
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 9, No. 4, August, 2025 

 

 

Page | 1962 

 

Unleashing Effective Identification of ALS Based on Vowel 

Phonation: A Deep Learning Approach 

 

Hussein Al-Dossary 1* , Mohamudha Parveen Rahamathulla 2 , Mohemmed Sha 3  

1 University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia. 

2 School of Life and Health Sciences, University of Roehampton, London, United Kingdom. 

3 Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University,              

Al Kharj 11942, Saudi Arabia. 

 

 

Abstract 

ALS (Amyotrophic Lateral Sclerosis) is one of the fatal diseases across the world. Therefore, early 

detection can save patients suffering from ALS from life-threatening consequences. Typically, ALS 
can be identified based on different factors, and one such factor is voice analysis. Detection of ALS 

using sound signals is convenient and simpler than other methods, as it is a non-invasive approach, 

which makes the process faster and more efficient for detection. However, detection of ALS using 
traditional approaches is challenging, as it is a time-consuming process and heavy reliance on 

medical experts is needed. Therefore, AI-based models can be used for effective classification of 

ALS and non-ALS patients, as AI-based models possess the immense ability to examine vast 
amounts of data, including audio files, effectively. Owing to these factors, the proposed model 

focuses on employing an AI-based model for ALS classification based on vowel phonation /a/ and 

/i/. The process is carried out using the Minsk2020 dataset, where important features needed for the 
proposed model are extracted using MFCC (Mel-frequency cepstral coefficients) by removing the 

shakiness and jitteriness of the voice. The MFCC feature extraction technique extracts features based 

on the mel scale, as this reflects human auditory perception, thereby extracting features that are 
useful for classification. These extracted features are fed to CNN-LSTM (Convolutional Neural 

Network – Long Short Term Memory) with rapid dilatenet for classifying ALS and non-ALS 

patients accurately by identifying even the subtle changes in audio signals using maximizing the 

expansion/dilation rate and aid the context information for interpreting and analyzing the sound of 

vowels accurately and correctly without any loss of information. Finally, the efficacy of the proposed 

model is assessed using evaluation metrics. The proposed research work can assist medical 

professionals in detecting patients with ALS based on vowel phonation. 
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1- Introduction 

ALS, or amyotrophic lateral sclerosis [1-3], is a progressive neurodegenerative disease that affects the nerve cells in 

the brain and spinal cord [4]. "Amyotrophic" derives from the Greek language, in which "A" signifies "no" [5], "myo" 

refers to muscle, and "tropic" refers to nourishment. Thus, the term "amyotrophic" represents "no muscle nourishment" 

[5]. Likewise, "lateral" refers to the area in a person's spinal cord [6] where a portion of the nerve cells that signal and 

control the muscles are located. As this area degenerates, it leads to "sclerosis," which is scarring or hardening in the 
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region [7]. Figure 1 shows the normal nerve cells and muscle cells vs. affected nerve and muscle cells. Thus, ALS is 

considered one of the fatal diseases [8, 9] that needs to be identified and treated as early as possible in order to avoid 

further complications. Statistics indicate that 1 in 500 adults dies [10] from ALS in the USA, and over 16 million people 

who are alive can suffer from this disease due to an imbalance in diet or lifestyle changes. Therefore, it is important to 

detect ALS as quickly as possible in order to avoid life-threatening situations. 

 

Figure 1. Normal nerve vs ALS affected nerve [11] 

In order to detect ALS, different approaches are employed. Some of the conventional approaches implemented for 

detecting ALS using sound data include manually assessing the speech patterns by listening to the recordings [12, 13] 

of patients to detect the changes in tone, rhythm, and intonation. Similarly, manual inspection using cough and 

swallowing sounds also detects the changes that happen in patients with ALS [14]. Besides, clinicians also utilize 

different equipment for listening to the sounds produced by the muscles of the patients. Furthermore, the employment 

of laryngoscopy by clinicians to visually inspect the vocal cords of the patients and speech production mechanism for 

indicating the early signs of ALS [15]. Despite the performance of the conventional tactics, there are certain limitations 

that need to be overcome to obtain better outcomes, such as the time-consuming process of traditional approaches, 

proneness to errors, heavy dependency on medical professionals and experts, and laborious and tedious processes. 

Therefore, AI-based models can be used to attain promising results, as AI is an advanced technology that can work and 

analyze massive amounts of data efficiently [16]. AI-based models can assist with identifying and monitoring ALS by 

assessing the sound signals, including vowels [17, 18]. Therefore, by analyzing the characteristics of vowel sounds, AI 

models can identify the changes in speech patterns effectively. Owing to the advantages of AI, different existing works 

have used AI techniques [19]. 

Different ML and DL algorithms [20], like NB (naïve Bayes), KNN (k Nearest Neighbor), DT (Decision Tree), 

SVM (Support Vector Machine), ANN (Artificial Neural Network), and LDA (Linear Discriminant Analysis), 

were used in the study for classification of ALS and non-ALS patients using speech phrases. Relatively, the 

performance of the model has been further enhanced by using PCA compression. The experimental outcome 

obtained from the model showcased that the SVM model has delivered a better accuracy rate for the detection of 

ALS and non-ALS patients. Similarly, SVM and DT [21] are used for the identification of ALS patients based on 

the articulatory phenotypes, which include coordination of the speech, speed of the speech, precision, and 

consistency of the speech. 

Though the existing models have focused on different sound-based phonatory tasks, identification of ALS based on 

vowel phonation is limited. Besides, there are varied limitations faced by the state-of-the-art approaches, such as low 

accuracy, overfitting of the model, lack of studies using the Minsk2020 dataset, inability to work with a wide range of 

data, and scalability issues. Further, many existing models may not fully capture the temporal aspects of speech, which 

are crucial for understanding the progression of ALS due to the implementation of ineffective algorithms. Moreover, the 

existing models are known to be challenging, as the acoustic features can consist of jitter, shimmer, and harmonics-to-

noise ratio, which can vary significantly among individuals. This variability can lead to difficulties in establishing a 

reliable baseline for distinguishing between healthy individuals and those with ALS, particularly in early stages when 

symptoms may be subtle. Thus, the proposed model focuses on designing a model that detects the patients with ALS 

depending on the sustained vowel phonation, as identification of ALS using vowel sounds requires less articulation and 

provides a more reliable outcome for classification, as vowel sounds are more acoustically stable and can be easily 

detected using software tools. Thus, the vowel phonation approach is focused on the proposed model for the classification 

of ALS and non-ALS patients as/a/ and /i/. Unlike other existing works, which extracted vowels from running speech 
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tests, sustained phonation of vowels is focused on effective classification outcomes. In order to accomplish this, the 

proposed work focuses on implementing a hybrid CNN-LSTM with a rapid dilatant model for efficiently classifying 

patients suffering from ALS based on the phonations of vowels. 

1-1- Motivation and Research Contribution  

ALS is considered one of the fatal motor neuron diseases [22, 23], which is characterized by progressive degeneration 

of nerve cells in the spinal cord and brain. Therefore, it is important to detect ALS symptoms as quickly as possible to 

avoid life-threatening situations. There are different ways to identify the symptoms of ALS in a patient. However, 

detection of ALS using sound signals like vowel phonation helps with better outcomes, as it is a non-invasive procedure 

that uses samples collected from EMG and lumbar puncture methods and also acts potentially faster than other 

approaches. However, manual approaches for ALS detection can be challenging, as pitch, duration, coordination of 

speech, and frequency of patients' vocal cords suffering from ALS may vary from non-ALS patients, and it can be 

extremely time-consuming and tedious to detect ALS effectively using conventional approaches. Thus, AI-based models 

can be used for detecting ALS effectively, as they can handle huge amounts of data and reduce the risk of human error 

in diagnosis. However, existing researchers could not work with the substantial size of datasets, which can result in 

imprecise, ineffectual outcomes and inaccurate accuracy of the models for ALS classification based on vowel phonation 

due to the incorporation of ineffective algorithms. 

