use of multiple tools and libraries for blockchain 

network development and AI optimization. The TensorFlow and PyTorch frameworks are used to construct and train 

the AI model, which allows the development of models based on deep neural networks and reinforcement learning. 

Integration with the blockchain infrastructure is done through Hyperledger Fabric SDK and Ethereum Web3.js, 

facilitating communication between AI models and the implemented consensus protocols. 

Hyperledger Caliper is used to evaluate network performance, a tool designed to measure efficiency metrics in 

permissioned blockchain networks. In the case of Ethereum, test environments such as Ethereum Testnet are used to 

validate the model's effectiveness in a public and decentralized network. In addition, simulations are set up in local 

environments with Ganache, allowing the execution of tests with complete control over the network parameters. 

Combining these tools allows experimentation in different scenarios, from decentralized blockchain networks to 

permissioned and private infrastructures. The implementation of the AI-optimized protocol is validated in multiple 

environments, ensuring its applicability in diverse contexts and its ability to adapt to different levels of load and security 

on the network. 

3-4- Model Simulation and Validation 

The AI-optimized model is validated using a simulation environment to replicate actual operating conditions in a 

blockchain network. This process allows the evaluation of the protocol's efficiency in transaction processing, 

confirmation latency, and resistance to attacks. Experimentation is carried out under different load scenarios to analyze 

the model's ability to adapt to changes in the network and improve consensus performance compared to traditional 

methods. 

3-4-1- Simulation Environment 

The simulation environment is implemented in a controlled test environment, where simulated nodes and transactions 

are configured with characteristics representative of real blockchain networks. Hyperledger Caliper is used for traffic 

generation and performance measurement of the optimized protocol. In the case of Ethereum, an environment with 

Ganache is configured to allow smart contracts to be executed and transactions to be validated without depending on the 

leading network. 

To evaluate the robustness of the model, multiple scenarios are established with different load levels and the presence 

of attacks. In each test, the number of transactions per second T, active nodes N, the percentage of validators selected by 

AI(VAI), and the rate of detected attacks (Ad) varies. The transaction confirmation latency is mathematically modeled as 

follows: 

𝐿 =
𝑇

𝑉𝐴𝐼∙𝐷+(𝑁−𝑉𝐴𝐼)∙𝐶
  (4) 
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where E represents the efficiency of the optimized model in terms of fast validation, and C represents the average 

confirmation time in traditional methods, this model allows us to analyze how the inclusion of AI in the validator 

selection process impacts latency reduction, especially in networks with high transactional load. 

In terms of security, Sybil, DoS, and 51% attacks are simulated, measuring the anomaly detection rate (Ad) based on 

the total number of malicious transactions generated (Ta) and the precision of the AI system (P): 

𝐴𝑑 =
𝑇𝑎∙𝑃

𝑇𝑎+𝑇
  (5) 

This metric allows us to evaluate the protocol's ability to detect fraud attempts without compromising network 

performance. 

3-4-2- Comparative Evaluation 

To validate the effectiveness of the AI-optimized protocol, traditional consensus methods are compared in terms of 

efficiency and security. System performance is measured based on the number of confirmed transactions per second, 

validation latency, and attack resilience. 

The performance of each protocol is modeled through the rate of transactions (TPS), which is directly related to block 

confirmation time (Tc) and network load (Lc): 

𝑇𝑃𝑆 =  
𝐵

𝑇𝑐+𝐿𝑐
  (6) 

where B represents the block size in several transactions, a lower (Tc) in the optimized protocol indicates higher 

efficiency in transaction validation. 

The relationship between network load and consensus stability is analyzed to assess the model's adaptive capacity to 

network variations. A dynamic difficulty adjustment function (D) is introduced based on the number of AI-selected 

validators and the average network latency (Lp): 

𝐷𝐴𝐼 = 𝐷0 ∙ (1 −
𝑉𝐴𝐼

𝑁
) + 𝛼𝐿𝑝  (7) 

where (D0) is the base consensus difficulty, and (α) is a penalty factor associated with latency. This model allows 

evaluating the optimized protocol's ability to dynamically adjust the consensus difficulty to improve performance in 

high-load environments. 

3-5- Performance Evaluation Metrics 

The model's performance is evaluated using specific metrics that measure its computational efficiency, resistance to 

attacks, and ability to adapt to changes in the blockchain network. These metrics provide a quantitative view of the 

impact of optimization on transaction validation, the use of computational resources, and the security of consensus in 

dynamic environments. 

3-5-1- Computational Efficiency 

The computational efficiency of the optimized protocol is analyzed by considering transaction confirmation latency 

and computational resource consumption. Confirmation latency, defined as the time elapsed between the generation of 

a transaction and its inclusion in a validated block, is modeled as a function of the number of AI-selected validators 

(VAI), the network load (Lc), and the network throughput (Pr): 

𝐿 =  
𝐿𝑐

𝑉𝐴𝐼∙𝑃𝑟
  (8) 

where (Lc) represents the number of transactions waiting in each interval, and (Pr) is the throughput of the optimized 

protocol, adjusted by the number of active validators managed by AI. A reduction in (L) indicates an improvement in 

the speed of transaction validation without affecting decentralization. 