Motivated by these factors, the proposed work utilizes MFCC for feature extraction, which captures the spectral 

characteristics of sound, as it is considered to be effective for vowel phonation. Moreover, when a patient produces a 

vowel sound, the vocal cords vibrate at specific frequencies, creating formants in the sound spectrum, and these 

frequencies aid in identifying the vowels. In healthy individuals, formants transition smoothly within a vowel sound, 

whereas, due to muscle weakness, the vocal cords in ALS patients can become slower, shakier, and unstable; thus, the 

proposed work utilizes the MFCC feature extraction technique for extracting features based on the mel scale, as this 

reflects human auditory perception, thereby extracting features that are useful for the classification of ALS. Then, the 

classification of ALS is employed using the proposed CNN-LSTM with a rapid dilatant model for effectively classifying 

the patients as suffering from ALS and non-ALS patients. Features extracted from MFCC are sent to the proposed CNN-

LSTM model, in which CNN aids in learning the features automatically for detecting the significant patterns in the 

signals, whereas the LSTM utilizes the spectral features from CNN to comprehend the flow and context within the vowel 

phonation efficiently. 

Further, long-term dependencies of the LSTM model refer to the changes between sounds that are all separated by 

relatively long durations within vowel sounds. However, audio signals can be intricate and complex to dissect the 

changes effectively; hence, the proposed CNN-LSTM uses a rapid dilatenet function, which helps in identifying even 

the subtle and delicate changes in audio signals and effectively classifying ALS and non-ALS patients by maximizing 

the expansion/dilation rate and aids the context information for interpreting and analyzing the sound of vowels accurately 

and correctly without any loss of information. Therefore, the contribution of the research involves: 

● To employ MFCC for effectively extracting the features for the model using vowel phonations of the patients 

using the Minsk2020 dataset  

● To implement the CNN-LSTM model for the classification of ALS based on vowel phonation.  

● To perform binary classification of ALS and non-ALS patients using the proposed CNN-LSTM model with rapid 

DilateNet function by addressing the contextual information is essential for accurately interpreting and analyzing 

vowel sounds without any loss of detail. 

To evaluate the performance of the proposed model, a range of metrics are employed, including accuracy, sensitivity, 

and specificity. 

2- Literature Review 

Different existing works done for the classification of ALS and non-ALS patients are reviewed in the subsequent 

section.  

ALS is defined as one of the neurodegenerative diseases that specifically affect speech impairments, the spinal cord, 

and swallowing difficulties [22-24]. Moreover, the rise of ALS has increased gradually in old-age people, and it cannot 

be diagnosed easily. Therefore, different classification algorithms are used for detecting ALS effectively. SVM [25] has 

been used in the study for the classification of ALS patients and HC based on sustained vowel phonation, as early 

diagnosis of ALS can inevitably enhance the quality of life to a certain extent. Similarly, the biomechanical process of 

voice production has been used for distinguishing ALS patients from non-ALS patients. In order to accomplish the 

process, RF (Random Forest) [26] has been utilized for classification, and the result is projected to demonstrate the 
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potential of using vocal fold dynamics for ALS identification. The drawback of the model is the generalizability of the 

findings. Likewise, a study focused [27] on developing a robust and efficient system for detecting voice pathologies 

using the LSTM method. This research integrated a novel combination of feature sets, including MFCCs, Zero Crossing 

Rate and Mel Spectrograms. The implementation of the LSTM approach significantly enhanced the accuracy of voice 

pathology identification when applied to samples from the SVD (Saarbruecken Voice Database), and the experimental 

results were evaluated utilizing accuracy, precision, specificity, sensitivity, and F1 measures. Similarly, the OSELM 

(Online Sequential Extreme Learning Machine) model [28] has been used to classify voice signals as either healthy or 

pathological. Voice features were extracted using MFCC, with samples of the vowel /a/ collected equally from the SVD. 

The OSELM approach was assessed using three widely recognized metrics: accuracy, sensitivity, and specificity. The 

results demonstrated that the maximum values achieved were 85% for accuracy, 87% for sensitivity, and 87% for 

specificity. 

Approximately 80-96% of people suffering from ALS automatically lose their ability to speak during the disease 

progression. Thus, Milella et al. [29] have aimed to assess the detection of ALS clinical phenotypes using acoustic voice 

parameters. Acoustic voice analysis used in the study is considered to be useful for differentiating flaccid dysarthria and 

spastic dysarthria and also for assessing the degree of bulbar involvement in ALS. However, the small sample size used 

in the existing work has restricted the generalizability of the findings and also the robustness of the model. Likewise, the 

classification of ALS patients has been focused on the existing work [30], in which, based on the vowel patterns, ALS 

patients have been distinguished without any bulbar involvement. The vowel pattern used in the study has been produced 

from quasi-periodic components for detecting the deficiency in females and males via utterance of the vowels, and the 

classification process has been carried out using the RF technique. Correspondingly, DT (Decision Tree) has been used 

for separating the patients with ALS and non-ALS using acoustic analysis in assorted voice signals of different degrees 

of impairment. 

Bulbar dysfunction is one of the terms utilized in ALS. It is a motor neuron disability that could lead to dysfunction 

of swallowing and also speech issues [31, 32]. Hence, voice deterioration is considered one of the early symptoms of 

bulbar dysfunction [32]. Therefore, the research work focused on identifying and diagnosing the problem automatically 

at the early stages of the disease. The process can be accomplished by using RF and SVM [34] models. However, from 

the experimental outcome, it was demonstrated that RF delivered a better outcome than SVM. Precise detection of 

features [34, 35], which have been extracted from the acoustic analysis of the vowels produced by patients suffering 

from ALS, aids in performing the classification of ALS and non-ALS. PCA [35] was utilized for obtaining features, and 

SVM with a 50% classification threshold was implemented for employing the classification process. The inherent 

variability is considered one of the limitations of the study in addition to the small sample size data drawback. As 

speakers differ in production, even identical speakers in an identical context do not possess the ability to produce 2 

completely indistinguishable utterances; therefore, manual methods used in the study for processing the speech are not 

precise and require proper manual correction for obtaining effective outcomes. 

Detection of ALS using speech and voice symptoms can be challenging for both automatic systems and human 

specialists [36]. Hence, Vashkevich & Rushkevich [37] have focused on using MFCC for feature extraction. Further, a 

set of acoustic features was used for classifying the patients based on vowel phonations. In order to perform 

classification, LDA (Linear Discriminant Analysis) has been carried out, and the LASSO technique has been used for 

feature selection. Employment of these techniques aids in better classification of HC from ALS patients. Likewise, the 

LDA classifier [38] has been used for determining the group of ALS patients and HC. The model used in the study was 

developed using a mobile application and was processed using a Minsk dataset with 64 voices. Usage of the LDA 

classifier has delivered better outcomes at a low cost. Supervised learning approaches [17] such as SVM, LR, NB, DR, 

and RF have opted for the classification of ALS and non-ALS. Classification of the model is based on vowels, sentences, 

and coughs of the patients using the HomeSenseALS dataset and Minsk dataset, and different results have been obtained 

for different approaches.  

Likewise, the Bayesian LR classifier [39] has been implemented to distinguish between ALS and HC. The dataset 

used in the study consisted of 119 ALS and 22 controls, which aided in the classification of ALS. As swallowing and 

speech difficulties are considered as one of the early signs of ALS, it is important to employ techniques that aid in the 

detection of ALS. Thus, the correlation-based feature selection technique [40], PCA for reducing the dimensionality of 

the dataset, and SVM for classification of the model have been implemented in the study for ALS classification, and the 

analytical outcome displayed by the model, like accuracy and sensitivity, was 84.2% and 77.8%. Running a speech test 

[41] was preferred in the study for the detection of ALS, and selected vowels were extracted from the input audio signals. 