Computational resource consumption is another critical factor in evaluating the model's performance. CPU, GPU, 

and RAM usage are measured during block validation. The relationship between resource consumption (Cr) and the 

number of TPS is defined as: 

𝐶𝑟 =  
𝐶𝑃𝑈+𝐺𝑃𝑈+𝑅𝐴𝑀

𝑇𝑃𝑆
  (9) 

A lower (Cr) value indicates a more efficient protocol, allowing more transactions to be processed without 

significantly increasing resource usage. Computational consumption is evaluated by comparing the AI-optimized 

protocol against traditional protocols, identifying energy efficiency improvements and reduced processing time. 
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3-5-2- Security and Resistance to Attacks 

The security of the optimized protocol is assessed by its ability to resist Sybil, DoS, and 51% attacks, as well as its 

efficiency in early detection of network anomalies. Resilience against attacks is measured using a tolerance coefficient 

(Ts), which relates the number of malicious nodes detected (Nm) to the total number of nodes in the network (N): 

𝑇𝑐 = 1 −  
𝑁𝑚

𝑁
  (10) 

A value close to 1 indicates a high tolerance to attack, while low values reflect the protocol's vulnerability to malicious 

nodes. To evaluate the ability to detect anomalies in the network, a machine learning-based classification model is 

implemented that calculates the success rate in identifying fraudulent transactions (Ad), expressed as: 

𝐴𝑑 =
𝐷𝑎∙𝑃

𝑇𝑎+𝑇
  (11) 

where (Ta) represents the number of anomalous transactions generated in the simulation environment, (T) is the total 

number of transactions, and (P) is the accuracy of the AI model in classifying anomalies. A higher detection rate indicates 

the protocol can identify suspicious activities without affecting consensus efficiency. 

3-5-3- Scalability and Adaptability 

The scalability of the optimized protocol is measured by its ability to dynamically adjust consensus parameters in 

response to network changes, ensuring stable performance as transaction load increases. The performance of the 

optimized protocol is compared to conventional blockchains, analyzing the impact of AI optimization on processing 

speed and consensus stability. The relative performance improvement (Rm) metric is defined as: 

𝑅𝑚 =
𝑇𝑃𝑆𝐴𝐼−𝑇𝑃𝑆𝑐𝑜𝑛𝑣

𝑇𝑃𝑆𝑐𝑜𝑛𝑣
  (12) 

where (TPSAI) and (TPSconv) correspond to the rate of transactions processed per second in the AI-optimized and 

conventional protocols, respectively. A positive value of (Rm) indicates improved network performance by integrating 

AI into consensus optimization. 

4- Results 

4-1- Computational Performance Evaluation 

The computational performance of the AI-optimized protocol is analysed based on transaction confirmation latency 

and computational resource consumption, key metrics for evaluating the efficiency of a blockchain consensus 

mechanism. The experimental results allow for a comparison of the effectiveness of the proposed model against 

traditional approaches, evidencing significant improvements in processing, optimizing the use of validators, and 

reducing computational costs. 

4-1-1- Confirmation Latency 

The data presented in Table 2 shows that implementing the AI-optimized model considerably reduces transaction 

confirmation times on the blockchain. An inversely proportional relationship is observed between the number of 

validators managed by AI(VAI) and the average confirmation latency (L). This indicates that the protocol can efficiently 

distribute the load between the validation nodes, avoiding network congestion and improving processing speed . 

Table 2. Confirmation Latency in Different Load Scenarios 

Load Scenario 
Confirmation Latency 

in PoW (ms) 

Confirmation 

Latency in PoS (ms) 

Confirmation Latency 

in DPoS (ms) 

Confirmation Latency 

in PBFT (ms) 

Confirmation Latency in 

Optimized AI Model (ms) 

Low (100 TPS) 1200 800 600 500 350 

Medium (500 TPS) 1400 900 700 550 400 

High (1000 TPS) 1600 1100 850 650 500 

Very High (2000 TPS) 2000 1400 1100 850 700 

Extreme (5000 TPS) 3000 2000 1800 1500 1200 

In a low-load environment, with a TPS rate of 100, the optimized protocol's average latency is 1200 ms, like that 

obtained in PoW-based systems. However, as the network scales and the number of transactions increases, a notable 

reduction in latency is evident. For a load of 5000 TPS, the optimized protocol manages to reduce latency to 400 ms, 

while traditional methods maintain times more significant than 1500 ms in high congestion scenarios. 
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These results reflect the efficiency of the AI-based validator selection mechanism, which allows dynamically adapting 

the number of active nodes and optimizing block validation based on network demand. The decrease in confirmation 

times suggests that the proposed model can improve scalability without compromising the system's security or 

decentralization. 

Furthermore, analysis of this data suggests that starting from 1,000 optimized validators, the reduction in latency 

tends to stabilize around 400 ms, indicating an optimal point of efficiency in the network. This behavior demonstrates 

that the AI model not only speeds up transaction processing but also identifies the appropriate threshold of nodes needed 

to maintain a balance between speed and responsiveness. 

The stabilization of confirmation latency at approximately 400 ms in high-load scenarios reflects the effectiveness of 

the reinforcement learning policy in managing validator activation thresholds. The DRL agent learns to minimize 

validation delay by dynamically adjusting the validator pool size based on real-time indicators such as queue depth, 

propagation time, and validator success rate. This adaptive adjustment prevents overpopulation of the consensus group, 

which would otherwise lead to communication overhead, especially in Byzantine fault-tolerant mechanisms. 

Additionally, integrating the DNN as a feature extractor enables the system to anticipate network congestion patterns by 

modeling nonlinear interactions between transaction rates, block propagation delay, and energy cost. This allows the AI 

model to reconfigure the consensus layer proactively before latency degradation occurs. The result is a system capable 

of maintaining confirmation times close to its optimal learned baseline under a wide range of load conditions, without 

requiring manual intervention or static configuration parameters. 

4-1-2- Computational Performance Analysis 

The results in Figure 3 present a series of graphs illustrating the relationship between optimized validators, resource 

consumption, security, and consensus adaptability. 

 

 

 

Figure 3. Computational performance and security evaluation of the AI-optimized protocol. Graph (A): Confirmation latency 

based on the number of AI-optimized validators. Graph (B): Relationship between computational consumption and TPS. 

Graph (C): Attack detection rate as a function of the number of malicious nodes. Graph (D): Attack tolerance coefficient 

compared between different consensus protocols. Graph (E): Dynamic adjustment of consensus based on network load. 

Graph (F): Comparison of relative performance improvement between the optimized protocol and traditional models. 

Graph (A) shows the relationship between confirmation latency and the number of validators optimized by AI (VAI). 

Latency decreases as the number of validators increases, confirming the model's efficiency in optimizing the consensus 

process. However, the reduction in latency stabilizes starting at 1,000 validators, suggesting that, under certain 

conditions, increasing the number of validators no longer provides a significant performance benefit. This stabilization 

effect reflects the system’s learned optimization boundary, where the DRL agent has identified a validator threshold 

beyond which additional nodes contribute marginally to performance. The DNN-based feature extractor detects 

saturation patterns in network responsiveness, and the agent adjusts by maintaining a validator set that minimizes 

redundancy in message propagation. This prevents unnecessary communication overhead, which would otherwise 

degrade performance due to increased complexity in consensus messaging. The latency curve's flattening is an emergent 

property of the model’s ability to self-regulate validator participation based on observed latency-return trade-offs. 

(A) (B) 

(C) (D) 

(E) (F) 



Emerging Science Journal | Vol. 9, No. 4 

Page | 1898 

Graph (B) represents the relationship between CPU consumption and TPS. Traditional protocols exhibit an 

exponential increase in resource consumption as transaction processing speed (TPS) increases, whereas the AI-optimized 

protocol maintains a more stable computational load. In high-load scenarios, conventional methods such as PoW reach 

a CPU usage of over 90%. In comparison, the AI-optimized model keeps consumption below 40%, ensuring a more 

efficient and sustainable operation. This behavior directly results from the DRL agent’s ability to adjust validator quorum 

size and block finality thresholds in real-time, reducing unnecessary processing overhead. Moreover, the DNN 

continuously evaluates load fluctuation patterns to suppress validator reconfiguration when not needed, minimizing 

redundant cryptographic operations across the network. These mechanisms contribute to computational stability, even 

under extreme throughput conditions. 

Graph (C) illustrates the model's effectiveness in detecting malicious nodes in the blockchain network. The detection 

rate improves significantly as the number of malicious nodes 𝑁𝑚 increases, reaching above 95% in massive attack 

scenarios. This demonstrates that the AI-optimized model enhances consensus efficiency and improves network security 

by detecting and mitigating threats in real-time. The high detection performance is achieved by integrating anomaly 

detection mechanisms, such as Isolation Forest and one-class classifiers, into the feature space managed by DNN. These 

features are passed to the DRL policy, which penalizes validator sets associated with abnormal behavioral patterns. 

Through repeated exposure, the learning agent isolates high-risk nodes early in the consensus cycle, reducing the 

propagation of malicious blocks without relying on static rule sets or predefined blocklists. 

Graph (D) illustrates the attack tolerance coefficient for various consensus protocols, including PoW, PoS, DPoS, 

PBFT, and the AI-optimized model. Traditional protocols are vulnerable to Sybil, DoS, and 51% attacks, with tolerance 

coefficients below 80%, while the AI-based model exceeds 92%, demonstrating greater robustness against external 

threats. This improvement stems from the continuous learning process of the DRL agent, which not only identifies but 

also anticipates adversarial behavior by associating it with patterns extracted from the multi-dimensional input space 

processed by the DNN. When attacks are detected, the agent dynamically reduces the weight of affected nodes during 

consensus formation, thereby isolating attack vectors and maintaining protocol stability. This dynamic response 

contributes to higher tolerance values even in scenarios involving simultaneous and persistent threats. 

Graph (E) analyzes the model's ability to adapt to variations in transactional load. The optimized protocol dynamically 

adjusts consensus parameters as the network load (𝐿𝑐) increases, ensuring a balance between efficiency and security. 

Compared to traditional protocols, which require manual configurations for adjustments, AI integration enables real-

time, automated consensus management. The DRL module operates with a reward function shaped by latency, energy, 

and validation success rate, allowing it to learn optimal consensus configurations that vary with load. As the DNN 

identifies load surges through real-time feature patterns, the DRL agent responds by adjusting the quorum size, 

modifying block propagation intervals, or re-prioritizing validators based on their prior performance. This real-time 

tuning minimizes latency spikes and prevents protocol degradation in overload conditions. 

Graph (F) compares consensus optimization models, including Optimized DPoS, Tendermint, FBA, DRL, and AI, to 

evaluate their relative performance improvements. The AI-optimized protocol is observed to outperform conventional 

approaches in terms of scalability and efficiency, achieving up to 3.5× improvement compared to PoW and PoS. The 

advantage arises from the combination of predictive capacity (through the DNN) and adaptive decision-making (via 

DRL), which enables the model to generalize across different operational states and network topologies. Unlike DRL-

only strategies, which often overfit the training environment, the hybrid structure of this model incorporates deep feature 

abstractions, allowing it to remain effective even when the transaction distribution or validator behavior deviates from 

training norms. This architectural synergy explains its superior performance factor across varied benchmark models. 

4-2- Security and Resistance to Attacks 

4-2-1- Attack Tolerance Coefficient Analysis 

The results in Table 3 reflect the ability of the AI-optimized model to withstand attack attempts compared to 

conventional approaches. Traditional protocols, such as PoW and PoS, have significantly lower tolerance to Sybil and 

DoS attacks, with values below 60%, making them vulnerable to adversaries capable of creating multiple identities or 

saturating the network with malicious traffic. 

Table 3. Attack Tolerance Coefficient in Different Protocols 

Consensus Protocol Sybil Tolerance (TSybil) DoS Tolerance (TDoS) Tolerance at 51% (T51%) 

PoW -- 0.35 0.50 

PoS 0.40 0.55 0.70 

DPoS 0.60 0.65 0.80 

PBFT 0.75 0.75 0.85 

AI Optimized 0.80 0.90 0.95 
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In contrast, the AI-based protocol achieves tolerance coefficients above 90%, evidencing excellent threat detection 

and mitigation resilience. This result is attributed to implementing machine learning algorithms that allow the 

identification of anomalous patterns in network activity and dynamically adjusting consensus parameters to reinforce 

security without compromising operational efficiency. 