The process is accomplished by using an LDA classifier, and the detection accuracy attained by the model for the 

classification of ALS and non-ALS patients is 84.8%. 
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Table 1. Summary of the existing works 

S.No Reference Method Methodology Outcome 

1 
Simmatis et 

al.(2024) [39] 
LDA classifier 

The model employed in the study was developed by Bayesian 

logistic regression classifier and was processed using a Minsk dataset 

with 64 voices by LDA classifier through automated assessment app. 

Usage of the LDA classifier has 

delivered better outcomes at a low 

cost 

2 
Lv et al. (2024) 

[42] 
A novel audio-visual fusion model 

The model has used audio-visual samples from 130 PD patients and 

90 healthy participants. The classification process has attained by 

based on Transformer cross attention module 

The model has been attained 

average performance of 92.68%. 

3 
Alqahtani et al. 

(2024) [43] 

RSFFNN-CNN (Resemble Single 

Feed Forward Neural Network-

Convolutional Neural Network) 

The model has been classified the ALS clinical associations to 

analyze the ALS. The model has customized each hidden layer by 

“k” parameter. 

The model has been attained 

average performance 

4 
Al-Dhief et al. 

(2024) [28] 

OSELM (Online Sequential 

Extreme Learning Machine) 

Voice features were extracted using MFCC, with samples of the 

vowel /a/ collected equally from the SVD. The OSELM approach 

was assessed using three widely recognized metrics: accuracy, 

sensitivity, and specificity. 

The results demonstrated that the 

maximum values achieved were 

85% for accuracy, 87% for 

sensitivity, and 87% for specificity. 

5 
Mahum et al. 

(2024) [44] 

Tran-DSR (Transformer 

Dysarthric Speech Recognition) 

The model has encompassed strength of Transformer encoder and 

ensemble deep networks. The existing research has included two 

ensemble scenarios and self-attention approach has been used to 

construct the Transformer encoder 

The model has been attained better 

performance 

6 
Rong et al. 

(2024) [45] 

The model combined acoustic 

instrumental and facial sEMG 

techniques to compare the 

multimodal performance 

The model has been used SVM with RBF kernel based on RF to 

classify the ALS 

The model has been attained 

average performance of 88%. 

7 
Mehra et al. 

(2024) [46] 
Deep BiLSTM-GRU model 

The model has been used SepFormer and Swim transformer to 

extract the audio signals from the dataset. The classification process 

has achieved by deep BiLSTM-GRU. 

The model has been attained 

average performance 

2-1- Research Gaps 

The gaps identified by the existing works have been explicated as follows: 

● The small sample size used in the existing work has restricted the generalizability of the findings [28] and also 

the sturdiness of the model [28]. Thus, larger and more diverse samples can improve the robustness and strengthen 

the results of the paper, which is focused on the proposed work.  

● Manual detection [35] used in the suggested model for processing the speech is not precise and can potentially 

lead to inaccurate classification of ALS and non-ALS patients; hence, this needs to be overcome by employing 

effective AI methods.  

● Though the accuracy [37, 41] obtained by the models for classifying ALS and non-ALS is considerable, better 

accuracy can be attained by using capable algorithms.  

The LDA classifier [39] does not consider issues such as class imbalance, as well as the influence of feature selection 

methods, which are known to affect model performance for voice-based disease classification. 

3- Proposed Methodology 

ALS is defined as one of the incurable neurological diseases with a rapidly progressive course that can threaten the 

life of a human being. Therefore, it is important to detect this disease early in order to prevent serious consequences. 

There are different ways of detecting ALS in the human body, which include muscle weakness, twitching, muscle 

cramps, and difficulty in walking or speaking; however, detection of ALS through sound can be effective since it is non-

invasive, easy to administer, and does not require any specialized equipment for detection. Besides, the sound of vowels 

for ALS detection is emphasized by the experts, as ALS first affects the muscles involved in speech production. Hence, 

any changes in speech patterns, like the forming of words or slurred speech, are considered to be early signs of ALS. 

However, detection of ALS using vowels can be challenging since voice symptoms differ from person to person, which 

makes it tedious to identify ALS effectively. 

Moreover, these two vowels are phonetically maximally distinct, because the vowel /a/ is articulated with the tongue 

in a low and back position in the mouth, and the lips are open when articulating. Acoustically, the vowel is defined by 

both a low first formant (F1) and a low second formant (F2). The vowel /i/ is, however, articulated with the tongue in a 

high and front position of the mouth, and the lips are unrounded. Acoustically, /i/ has a high F1 and a high F2, making 

it unambiguously distinguishable from /a/ in both the position of the tongue and formant profile. These differences in 

articulation and acoustics are basic to the differentiation of vowel sounds in speech analysis. 

The vowels /a/ and /i/ stand at the opposite ends of the vowel space, with /a/ being low-back and /i/ high-front, thus 

making these two vowels very sensitive to changes in motor control and vocal tract stability. Under ALS, due to muscle 

weakness or instability, a reduction in the vowel space and lessened articulatory precision tend to occur, with very evident 



Emerging Science Journal | Vol. 9, No. 4 

Page | 1967 

changes in formant transition, jitter, and shimmer seen especially in these vowel types. Studies have found /a/ and /i/ to 

be the most sensitive to bulbar involvement and dysarthria in ALS, demonstrating early and measurable changes in 

formant structure, duration, and spectral tilt as the disease progresses. 

However, even though more approaches are used for detecting ALS in individuals effectively, there are certain 

drawbacks that need to be taken into consideration, such as a time-consuming process, proneness to error, heavy 

dependency on experts and medical professionals, subjectivity, and lack of standardization. Hence, in order to overcome 

these drawbacks, AI-based models can be implemented, as they possess various advantages like the ability to analyze 

huge amounts of data effectively and examine the patterns and relationships between the data efficiently. However, the 

classification of ALS using vowel phonation in existing works lacked the delivery of better accuracy and capable 

outcomes that can lead to the proficient classification of ALS and non-OIP patients. Hence, the proposed model works 

with algorithms that are capable of producing desirable outcomes for the classification of ALS and non-ALS based on 

vowel phonation /a/ and /i/. Thus, Figure 2 shows the process involved in the proposed mechanism for ALS classification. 

 

Figure 2. Overall Flow of Proposed Model 

The proposed process is depicted in Figure 2. Where the process is carried out by loading the dataset. Once the dataset 

is loaded, data is pre-processed using the normalizing technique. The normalization method takes place by adjusting the 

amplitude of an audio signal to a desired level. After pre-processing, feature extraction is done by using the Mel 

frequency method. As the pronunciation of vowels and the lagging time of patients suffering from ALS may vary from 

person to person, it is important to detect even the slightest changes in the motion of the articulators appropriately.  

Voice analysis takes advantage of acoustic feature extraction namely, fundamental frequency (F0), jitter, shimmer, 

harmonics-to-noise ratio (HNR), and formant frequencies (F1, F2, F3)—to identify speech anomalies and articulatory 

impairments typical of neurodegenerative conditions like ALS. The use of methods like Mel-Frequency Cepstral 

Coefficients (MFCCs) is especially beneficial in detecting symptoms like dysarthria, slurred speech, and vocal tremors, 

making it possible to systematically detect disease progression. The cost-effective, scalable, and non-invasive 

characteristics of voice analysis enable early detection, remote monitoring, and ongoing assessment, making it an 

important technology for the creation of AI systems that can diagnose neurological disorders prior to overt symptoms 

and ultimately enhance patient outcomes. 

Therefore, MFCC employment is used in the proposed model, as it inherently possesses the capability to model an 

irregular movement of the vocal folds and aids in extracting suitable features needed for the model to perform the 

classification of ALS using vowel phonations. After feature extraction, the dataset is split as a train-test split (80%-20%). 

After the train-test split, the classification process takes place by employing the CNN-LSTM model with the rapid 

dilatant technique. Implementation of CNN helps with automatically learning the features to detect significant patterns 

in MFCCs, and these patterns could denote formants that are extremely crucial for vowel phonation. Moreover, the 

employment of the LSTM model for handling sequential data like speech. 