In particular, the attack tolerance values of 51% (T51%) show a substantial difference between the centralized protocols 

and the optimized model. While approaches such as DPoS and PBFT achieve close to 80% of coefficients, the AI-

enhanced version exceeds 95%, suggesting a lower probability of malicious actors managing to take control of the 

network. These data indicate that including an AI-based adaptive model not only optimizes decision-making in the 

selection of validators but also improves the system's ability to respond to attack attempts, representing a significant 

advance in terms of security and stability of the blockchain ecosystem. 

The attack tolerance coefficients presented in Table 3 are computed as the ratio of successful consensus rounds 

maintained under active threat conditions to the total number of rounds executed during simulated attacks. The resilience 

observed in the AI-optimized protocol results from two key mechanisms: first, the anomaly detection module embedded 

in the DNN component identifies irregularities in block propagation patterns, validator response times, and signature 

repetition, which indicate Sybil and DoS behaviors. Second, the DRL agent incorporates a penalization scheme into its 

reward function, which reduces the selection probability of nodes exhibiting these patterns. For instance, under a Sybil 

attack, the system learns to disregard validators with sudden identity duplication and unverified stake histories. In the 

case of DoS scenarios, nodes causing message bottlenecks or validation delays are down prioritized in subsequent 

rounds. For 51% attacks, the model monitors validation consistency and divergence thresholds across blocks, 

dynamically adjusting quorum formation to maintain security guarantees even in adversarial majorities. These real-time 

adjustments, trained on hybrid datasets, enable the system to keep high functionality and consensus stability under 

coordinated attack attempts, as evidenced by the significantly higher tolerance values than static protocols. 

4-2-2- Protocol Security Analysis 

Figure 4 studies attack detection trends in different threat scenarios. Graph (A) represents the relationship between 

the number of malicious nodes and the anomaly detection rate, showing how the optimized model identifies attacks in 

real time. As the number of malicious nodes increases, the system improves its detection capacity, reaching values close 

to 97% when the number of attackers exceeds 700 nodes. 

 

Figure 4. Security analysis of the AI-optimized protocol; Graph (A): Relationship between the number of malicious nodes 

and the attack detection rate. Graph (B): Evolution of attack detection depending on the number of malicious transactions 

This behavior is explained by the AI-based model's ability to analyze patterns in node activity and detect deviations 

from expected behavior. Unlike traditional protocols, which rely on static rules for transaction validation, the proposed 

solution dynamically adjusts detection criteria based on detected malicious activity, achieving more accurate threat 

identification in dynamic environments. 

Notably, in networks with a low presence of malicious nodes (Nm < 50), the initial detection rate remains around 55–

70%, indicating that the model needs a significant volume of suspicious activity data to improve its accuracy. However, 

once a sufficient information threshold is reached, the detection capacity increases rapidly, ensuring adequate protection 

against larger-scale attacks. 

Graph (B) analyzes the evolution of the attack detection rate based on the number of malicious transactions generated. 

An increasing trend is observed in the model's ability to identify threats as fraudulent activity increases within the 

(A) (B) 
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network. In a scenario of less than 1000 malicious transactions, the system's detection rate is around 50-78%, indicating 

that the model requires an initial volume of samples to optimize its accuracy. However, when the number of fraudulent 

transactions exceeds 50,000, the model reaches detection levels above 96%, demonstrating its ability to learn 

progressively and adapt to attacks in real time. 

This behavior is explained by the model's ability to identify correlations between multiple indicators of suspicious 

activity, allowing it to recognize anomalous patterns in the network even before an attack compromises the blockchain 

infrastructure. Furthermore, the detection curve suggests the model can operate efficiently in high transactional load 

scenarios without generating excessive false positives. 

The increased detection capability in high-volume attack conditions is driven by the DNN's capacity to learn 

multidimensional correlations across behavioral indicators such as validation delay variance, transaction retry patterns, 

sudden shifts in stake distribution, and abnormal validator synchronization. These features are continuously updated and 

encoded into the DRL agent's state vector, enabling the model to adjust its detection sensitivity dynamically. In the early 

stages of attack detection, the model's conservative threshold is limited, as it is calculated to minimize false positives 

through a penalty mechanism in the reward function. As the sample of malicious activity grows, the model updates its 

internal representation of "normal" validator behavior, improving its confidence in identifying outliers. Furthermore, the 

system incorporates temporal features via recurrent encoding layers, enabling the model to detect deviations not only in 

the volume but also in the evolution of behavior over time. 

4-3- Evaluating Scalability and Adaptability 

The analysis of the AI-optimized protocol's scalability and adaptability focuses on its ability to adjust consensus 

parameters based on network load dynamically. The evolution of the dynamic adjustment rate (DAI) at different TPS 

levels is examined, as is the relative improvement in performance compared to traditional consensus protocols. 

4-3-1- Performance Comparison Table Analysis 

Table 4 shows how the AI-optimized protocol outperforms traditional consensus mechanisms regarding scalability. 

This allows for more transactions to be managed without compromising network stability. 

Table 4. TPS under Different Load Conditions 

Load Scenario TPS in PoW TPS in PoS TPS in PBFT TPS with AI 

Low (≤ 1000\) TPS) 850 920 980 1050 

Medium (1000–5000 TPS) 2100 2500 2700 3200 

High (5000–10000 TPS) 3800 4200 4500 5200 

Very High (> 10000 TPS) 6000 6800 7100 8100 

The results indicate that under low load conditions (≤ 1000 TPS), the optimized model achieves 7–10% higher 

performance than conventional approaches. However, the most significant impact is observed in high transactional 

demand scenarios. When the number of transactions per second exceeds 10,000 TPS, the proposed model increases its 

processing capacity by up to 14% compared to PBFT and more than 30% compared to PoW. These values suggest that 

the model's adaptability improves operational efficiency and ensures stability in high-traffic environments, avoiding 

congestion that could affect the blockchain network's overall performance. 

The superior scalability observed in the AI-optimized protocol is enabled by its ability to dynamically reconfigure 

validator groups and consensus thresholds based on continuous evaluation of throughput and network responsiveness. 

The DRL agent interprets network saturation signals, such as increased block propagation delay or validator response 

dispersion, and adjusts the consensus participation rate, thereby distributing workload more efficiently. The DNN-based 

feature encoder also identifies congestion precursors by analyzing correlations between transaction bursts and block 

finalization time. This enables the system to delay or batch transactions to maintain protocol stability proactively. Unlike 

static mechanisms, where performance degradation becomes nonlinear beyond 10,000 TPS, the AI-based approach 

maintains throughput growth by scaling coordination effort in proportion to network conditions, rather than transaction 

volume, thereby reducing consensus latency amplification and avoiding validator bottlenecks. 

4-3-2- Scalability Assessment Analysis 

Graph (A) of Figure 5 represents the relationship between the number of TPS and the dynamic adjustment rate (DAI), 

showing how the optimized protocol adapts its consensus parameters in response to variations in network load. 
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Figure 5. Scalability and Adaptability Evaluation of the Optimized Protocol; Graph (A): The dynamic adjustment rate's 

evolution depends on the number of transactions per second. Graph (B): Variability in performance improvement between 

consensus protocols. 

At low to moderate load levels (< 5000 TPS), the dynamic adjustment increases progressively, reaching values of 

0.65 to 0.85 in environments of 20,000 TPS. This behavior suggests that the model adjusts its parameters in an 

anticipatory manner, optimizing the selection of validators and reducing transaction confirmation times. This effect is 

driven by the DRL agent’s reward optimization policy, which favors consensus configurations that maintain low latency 

and minimal block finalization error. The DAI, the normalized frequency of consensus parameter changes per unit time, 

increases as the model identifies patterns indicating pre-congestion states. The DNN component, which captures 

correlations between transaction injection rates, validator responsiveness, and propagation delays, enhances the agent's 

ability to predict load escalation and preemptively reconfigure consensus roles. 

However, a slight decrease in dynamic adjustment is observed in scenarios with 50,000 TPS and above, which can 

be attributed to the system's self-regulation to prevent unnecessary overloads. This confirms that the model increases its 

efficiency in response to transactional demand and maintains a balance to avoid excessive computational resource 

consumption. This drop in DAI reflects the model's stabilization phase, where entropy regularization within the DRL 

policy suppresses unnecessary reactivity. Instead of aggressively reconfiguring the network, the agent applies smoother 

policy updates that maintain system responsiveness without introducing oscillatory behavior. These adjustments are 

moderated by integrating average baseline and penalization terms into the cost function, ensuring sustained performance 

without resource saturation. 

Graph (B) presents a boxplot comparing the variability in performance improvement (Rm) between different 

consensus protocols. This enables the visualization of data distribution and the model's stability in various scenarios. 

The PoW protocol exhibits a low-performance improvement with minimal variability, while PoS and PBFT demonstrate 

higher performance, albeit with varying values in high-load environments. In contrast, the AI-optimized model achieves 

a median improvement of more than 3.0 points, with reduced dispersion and a more stable distribution, indicating greater 

consistency in transaction processing across different operating conditions. This stability is attributed to the model’s 

ability to generalize across network topologies and operational conditions, supported by the DNN’s multidimensional 

encoding of validator behavior, energy efficiency, and block success rate. The DRL agent refines its policy across 

varying workloads using mini-batch experience replay and stochastic exploration strategies, allowing consistent 

performance without retraining. The few outliers observed correspond to highly favorable network states, such as optimal 

validator alignment and low contention periods, where the system dynamically achieves efficiency peaks by leveraging 

learned consensus shortcuts. 

The presence of outliers in the PBFT and AI Optimized case suggests that, in certain specific scenarios, significantly 

higher performance improvements can be achieved. This reinforces the idea that the AI-based protocol can dynamically 

adapt, optimizing its efficiency based on network behavior. 

4-4- Comparative Analysis with Traditional Consensus Protocols 

The comparative analysis between the AI-optimized and traditional consensus protocols allows us to evaluate the 

impact of integrating AI models regarding confirmation latency, computational consumption, and attack tolerance. To 

(A) (B) 
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do so, measurements have been carried out on different widely used protocols, including PoW, PoS, DPoS, and PBFT, 

contrasting the results with the AI-based optimized protocol. 

4-4-1- Metric Comparison 

Table 5 presents the average values obtained in each protocol regarding confirmation latency, computational 

consumption, and attack tolerance. 

Table 5. Comparison of Average Performance Between Traditional Consensus Protocols and the AI-Optimized Model 

Protocol Average Latency (ms) CPU Usage (%) Attack Tolerance (%) 

PoW 1200 85 40 

PoS 850 60 60 

DPoS 500 45 75 

PBFT 400 40 80 

AI Optimized 320 30 92 

The results indicate that PoW presents the highest confirmation latency, reaching average values of 1200 ms, making 

it the most inefficient mechanism in terms of validation times. PoS and DPoS improve these values, reducing latency to 

850 ms and 500 ms, respectively, while PBFT achieves confirmation times of 400 ms by eliminating the need for 

intensive mining. The AI-optimized protocol further reduces these times, reaching values of 320 ms on average, which 

represents a 60% improvement over PoW and 20% over PBFT. 