In addition, the internal memory of the LSTM model permits the model to remember information from previous 

sounds and utilize the context to comprehend the current sound. This function is important for capturing the nuances of 

vowel phonation. However, it is extremely crucial to identify the subtle changes in the sound signals of vowel phonation, 

as it helps with the identification of ALS patients easily. In order to achieve this, the proposed work utilizes a rapid 

dilatant model. The proposed rapid dilatenet controls the spacing between the filter elements within the kernel. By 

inserting zeros between elements, the filter can examine a wide range of the input data and aids in identifying even the 

subtle changes in vowel phonation. This could be due to the dilation rate used in the proposed model, which comprehends 

the temporal relationships and variations in the vocal characterization of the data that lead to the effective classification 

of ALS. Eventually, evaluation metrics are used for gauging the efficacy of the proposed model. The overall process that 

takes place in the proposed mechanism is illustrated in Figure 3. 
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Figure 3. Architecture of Proposed Mechanism  

3-1- Dataset Description 

The Republican Research and the Clinical Center of Neurology and Neurosurgery (Belarus, Minsk) has the driven 

voice database. With corresponding sustained vowel phonations of 128 (64 of vowel/a/ and 64 of vowel/i/) among 64 

speakers, 31 have been spotted with ALS. For each single one, the speaker has been demanded to render the upheld 

phonation of vowels /a/and /i/ at a convenient standard of promotion for a while. The voice database is comparatively 

well-balanced and comprises pathological voices of 48% and healthy voices of 52%. Table 2 shows the number of 

speakers and percentage of ALS and non-ALS patients. 

Table 2. ALS and non-ALS speakers 

Speaker Group Number of Speakers Percentage 

ALS 31 48 

Healthy 33 52 

In addition, Table 2 represents the gender of ALS, HC male, and ALS, HC female, with their age range and mean age 

(SD) in Table 3. 

Table 3. Age range and Mean  

Gender Age Range Mean Age (SD) 

ALS Male 40-69 61.1 (7.7) 

ALS Female 39-70 57.3 (7.8) 

HC Male 34-80 50.2 (13.8) 

HC Female 37-68 56.1 (9.7) 

Table 2 shows that the study included 17 male patients aged 40–69 years (mean 61.1 ± 7.7) and 14 female patients 

aged 39–70 years (mean 57.3 ± 7.8). Among the Healthy Controls (HC), there were 13 men aged 34–80 years (mean 

50.2 ± 13.8) and women aged 37–68 years (mean 56.1 ± 9.7). Speech samples were recorded using various smartphones 

with standard headsets and stored as uncompressed 16-bit PCM files. The mean phonation duration for the HC group 

was 3.7 ± 1.5 seconds, while for the ALS group it was 4.1 ± 2.0 seconds, as presented in Table 4. 

Table 4. Mean and SD 

Recording Duration (s) Mean Standard Deviation 

HC 3.7 1.5 

ALS 4.1 2 
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3-2- Feature Extraction  

Feature extraction is carried out in the proposed model, as it aids in extracting significant information from the audio 

signals, which can be utilized for identifying the patterns and characteristics indicative of the disease. As the feature 

extraction process primarily focuses on extracting relevant features needed for the model, effective feature extraction 

techniques should be taken under consideration for obtaining outcomes like the pitch of the sound, intensity of the sound, 

and formants from the speech signals. Moreover, the implementation of the feature extraction process also minimizes 

the dimensionality of the data, thereby making the process of classification effective and efficient. Thus, in order to carry 

out the process of feature extraction, the proposed model emphasizes using the Mel frequency technique, primarily due 

to the model's ability to meticulously resemble the human auditory system response to sound. Besides, the Mel frequency 

scale is considered to be a logarithmic scale, which represents how humans perceive sound frequencies as opposed to a 

linear scale. Thus, features extracted using Mel frequency are likely to capture significant and detailed characteristics of 

the sound signals, which are relevant for human perception, and it is achieved due to the ability of MFCC to capture 

spectral characteristics of sound, which are important for vowel phonation. 

The process of the Mel Frequency model typically involves applying techniques such as: 

• Windowing – Windowing aims to minimize the discontinuous effect on the signal after the framing process. Thus, 

ideal windowing should be used so that the features of each sound are not wasted.  

• Fourier Transform—This is used to obtain the frequency spectrum of a signal by converting a time-domain signal 

into a frequency-domain signal. 

• Mel Filter bank – Employment of Mel FilterBank helps with capturing the perceived pitch difference more 

precisely and efficiently.  

• Logarithmic scaling – Logarithmic scaling is applied to the output of the Mel FilterBank with the aim of 

representation similar to that of human perception of sound.  

Thus, Algorithm I shows the process involved in Mel frequency for the feature extraction process. 

Algorithm I. Mel Frequency 

Input: Signal (Vowel phonations signal) 

Output: MFCC (MFCC of Vowel phonations signal) 

Function MFCC (parameters): 

   Initialize Parameters: 

Number of frames, Frame Size, Number of filters in the mel filterbank, 

Number of MFCCs to extract, Other relevant parameters. 

   Frame the Signal: 

Split the Vowel phonations signal into overlapping frames of a specified size. 

   Apply Windowing: 

Apply a Hamming window to each frame to reduce spectral leakage. 

   Compute the Spectrogram: 

For each frame: 

Apply the Fast Fourier Transform (FFT) to obtain the magnitude spectrum. 

   Apply Mel Filterbank: 

Construct a mel filterbank with triangular filters spaced according to the mel scale. 

Apply the filterbank to the magnitude spectrum of each frame, resulting in a mel-scale energy 

representation. 

   Take Logarithm: 

Take the logarithm of the mel-scale energies for each frame. 

   Compute MFCCs: 

Apply the Discrete Cosine Transform (DCT)to the log mel scale energies for each frame. 

Keep the first N coefficients as the MFCC features. 

End Function 

Initially, the process starts by feeding input to the proposed model for feature extraction. Then, parameters are 

initialized accordingly, such as the number of frames, frame size, number of filters in the mel FilterBank, number of 

MFCCs for extraction, and other parameters used. Once the parameters are initialized, signals are framed, in which the 

vowel phonation signals are split into overlapping frames of a specified size. Once the signals are framed, a windowing 

technique is implemented, which aids in reducing the spectral leakage that appears when examining finite duration 
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signals. More specifically, the Hamming window is used in the proposed work as it tapers the edge of the signals to 

minimize the distortion in the frequency domain, thereby resulting in a precise analysis of the frequency components of 

the signals. After this process, a spectrogram is computed for visualizing the frequency content of a signal over time, 

and for each frame, FFT is applied for obtaining the magnitude spectrum. 

Further, the Mel FilterBank is utilized with triangular filters spaced according to the mel scale. The purpose of 

applying the Mel FilterBank is to extract relevant features from the audio signals that are characteristic of the diseases. 

Application of this filter aids in capturing the frequency distribution of the vowel sound, thereby making the process of 

classification much easier depending on the patterns. Eventually, the Mel spectrogram is compressed by utilizing the 

logarithmic function to reduce the dynamic range of the signal. Later, MFCC is computed by applying DCT to the log 

mel. DCT can also be applied for further compressing the MFCCs into a reduced set of coefficients while preserving the 

significant information needed for the model. Further, Standard Scalar is used for removing the mean and scaling each 

feature to unit variance, and PCA decomposition is used for reducing the dimensionality of the data, thereby reducing 

the noise of the data to enhance the performance of the model by focusing on the significant features. Thus, Figure 4 

shows the features extracted using MFCC. 