Regarding computational consumption, a clear difference is observed between the protocols based on proof of work 

and those optimized for energy efficiency. PoW, by relying on intensive mining processes, consumes, on average 85% 

of the available CPU resources, making it the least efficient alternative. PoS and DPoS reduced this demand to 60% and 

45%, respectively, while PBFT maintains a computational load of 40%. In contrast, the AI-based model optimizes 

resource usage, reducing computational consumption to 30% and allowing for better scalability without compromising 

consensus security. Regarding attack tolerance, PoW is the most vulnerable protocol, with a 40% resistance to malicious 

node attacks due to its dependence on the global hash rate. PoS and DPoS improve this metric, reaching 60% and 75% 

values, respectively. PBFT achieves greater robustness, with an 80% tolerance, thanks to its majority consensus-based 

validation mechanism. However, the AI-optimized protocol is the most secure, reaching 92% attack tolerance due to the 

model's ability to detect anomalies in real-time and dynamically adjust validators. 

The superior values reported for the AI-optimized protocol in Table 5 are derived from the model’s integrated 

architecture, which balances latency reduction, energy efficiency, and security through learned adaptation policies. The 

DRL component dynamically adjusts consensus parameters, such as the quorum size and block confirmation thresholds, 

based on real-time feedback on network performance and node behavior. The latency reduction is achieved by 

minimizing redundant validator coordination and prioritizing nodes with high past success rates, as inferred from the 

DNN’s feature analysis layer. Regarding computational efficiency, the system suppresses unnecessary re-election cycles 

and consensus resets using a reward structure that penalizes resource spikes. Unlike traditional protocols that statically 

allocate validator roles, the AI model adjusts validator participation windows in response to system load and anomaly 

signals, enhancing efficiency and robustness. The 92% attack tolerance reflects the model’s embedded anomaly 

detection, which triggers reconfiguration of the validator set when deviation patterns, such as message propagation 

inconsistencies or clustering of failure events, are detected. This tri-metric balance is made possible by joint optimization 

of the consensus policy using composite cost functions that simultaneously weigh delay, security risk, and resource 

usage during training. 

4-4-2- Comparison of the Performance of Consensus Protocols 

Graph (A) in Figure 6 shows the evolution of the average confirmation latency in each protocol, reflecting the relative 

efficiency of each mechanism. The results show that PoW maintains the highest latency values, with times exceeding 

1000 ms, confirming its inefficiency for applications requiring fast validations. PoS and DPoS show notable 

improvements, reducing latency by more than 40% compared to PoW, while PBFT offers significantly faster 

confirmation, with values close to 400 ms. The AI-optimized protocol achieves the lowest latency, which reduces 

validation times to 320 ms, demonstrating its capacity for dynamic adaptation and optimization in the consensus process. 

This reduction is made possible by the DRL component's ability to minimize unnecessary validator interactions and to 

prioritize low-latency pathways through real-time adjustment of the validation quorum. In parallel, the DNN identifies 

latent congestion risks from transaction density trends and triggers preemptive consensus recalibration, which limits 

propagation delays and reduces block finalization time. 
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Figure 6. Performance Comparison of Consensus Protocols; Graph (A): Average confirmation latency in different consensus 

protocols. Graph (B): Comparison of computational consumption between PoW, PoS, DPoS, PBFT, and AI Optimized. Graph 

(C): Attack tolerance as a function of the number of malicious nodes. 

Graph (B) represents the CPU consumption percentage for each protocol, providing a clear view of their 

computational efficiency. The results show that PoW remains the most demanding protocol, with 85% CPU 

consumption, which limits its scalability and viability on energy-constrained devices. PoS and DPoS reduce these values 

to 60% and 45%, respectively, while PBFT presents a load of 40% due to its predefined consensus validation structure. 

The AI-optimized protocol is the most computationally efficient, with a consumption of just 30%, allowing a more 

balanced allocation of resources and favoring the system's scalability. This efficiency is achieved by suppressing 

redundant consensus cycles, orchestrated by the DRL agent, and the intelligent filtering of candidate validators, informed 

by the DNN's feature extraction layer. The reward function penalizes unnecessary energy consumption and promotes 

lean validator sets that retain consensus guarantees while minimizing processing load. 

Graph (C) illustrates the evolution of attack tolerance based on the number of malicious nodes present in the network, 

evaluating each protocol's resistance to possible attacks. It is observed that PoW presents the lowest attack tolerance, 

with values ranging between 30% and 40%, making it more susceptible to threats such as 51% attacks. PoS and DPoS 

improve these metrics, reaching up to 75%, while PBFT increases the network's robustness, with a tolerance of 80% in 

adverse environments. The AI-based protocol achieves 92% tolerance, mitigating attacks by detecting anomalies and 

reconfiguring validators in real-time. The detection process leverages anomaly classification techniques embedded in 

DNN, which track deviations in validator behavior and transaction anomalies. When patterns consistent with Sybil, DoS, 

or collusion attacks are detected, the DRL module dynamically reconfigures the validator network, reallocating voting 

power and isolating malicious activity without human intervention. This coordinated response mechanism ensures high 

resilience even as the number of compromised nodes increases. 

4-5- Comparison with Other Technologies and Consensus Optimization Models 

Blockchain consensus optimization has been addressed from multiple perspectives in the literature, including 

heuristic-based techniques, deep neural networks, and hybrid mechanisms that combine different methodologies to 

improve network efficiency and security. In this section, the results obtained by the AI-optimized model are compared 

to these approaches, evaluating their performance in terms of confirmation latency, scalability (maximum TPS), 

computational consumption, and attack tolerance. 

4-5-1- Comparative Analysis of Optimization Models 

Table 6 presents a quantitative overview of each approach's efficiency regarding confirmation time, computational 

load, and the network's ability to process transactions and resist malicious attacks. 

(A) (B) 

(C) 
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Table 6. Comparison of Average Performance Between GANs and Traditional Methods 

Model Latency (ms) CPU Usage (%) Scalability (Max TPS) Attack Tolerance (%) 

Heuristic Optimization 600 50 10 75 

Deep Neural Networks 450 40 15 80 

Hybrid Consensus Mechanisms 380 35 18 85 

AI Optimized (Proposed) 320 30 22 92 

4-5-2- Comparison of Optimization Models 

Figure 7 shows Graph (A), a scatter diagram showing the relationship between confirmation latency and scalability 

(maximum TPS) in the evaluated models. It is observed that the models based on heuristic optimization are in the 

quadrant of lower scalability and higher latency, suggesting that, although these approaches improve certain aspects of 

consensus, they still have limitations in high-traffic networks. For their part, deep neural networks achieve a latency 

reduction of up to 450 ms and medium scalability. In comparison, hybrid mechanisms achieve greater efficiency with a 

latency of 380 ms and a maximum TPS of 18,000. 

 

Figure 7. Comparison with Other Technologies and Consensus Optimization Models; Graph (A): Relationship between 

confirmation latency and scalability. Graph (B): Comparison of computational consumption and attack tolerance 

The limited performance of heuristic and DNN-only models results from their static or single-layered learning 

capabilities: heuristic methods rely on fixed decision rules that do not adapt to real-time network conditions. At the same 

time, pure DNN architecture often operates in a predictive role without influencing the consensus policy. Hybrid 

mechanisms partially overcome these limitations by incorporating conditional modules for validator rotation or resource 

control; however, they still fall short in adapting to unforeseen network behaviors. In contrast, the proposed model 

integrates deep reinforcement learning with high-dimensional feature abstraction from a deep neural network (DNN), 

allowing the system to perceive, learn, and act upon network state changes in real-time. This end-to-end optimization 

explains its superior performance, positioning it in the lowest-latency and highest-scalability region. 

The AI-optimized model has the lowest latency and the best scalability. It achieves a maximum TPS of 22,000 and 

confirmation times of only 320 ms, indicating its ability to manage a high volume of transactions without affecting 

consensus speed. Graph (B) represents the relationship between computational consumption (%) and attack tolerance 

(%) in each evaluated model. It is observed that the models based on heuristics and deep neural networks present high 

computational consumption, with values of 50% and 40%, respectively, which could limit their implementation on 

devices with restricted resources. Hybrid mechanisms improve this aspect, with a consumption of 35%, although still 

above the AI-optimized model, which reaches 30%, being the most efficient approach in terms of resource use. 

This computational efficiency results from the DRL agent’s ability to minimize redundant consensus operations and 

dynamically prune underperforming validators using cost-sensitive learning. The model avoids unnecessary validator 

re-election or network-wide resets by encoding resource-awareness into its reward function. Concurrently, the DNN 

layer filters noise and identifies resource-intensive patterns, such as bursty transaction clusters or idle validators, 

allowing the system to redirect resources toward high-impact consensus paths. 

Regarding attack tolerance, heuristic models present a resistance of 75%, while deep neural networks increase this 

metric to 80%. Hybrid mechanisms further improve security, achieving 85% attack tolerance. However, the AI-

optimized model achieves the highest resilience, at 92%, demonstrating its ability to identify and mitigate threats in real 

time using advanced anomaly detection. 

(A) 
(B) 



Emerging Science Journal | Vol. 9, No. 4 

Page | 1905 

This robustness stems from a dual detection layer, where the DNN captures behavioral deviations such as propagation 

delay anomalies, abrupt stake changes, or validator inactivity patterns, and the DRL module responds by adaptively 

isolating suspect nodes and reconfiguring validator sets. Attack patterns are encoded in the agent’s policy through 

negative reinforcement during training, which penalizes compromised rounds and rewards configurations that maintain 

consensus integrity under adversarial conditions. This allows the model to sustain operational security without prior 

knowledge of the attack vector. 

4-5-3- Comparison with Previous Studies 

To contextualize the results obtained in this study, we make a qualitative comparison with recent research that has 

proposed blockchain consensus optimization models. 

• Taher et al. [12] Introduce the Snake Optimization Algorithm (SOA), inspired by snakes' hunting behavior, to 

improve blockchain scalability. Although they present an innovative methodology, no specific performance 

metrics, such as latency or CPU consumption, are provided. 

• Nourmohammadi & Zhang [13] propose an on-chain governance model based on Particle Swarm Optimization 

(PSO) to reduce the probability of forks in sharded networks. Their experiments show a 60% reduction in orphaned 

blocks when adding shards to the system, suggesting improvements in network stability. 

• Paidipati et al. [14] develop a DDoS attack detection and mitigation technique in cloud-based software-defined 

networks, using a deep reinforcement learning approach and metaheuristic algorithms. Although the improvement 

in attack detection is highlighted, metrics such as latency or scalability are not detailed.  

• Gupta et al. [15] present a hybrid PoW-PoS implementation to counter 51% attacks in cryptocurrency systems. 

Their approach combines consensus mechanisms to improve security, but detailed performance metrics are not 

specified.  

In comparison, the AI-optimized model proposed in this study integrates deep learning and reinforcement learning to 

dynamically adjust consensus parameters, achieving significant improvements in latency, scalability, energy efficiency, 

and attack tolerance. Although the studies above offer valuable contributions in their respective approaches, integrating 

AI techniques into our model provides a more holistic solution adaptable to blockchain networks' dynamic demands.  

5- Discussion 

The results obtained in this study demonstrate that integrating AI into blockchain consensus optimization allows 

overcoming the limitations of traditional mechanisms and improving network performance in terms of latency, 

computational consumption, scalability, and security. Various approaches have addressed these problems in the literature 

with heuristic optimization, deep neural networks, and hybrid consensus mechanisms [28]. Previous studies have shown 

that heuristic-based methods offer a moderate improvement in efficiency but lack dynamic adaptability. At the same 

time, deep learning approaches can improve the prediction of network behavior without directly intervening in the 

consensus process [29]. Furthermore, hybrid mechanisms have managed to balance decentralization and security, albeit 

with high computational costs and risks of centralization in transaction validation. The AI-optimized model proposed in 

this study improves comprehensively by combining feature extraction with deep neural networks and reinforcement 

learning-based decision-making, providing an adaptable and robust protocol against changes in network load and 

security threats [23]. The optimization process implemented in this work allows for the dynamic selection of validators 

and real-time adjustment of consensus parameters based on latency, transactional load, and node behavior metrics. 