 

Figure 4. MFCC of patients 

From Figure 4, the x-axis identifies the index of each individual coefficient feature extracted from the audio signal, 

whereas the y-axis denotes the frequency at which each coefficient occurs in the speech signal. It can be depicted that 

when the index lies at 60, it reaches the frequency level of 1 hertz. By examining the frequency distribution of this 

coefficient, it can identify the patterns and differences between different phonation types that can be helpful in 

discriminating between ALS and non-ALS individuals. After MFCC, a standard scalar is used for standardizing the data 

by centering it around the mean and scaling it to have a unit variance. Therefore, Figure 5 shows the output obtained 

after the standard scalar. 

 

Figure 5. Standard Scalar 
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Figure 5 depicts the outcome obtained after the standard scalar approach. Employing a Standard scalar ensures that 

all input features are on the same scale. It also rescales the input features to efficiently learn the relationships between 

target variables and the features, making the model more robust to outliers. In the figure, the x-axis is denoted as the 

person index, and the y-axis is denoted as the values. Similar to a standard scalar, PCA decomposition is depicted in 

Figure 6. 

 

Figure 6. PCA Decomposition 

Figure 6 shows the audio signals obtained using PCA decomposition. This technique aided in extracting the relevant 

features from the sound signals and reduced the dimensionality of the data. Therefore, by using PCA, key acoustic 

characteristics can be differentiated between ALS and HC. Moreover, PCA aids in removing shaky or lagging features 

from the audio data, as these can hinder the performance of classification. Once the features are extracted, classification 

is processed using a Hybrid CNN-LSTM with a rapid dilatenet model. 

3-3- Classification Using Proposed CNN-LSTM with Rapid DilateNet Model 

CNN is one of the capable models that is preferred for the classification process, as CNN is effective in terms of 

examining sound data due to its ability to identify patterns and features at different scales. Moreover, the CNN model is 

considered to be prevailing in capturing the spatial and temporal dependencies in data, which is known to be significant 

for assessing time series data such as waves of sound. Thus, CNN is used, and the process involved in CNN for audio 

data is depicted as follows. Initially, audio signals are passed to the input layer as the input of the model. Then, the audio 

signals are passed to CL (convolutional layer), where CL is responsible for learning features from the audio data. 

Further, the activation function is also applied to capturing the complex patterns in the data. Following the activation 

function, PL (Pooling Layer) is also used. PL is utilized for downsampling the features produced by CL, and it is also 

used for reducing the spatial dimensions of the features, thereby making the model computationally effective. Then, the 

features are flattened into 1D vectors and passed via FCL (Fully Convolutional Layer). FCL focuses on classifying the 

features that are extracted into different classes by optimizing the loss function. Finally, the output layer classifies the 

patient with ALS and the patient without ALS. 

Though the CNN model performs considerably for the classification of ALS patients, it lacks in effectively capturing 

the temporal dependencies in the data and loss of information during the processing stage due to the fixed input size of 

the CNN model, which may not be ideal for sound signals with variable length sequences. Moreover, the CNN model 

lacks in remembering past information, which is assessed to be extremely important for sound signals. Therefore, in 

order to overcome these shortcomings, CNN can be hybrid with the LSTM model, as LSTM is specially designed to 

capture the long-range dependencies in the speech signals of ALS patients and comprehend the complex patterns 

associated with the speech pattern of the patients suffering from ALS. Equation 1 shows the process involved in the 

CNN-LSTM model for ALS classification. Equation 1 denotes the input values fed to the model. 

𝑥𝑖
0 = [𝑥1 , 𝑥2, … , 𝑥𝑛]  (1) 

Once the input is fed, it is passed to the CL layer, where the process involved is depicted in the Equation. 

𝑐𝑖
𝑙𝑑,𝑗

= 𝑎𝑐𝑡(𝑏𝑗 + ∑ 𝑤𝑚
𝑗

𝑥𝑖+1𝑚−1
0𝑗𝑀

𝑚=1 )  (2) 

where, 𝑎𝑐𝑡 is defined as the activation function, 𝑙 is defined as the layer index, 𝑏 is represented as bias term, 𝑀 is 

represented as size of the kernel and 𝑤𝑚
𝑗

 is defined as the weight for 𝑗𝑡ℎ feature map. Once it passes through CL, signals 

are passed to the max PL. Equation 3 represents the process of max PL as it aids in reducing the feature size. 
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𝑝𝑖
𝑙𝑑,𝑗

=  𝑐𝑖 × 𝑇+𝑟
𝑙𝑑,𝑗

  (3) 

In Equation 3, 𝑇 is represented as the pooling stride, and 𝑅 is represented as the size of the pooling window. Once the 

spatial dimensions are reduced using max PL, output of max PL is passed to the LSTM network. LSTM network 

commonly consists of LSTM units such as input gate, output gate, and forget gate. LSTM is an RNN model, and the 

RNN model can typically minimize the complexity of the network and enable training by utilizing the states of the 

present neuron and the states of the previous neurons. Typically, the LSTM unit recollects values in any time interval, 

and the flow of information into and out of the LSTM unit is controlled by these 3 gates. Figure 7 shows the architecture 

of the LSTM model. 

 

Figure 7. Architecture of LSTM 

Here, 𝜎 is represented as a sigmoid function, 𝑓𝑡 is represented as a forget gate, 𝑖𝑡  is denoted as the input gate, and 

𝑂𝑡  is defined as the output gate, 𝑡 − 1 is defined as the cell state, 𝐶𝑡 is represented as the candidate gate. Implementation 

of LSTM for ALS classification aids in examining the nuances and temporal patterns in the vowel sound for making 

precise and correct predictions with patients suffering with ALS. The forget gate implemented in the model is depicted 

in Equation 4. 

𝑓𝑡 =  𝜎 (𝑤 [𝑥𝑡 , 𝑎𝑐𝑡𝑡−1, 𝐶𝑡−1] + 𝑏𝑓)  (4) 

where 𝑥 is denoted as the input sequence, 𝑎𝑐𝑡𝑡−1 is represented as the output of the preceding block, bias vector is 

represented as 𝑏𝑓, 𝐶𝑡−1 is represented as the previous memory block of LSTM, 𝜎 is denoted as the sigmoid function, and 

separate weight vectors for each input is represented using 𝑊. Input gate is a section, where a new memory is generated 

by using a trivial neural network with 𝑡𝑎𝑛ℎ activation function and this is depicted Equations 5 and 6. 

𝑖𝑡 =  𝜎 (𝑊[𝑥𝑡 , 𝑎𝑐𝑡𝑡−1, 𝐶𝑡−1] + 𝑏𝑖)  (5) 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ ([𝑥𝑡 , 𝑎𝑐𝑡𝑡−1, 𝐶𝑡−1])  + 𝑏𝑐  (6) 

Output gate is the section, where output generated by the current LSTM block is generated by using output gate and 

these outputs are estimated using Equations 7 and 8. 

𝜎𝑡 =  𝜎 (𝑊[𝑥𝑡 , 𝑎𝑐𝑡𝑡−1, 𝐶𝑡] + 𝑏𝑜)  (7) 

𝑎𝑐𝑡𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ (𝐶𝑡)  (8) 

Thus, the connection between the units of LSTM permits the information to cycle between adjacent time steps. This 

produces an internal feedback state that allows the network to comprehend the concept of time and understand the 

temporal dynamic in the present data. The combination of CNN and LSTM architectures in the proposed model 

effectively captures both spatial and temporal features from vowel phonation, by enhancing ALS classification accuracy 

as CNN model extract spatial features from audio spectrograms by applying convolutional layers that identify local 

patterns, such as formants and harmonics. This spatial analysis allows the model to recognize distinctive vocal 

characteristics associated with ALS and LSTMs are designed to handle sequential data this process extracted spatial 

features over time, by enabling the model to understand how vocal characteristics evolve during phonation. This temporal 

analysis is essential for identifying subtle changes in speech patterns indicative of ALS. Although the CNN-LSTM model 

can deliver considerable results, the effectiveness of the model for classifying sound signals can be challenging. Thus, 

proposed Rapid DilateNet function is applied. Hence, the proposed work focuses on employing Rapid DilateNet for the 
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effective classification of ALS patients using their speaking manner. Rapid DilateNet is implemented in the proposed 

model for solving the context information for interpreting and analyzing the sound of vowels accurately and correctly 

without any loss of information. The absence of context information can lead to errors while analyzing the sound signals. 

Thus, the proposed rapid DilateNet model helps with context information for providing reliable outcomes. Although the 

CNN-LSTM model can deliver considerable results, the effectiveness of the model for classifying sound signals can be 

challenging. Thus, the Rapid DilateNet function is applied.  

Hence, the proposed work focuses on employing Rapid DilateNet for the effective classification of ALS patients 

using their speaking manner. Figure 8 shows the process involved in the proposed CNN-LSTM model with Rapid 

DilateNet. 

 

Figure 8. Proposed CNN-LSTM with Rapid DilateNet 

Here, the process is initiated by passing the extracted features from the mel frequency feature extraction technique to 

CL. CL with 64 𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 128 𝑎𝑛𝑑 256 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 are used in the proposed model, and from CL, it is further passed to the 

proposed rapid DilateNet model. This rapid DilateNet model permits the model to see a larger receptive field by 

maximizing the dilation rate without employing additional parameters, thereby making the model computationally 

effective for classification of patients suffering from ALS. Moreover, in conventional neural network models, context 

information is typically augmented by extending the receptive field, and this extension of the receptive field can be 

accomplished by either increasing the size of the network or by enlarging the size of the convolution kernel and dilation 

rates. However, these techniques can tremendously increase the training time. Thus, rapid DilateNet is implemented in 

the proposed model for solving the context information for interpreting and analyzing the sound of vowels accurately 

and correctly without any loss of information. The absence of context information can lead to errors while analyzing the 

sound signals. Rapid dilated convolution enhances the performance of the CNN-LSTM model by allowing it to capture 

the input audio signals without increasing the number of parameters. Dilation introduces gaps between the kernel 

elements and enables the model to analyze larger portions of the audio signal at once. By identifying these subtle changes 

in vowel phonation, it enables the model to recognize patterns with longer temporal ranges. By preserving this context 

information, the dilation ensures the model retains the features related to the phonetic characteristics of vowels by 

distinguishing between ALS and non-ALS patients. The combination of CNN and LSTM with rapidly dilated 

convolutions results in a feature extraction process by enhancing the model's ability to interpret complex audio patterns 

effectively. Thus, the proposed rapid DilateNet model helps with context information for providing reliable outcomes. 

After employing rapid DilateNet, an activation function is used. The proposed model utilizes the ReLU activation 

function, as the ReLU activation function is more effective for handling the nonlinearity present in the data, and it can 

also prevent gradient vanishing issues. Further, the LSTM network is used, and a dropout layer of 0.5 is added to the 

output passed from the LSTM network. This implementation of the dropout layer also prevents the overfitting of the 

proposed model. In order to overcome overfitting, the proposed model employed dropout at a rate of 0.5, which involves 

randomly deactivating half of the neurons during training. This keeps the model from becoming overly dependent on 

particular patterns in the training data. By motivating the network to acquire more resilient, generalized features, this 

introduces regularization. Nevertheless, considering the small dataset and lack of speaker-independent evaluation, the 

incredibly high reported metrics (such as 99.99% accuracy) raise questions about potential overfitting. Although dropout 

aids the model's capacity to generalize to new data. Eventually, the classification of ALS patients based on vowel 

phonations is predicted. Figure 9 shows the conventional convolutions and proposed rapid DilateNet convolutional. 
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Figure 9. Rapid DilateNet Convolutions 

In Figure 10, 1D CNN with 3 conventional convolutions is added, and the expansion rate ′𝑟′ for each layer is 1. 

Similarly, 1D CNN with a dilated convolutional layer is present in Figure 9, where the expansion rate of each layer is 

𝑟 = 1 for the first layer, 𝑟 = 2 for the second layer, and 𝑟 = 4 for the third layer. The top green unit present in Figure 9 

and 11 is denoted as the unit of interest, whereas the other green unit signifies its receptive field in each respective layer. 

However, when compared to conventional convolutions, dilated convolution expands its receptive field in the 

convolutional kernel without surging the parameters. 

 

Figure 10. Conventional Convolutions 

 

Figure 11. Rapid DilateNet Rate 



Emerging Science Journal | Vol. 9, No. 4 

Page | 1975 

When 𝑟 = 1, the original convolutional kernel size is 3 × 3. This can be stated as conventional convolution. Whereas, 

when 𝑟 = 2, receptive field is 7. Likewise, when 𝑟 = 4, receptive field is 15. Thus, the implementation of dilation 

convolution can result in a grid effect when assorted dilated convolutions are stacked. Thus, the proposed model uses 

rapid dilatenet model which maximizes the receptive field, thereby increasing the clarity of the output of the vowels 

which helps in comprehend the phonations by concatenating the dilation convolutions, which is represented in Figure 

11. 

Besides, Figure 12 depicts the allocation of different weights to the model. 

 

Figure 12. Weights for different dilation rates 

Weights for each dilation rate would be learned during the training process, and the weights of the models are adjusted 

according to account for different spacing between elements. Moreover, adjusting the weights aids in optimizing the 

performance of the given tasks, as different weights are given for different dilation rates. The pseudocode for the 

proposed dilate is depicted in Algorithm II. 

Algorithm II. Proposed Rapid DilateNet 

Define a function named Rapid_Dilate_Block (inputs, filters, and dilationrates): 

  Initialize x as inputs 

For each rate in dilationrates: 

Apply a 1D convolutional layer with filters, kernelsize, padding, dilationrate, and ReLU activation to x. 

  Return x 

Define a list of dilationrates [1, 2, 4, 8] 

For each rate in dilationrates: 

  Create an input layer with shape (100, 1) 

Apply rapid_dilate_block to inputs with filters and the current rate 

Apply a 1D max pooling layer with poolsize to the result 

Apply an LSTM layer to the result 

Apply a dense layer and ReLU activation to the result 

Apply a dropout layer with rate of 0.5 to the result 

Apply a dense layer and sigmoid activation to the result to get outputs 

Create a model with inputs as input and outputs as output 

Compile the model 

Evaluate the model on test data and store the test loss and accuracy in variables testloss and testacc 

Return the test accuracy for the current dilation rate 

Pseudocode explains the implementation of the proposed rapid dilatenet model. Initially, a 1D convolutional layer is 

applied with filters. Then, an input layer with shape (100,1) is created. Then, a rapid dilate block is implemented. 

Further, the LSTM layer is used, and the dense layer and ReLU activation function are employed. After applying those 

layers, a dropout layer with the rate of 0.5 is employed along with sigmoid activation to fetch results. Finally, the efficacy 
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of the proposed model will be identified by using metrics. Therefore, the efficiency of the proposed model is evaluated 

in the subsequent section. The parameters to train the model is depicted in Table 5. 

Table 5. Parameters used in the model 

CNN Parameters 

• Filter Size: Convolutional Layers: 3×13×1 (for 1D data) 

• Number of Filters:32 

• Activation Function: Relu 

• Dilation Rates:[1, 2, 4, 8] (one layer for each rate) 

• Pooling Layer Type: Max Pooling 

• Pooling Size: 22 

LSTM Parameters 

• Number of LSTM Units: 64 

• Number of LSTM Layers: 1 

• Dropout Rate: 0.5  

Dense Layer Parameters 

• Number of Dense Units: 128 

Output Layer Parameters 

• Output Units: 1 

• Activation Function: Sigmoid  

4- Results and Discussion  

This section elucidates results obtained using the proposed model, such as EDA, performance analysis, and 

comparative analysis.  

4-1- Performance Metrics  

Performance of the proposed mechanism can be gauged by using metrics such as accuracy, sensitivity and specificity.  