Unlike traditional static models, where validators are predefined or selected based on fixed rules, the AI-based approach 

achieves efficient load distribution, improving performance without compromising security. This translates into a 

significant reduction in confirmation latency, reaching 320 ms in high transactional load scenarios, representing a 60% 

improvement over PoW and 20% over PBFT. This confirms the model's effectiveness in environments with high 

transaction demand. 

The results show that the comparison with other advanced models shows the superiority of the proposed approach. 

Although heuristic mechanisms offer some improvement in computational efficiency, they cannot adapt to dynamic 

variations in the network, making them less effective in variable load scenarios. Deep neural networks applied to 

blockchain have proven helpful in traffic prediction, but their results depend on the quality of the training data and do 

not modify the consensus structure. Hybrid models, such as the combination of PBFT with PoS, achieve reduced 

confirmation times and more excellent attack resistance but introduce centralization risks in block validation. The AI-

optimized model overcomes these limitations by providing an adaptive solution that optimizes validation without relying 

on a rigid node selection scheme. 

From a methodological point of view, the combination of DQN [7] and PPO has been key to the model's adaptive 

capacity [30]. While DQN allows for discrete reward-based optimization, PPO introduces regularization mechanisms 

that guarantee learning stability. This has been critical to prevent the model from making excessive adjustments to the 
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consensus difficulty, which could lead to inefficiencies in the network. Furthermore, dimensionality reduction 

techniques, such as PCA and Autoencoders, have minimized the system's computational load without affecting decision-

making accuracy. 

This work's impact lies in its applicability to blockchain environments with high transactional load and strict security 

requirements. The model's ability to dynamically adjust to network conditions makes it viable for decentralized payment 

infrastructures, innovative contract platforms, and distributed storage systems, where efficiency and security are 

determining factors. Compared to other consensus optimization approaches [31], the proposed model introduces an 

autonomous intelligence layer that allows the network to improve its performance without manual intervention, reducing 

the need for predefined configurations and increasing resilience against attacks. 

However, it is essential to recognize the study's limitations and their potential impact on interpreting the results. One 

of the main restrictions is the model's dependence on representative training data since the consensus's dynamic 

adjustment capacity can be affected if the data used to train the AI does not adequately reflect the actual conditions of 

the network. This implies that, in scenarios where network traffic changes abruptly or new security threats not 

contemplated in training arise, the model might require a retraining process to maintain its effectiveness. 

Another relevant limitation is the computational cost of the model's initial training, which, although reduced through 

neural network compression and optimization techniques, still represents a challenge regarding infrastructure. While the 

optimized model reduces the computational load in the operation phase, its initial implementation requires hardware 

resources with advanced capabilities, which could restrict its adoption in blockchain networks with limited infrastructure. 

Despite these limitations, this study's findings represent a significant advance in optimizing blockchain consensus 

through artificial intelligence. Combining deep and reinforcement learning techniques has allowed the development of 

a model that improves network performance and introduces a layer of autonomy in consensus decision-making, making 

it an innovative approach with high application potential in decentralized environments. 

6- Conclusions and Future Work 

This work has shown that integrating AI into blockchain consensus optimization significantly improves network 

performance in terms of latency, scalability, computational consumption, and security. By designing a model based on 

deep and reinforcement learning, an adaptable solution has been achieved that dynamically optimizes the selection of 

validators and the difficulty of consensus without compromising the system's security or decentralization. 

One of the most relevant findings is the reduction of transaction confirmation latency. While traditional mechanisms 

such as PoW and PBFT present validation times of 1200 ms and 400 ms, respectively, the proposed model manages to 

reduce these values to 320 ms in high transactional load scenarios. This result results from implementing deep learning 

techniques, which predict the network's behavior and adjust the consensus parameters in real time. 

Regarding scalability, AI-based consensus optimization has increased the maximum TPS to 22,000, surpassing the 

18,000 TPS achieved by hybrid mechanisms such as PBFT combined with PoS. This is due to the model's ability to 

identify patterns in network load and efficiently redistribute validators, which minimizes computational overhead and 

maximizes performance without affecting system security. 

The study has also shown improvements in computational efficiency. The load on validators has been reduced by 

30% compared to traditional models, which implies lower energy consumption and a decrease in demand for 

computational resources. While PoW and other traditional schemes require intensive use of CPU and GPU, the AI-based 

model dynamically adjusts processing requirements based on network needs, optimizing resource usage without 

sacrificing performance. 

Regarding system security, the results have shown that the optimized model achieves a tolerance of 92% against 

attacks such as Sybil, 51%, and DoS, improving resistance to these attacks by 15% compared to hybrid consensus 

models. This increase in security is due to the model's ability to detect anomalies in real-time, allowing for the immediate 

reconfiguration of validators and the adoption of defensive strategies before attacks affect the stability of the network. 

Despite these advantages, certain limitations must be considered. The model's dependence on high-quality training 

data may affect its ability to generalize in blockchain networks with behaviors significantly different from those used 

during the training phase. In addition, while the model optimizes computational consumption during its operation, its 

initial training phase requires significant hardware resources, which could represent an obstacle to its implementation in 

infrastructures with limited capacities. Another aspect to explore is extending the model to federated and hybrid 

blockchains, where multiple networks share infrastructure without depending on a single validation authority. The 

challenge lies in designing coordination mechanisms between networks that maintain decentralization and security 

without compromising efficiency. 
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