A) Accuracy  

Accuracy is represented as a metric that describes the performance of the proposed model across all classes. Equation 

9 depicts the mathematical formula for accuracy, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
  (9) 

where 𝑇𝑁 denoted as true negative, 𝑇𝑃 is denoted as true positive, 𝐹𝑁 is defined as false negative and 𝐹𝑃 is defined as 

false positive. 

B) Sensitivity 

The sensitivity is defined as the ratio of TP with TP and FN, and it is given in Equation 10 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (10) 

C) Specificity 

The specificity is defined as the ratio among the TN with the TP combined with FP, and it is mathematically given in 

Equation 11, and it is as follows. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (11) 

4-2- Exploratory Data Analysis  

EDA for audio signals aids in analyzing and visualizing the audio data to gain insights and comprehend the 

characteristics of the signals. EDA helps with determining the features that are relevant to the tasks and helps with 

understanding the patterns and structure of the audio data. Besides, EDA analyzes data distribution, identifies outliers, 

and understands the relationship between variables, thereby aiding the model for effective classification of ALS and 

non-ALS. Therefore, EDA is extremely important for examining the patterns of the signals within the audio data. Figures 

13 to 15 depict the person suffering from ALS. 
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Figure 13. ALS affected Person 1 

 

Figure 14. ALS affected Person 2 

 

Figure 15. ALS affected Person 4 

From the Figures 13 to 15 it is concluded that individuals 1, 2, and 4 have ALS because the data of these individuals 

probably include typical features of the condition, including muscular weakness, irregular electromyography (EMG) 

activity, or proof of motor neuron breakdown. These characteristics are typically used to diagnose ALS and reflect 

progressive deterioration in muscle control and function. On the other hand, Person 3, does not reflect these abnormalities 

in the respective figure, indicating typical muscle and nerve function without abnormalities of degeneration or weakness. 

Thus person 3 is classified as not being affected by ALS, and this illustrates clearly in the figures the difference in 

diagnostic markers at the affected and unaffected individuals (Figure 16). 
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Figure 16. Normal Patient (person 3) 

Similarly, the frequency power distribution of person 1, person 2, person 3, and person 4 is depicted in Figures 17 to 

20. In signal processing, frequency distribution refers to how much of a signal's power is distributed across different 

frequency components. It helps to understand which frequencies are dominant or prevalent in the signal. Likewise, the 

power spectrum shows how the power of a signal is distributed across different frequencies. By calculating the FFT of 

the audio data, the signal can be converted from the time domain to the frequency domain, representing the signal as a 

combination of different sine waves of varying frequencies and amplitudes. 

 

Figure 17. Frequency power distribution of person 1 

 

Figure 18. Frequency power distribution of person 2 
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Figure 19. Frequency power distribution of person 3 

 

Figure 20. Frequency power distribution of person 4 

Figures 17 to 20 show plots of the power distribution of a signal over different frequency bins, which is widely known 
as the power spectral density (PSD). The x-axis in these plots is discrete frequency bins for each covering a particular 
frequency band, while the y-axis is the power in each bin, reflecting how much energy of the total signal is occurring at 
each frequency. Every point on the plot thus indicates the strength of the signal's power at a certain frequency, and one 

can determine dominant frequencies or frequency bands in which the energy of the signal is pooled. This analysis is 
important for the understanding of the spectral properties of signals, as it indicates the global power and the power 
distribution along the frequency domain, which is essential for diagnosing system behaviors, detecting sources of noise, 
or characterizing biological signals. 

The histogram in Figure 21 shows the distribution of audio sample values (amplitudes) over time. The x-axis 
represents the amplitude values of the audio signal, and the y-axis shows the frequency, or how often these amplitude 

values occur. The audio values are centered around 0, which is typical for audio signals that have been normalized. The 
distribution appears roughly symmetric around 0, indicating that the audio data oscillates between positive and negative 
values without a strong bias in either direction. 

 

Figure 21. Histogram of Audio Data 
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Time-domain representation of the audio signal is depicted in Figure 22. The x-axis represents time (in sample points, 

likely corresponding to milliseconds or seconds), and the y-axis represents the amplitude of the audio signal at each 

point in time. The audio signal oscillates around zero, with fluctuations in amplitude. This reflects the oscillating nature 

of sound waves, which have both positive and negative phases as they oscillate. In terms of amplitude, there’s a relatively 

steady range between approximately -0.1 and +0.1, with some variations, which aligns with the observations from the 

histogram. 

 

Figure 22. Time Domain plot of Audio Data 

Spectrogram is showcased in Figure 23, where x-axis represents time in seconds, ranging from 0 to approximately 

5.6 seconds. The y-axis represents frequency in Hertz (Hz), spanning from 0 Hz to 8192 Hz. The color intensity indicates 

the amplitude (or strength) of the frequencies at any given time. The scale on the right shows that lighter colors 

(yellow/white) represent higher intensity (close to 0 dB), while darker colors (purple/black) represent lower intensity 

(down to -80 dB). The evenly spaced, bright horizontal bands indicate strong frequency components around 128 Hz, 256 

Hz, 512 Hz, and 1024 Hz, along with several higher harmonics up to around 4096 Hz. These patterns are consistent 

throughout the entire duration of the recording, suggesting a sustained tonal or harmonic sound that remains relatively 

stable over time. 

 

Figure 23. Spectrogram 

4-3- Performance Analysis 

Performance analysis focuses on results obtained by using the proposed model for the classification of ALS and non-

ALS patients based on vowel phonation. Thus, Table 6 shows the test accuracy and test loss obtained by the model 

proposed model for different dilate rates used in the proposed model. 

Table 6. Test accuracy and test loss 

Dilation Rate Test Accuracy Test Loss 

1 0.9965 0.023589 

2 0.9958 0.0258796 

4 0.9989 0.01189756 

8 0.9996 0.011627456 
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Table 6 presents the test accuracy and test loss obtained for different dilation rates. When the dilation rate was set to 

1, the model achieved a test accuracy of 0.996 with a test loss of 0.0235. Similarly, at a dilation rate of 2, the values were 

0.9958 for test accuracy and 0.0258 for test loss. For a dilation rate of 4, the accuracy improved to 0.998, while the test 

loss decreased to 0.01189. Notably, when the dilation rate reached 8, the highest accuracy of 0.9996 was observed, with 

a corresponding test loss of 0.01162. 

These variations indicate that increasing the dilation rate enables the proposed model to extract more detailed and 

complex features from the data, leading to more precise classification between ALS and non-ALS cases. A higher 

dilation rate also improves gradient flow, which contributes to achieving better optimization. Figures 24 and 25 provide 

graphical representations of the test accuracy and test loss. As shown, the lowest accuracy (0.995) and highest test loss 

(0.02587) occurred at a dilation rate of 2. 

 

Figure 24. Graphical Representation Test accuracy 

 

Figure 25. Graphical Representation Test Loss 

Similarly, the model accuracy and model loss corresponding to different dilation rates are illustrated in Figures 26 

and 27. Model accuracy reflects how effectively the proposed mechanism can correctly predict outcomes, and it is 

typically calculated by dividing the number of correct predictions by the total predictions made. Accordingly, Figure 25 

depicts the training and validation accuracy for the various dilation rates. During training, the model is iteratively updated 

across multiple epochs, and after each epoch, both training accuracy and validation accuracy are evaluated to monitor 

the model’s performance as it learns. 
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Figure 26. Model accuracy by dilation rate 

 

Figure 27. Model loss by dilation rate 

Figure 26 illustrates the training and testing accuracy for different dilation rates. Training accuracy refers to the 

model’s performance on the data it has already seen during training, while validation accuracy assesses how well the 

model generalizes to unseen data. The proposed model achieved higher training and validation accuracy, particularly at 

dilation rates of 4 and 8, as evidenced by the curves in Figure 26, demonstrating the effectiveness of the model in ALS 

classification. 

Similarly, Figure 27 presents the training and validation loss for different dilation rates. Training loss measures how 

well the model fits the training data during the learning process, whereas validation loss is used to evaluate the model’s 

performance on unseen data and to prevent overfitting. As shown in Figure 27, the training loss is relatively high when 

the dilation rate is 1, while it decreases significantly at a dilation rate of 8. This indicates that increasing the dilation rate 

improves the model’s performance. Furthermore, Table 7 provides a comparison of models with and without dilation 

rates, showing both training accuracy and training loss. 

Table 7. With and Without Dilation Rate  

Model Test Accuracy Test Loss 

With Dilation Rate 0.9996 0.011627456 

Without Dilation Rate 0.9799 0.096587 
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Table 7 presents the test accuracy and test loss for models with and without dilation rate. The model with dilation 

achieved a test accuracy of 0.9996 and a test loss of 0.01162, whereas the model without dilation obtained a test accuracy 

of 0.9799 and a test loss of 0.096. These results clearly indicate that the model incorporating dilation outperformed the 

one without it. The superior performance is attributed to the ability of the dilation rate to reduce spatial information loss, 

capture long-range dependencies, and extract more relevant features for the proposed model. Consequently, the inclusion 

of the dilation rate significantly enhances classification performance. Figures 28 and 29 provide a graphical 

representation of the results summarized in Table 7. 

 

Figure 28. Test accuracy with and without dilation rate 

 

Figure 29. Test loss with and without dilation rate 

Figure 28 shows that the accuracy difference between the 'with dilation rate' model and the 'without dilation rate' 

model is 1.9904%. Likewise, the difference of test loss between the 'with dilation' and' without dilation rate' models is 

157.021% in Figure 29. Similarly, Table 8 depicts the models 'with PCA without SC', 'without SC without PCA', and' 

both present'. 

Table 8. Standard scalar and PCA 

Model Test Accuracy Test Loss 

Without SC Without PCA 0.979657 0.0915863 

With SC Without PCA 0.986985 0.058913 

Both Present 0.9996 0.011627456 
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Table 8 highlights test accuracy and test loss. Test accuracy obtained for SC without, with SC without PCA, and both 

present is 0.9796, 0.9569, and 0.9996. Likewise, test loss attained by without SC without, with SC without PCA, and 

both present is 0.0915, 0.0589, and 0.01162. Higher accuracy and low-test loss are achieved by using both SC and PCA. 

Figures 30 and 31 show the Graphical Representation test accuracy and Graphical Representation test loss. 

 

Figure 30. Graphical Representation Test accuracy 

 

Figure 31. Graphical Representation Test Loss 

Though the proposed model has delivered better performance for classifying ALS and non-ALS patients based on 

vowel phonations, it is important to assess the efficacy of the proposed work with other state-of-the-art approaches. 

Hence, a subsequent section compares the existing work with the proposed CNN-LSTM with a rapid dilatnet model. 

4-4- Comparative Analysis  

Comparative analysis is carried out by comparing the proposed CNN-LSTM with the rapid dilate model with the 

existing models. Thus, Table 9 showcases the accuracy, sensitivity, and specificity of the existing and proposed 

mechanisms [37]. From Table 9, it can be identified that accuracy, sensitivity, and specificity attained by the existing 

model are 99.7%, 99.3%, and 99.9%, whereas accuracy gained by the proposed model is 99.99%, sensitivity gained by 

the proposed work is 99.78%, and finally specificity accomplished by the proposed model is 99.999%. Differences show 

that the proposed model has gained 0.29045% more accuracy than the proposed work. Likewise, the gain of sensitivity 

and specificity of the proposed model is 0.48% and 0.09% higher than the existing model, and this is primarily due to 

the hybrid nature of the CNN-LSTM model, along with the inclusion of rapid dilatant function. Figure 32 shows the 

comparative analysis of the proposed work. 
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Table 9. Comparative analysis  

Model Accuracy Sensitivity Specificity 

Existing Model 99.7 99.3 99.9 

Proposed Model 99.99 99.78 99.99985 

 

Figure 32. Comparative analysis  

From the experimental outcome, it can be identified that better performance and accuracy for classification of ALS 

and non-ALS are based on the vowel phonation/a/ and /i/. Better performance was delivered due to the incorporation of 

the proposed CNN-LSTM with a rapid dilatenet model for classification. However, extraction of better relevant features 

has been primarily carried out using the MFCC model, and the slightest changes in the phonation of vowels are detected 

by maximizing the expansion/dilation rate and aiding the context information for interpreting and analyzing the sound 

of vowels accurately and correctly without any loss of information. Therefore, better accuracy is obtained by the 

proposed mechanism for ALS classification by also preventing overfitting drawbacks. 

4-5- Statistical Analysis  

Statistical analysis is enhanced significantly by incorporating confidence intervals. A confidence interval is an 

estimate derived from sample data that indicates a range within which the true population parameter is expected to lie. 

Figure 33 shows the confidence interval of the study. 

 

Figure 33. Confidence Interval 

98.8 99 99.2 99.4 99.6 99.8 100 100.2

Accuracy

Sensitivity

Specificity

Values

M
e
tr

ic
s 

Comparative Analysis

Proposed Model

Existing Model



Emerging Science Journal | Vol. 9, No. 4 

Page | 1986 

Figure 33 shows the distribution is roughly bimodal, with two main peaks such as 0.05 and -0.05. This shows that the 

dataset has two frequently occurring ranges of values around these points, with lower density of values between them, 

around 0. The distribution is relatively symmetric with similar patterns of density on both the negative and positive sides. 

The proposed work concludes that voice analysis illustrates potential as a non-invasive and objective technique for 

characterizing motor speech deficits in ALS. The potential contribution of the research work using vocal characteristics 

to aid clinical progression facilitated better detection of ALS. Moreover, continued exploration in this realm of research 

can advance the comprehension of the pathophysiology of ALS, thereby enhancing the quality of life of individuals 

affected by this devastating disease. Though the proposed model has delivered an effective outcome, the limitation of 

the proposed work is that it only uses two vowels, such as /a/ and/i/, as the dataset encompasses two vowels, and 

moreover, the model has only opted for one dataset, which can be overcome in the future by using different datasets. 

5- Conclusion 

ALS is one of the fatal diseases that needs to be detected as early as possible; therefore, the proposed work focused 

on utilizing better methods for the effective classification of ALS and non-ALS patients. Thus, it was accomplished by 

using the Minsk2020 dataset, which consists of data collected from various patients using smartphones. As audio signals 

are tricky, it is important to extract features that are needed for the model. Thus, the proposed work utilized MFCC for 

extracting the relevant features needed for the model; after extracting features, a proposed CNN-LSTM with a rapid 

dilatant model was used. This ensured the identification of even the slightest changes from non-ALS patients and ALS 

patients by expanding the dilation rates, thereby increasing the receptive field for better classification using rapid 

DilateNet. Incorporation of these proposed CNN-LSTMs helped in detecting the changes in vowel phonation, in so doing 

identifying the patients with ALS and non-ALS effectively. This was assessed by using different metrics. The accuracy 

obtained by the proposed CNN-LSTM was 99.99%, and the sensitivity and specificity obtained by the proposed were 

99.78% and 99.99%. Therefore, the promising outcome depicted by the proposed model showcases the efficacy of the 

proposed model for ALS classification. While the proposed model has produced effective results, a notable limitation is 

that it relies solely on two vowels, /a/ and /i/, as the dataset consists exclusively of these two vowel sounds. 

The implications of utilizing vowel phonation, specifically the sounds /a/ and /i/, for detecting ALS are significant 

for clinical practice. Further, clinically, this approach offers a non-invasive, cost-effective method for early diagnosis 

and monitoring of bulbar involvement in ALS patients, which is crucial given the disease's progressive nature and the 

challenges associated with traditional diagnostic methods. By integrating automated acoustic analysis into routine 

assessments, clinicians can enhance their diagnostic accuracy and tailor intervention strategies based on individual 

speech characteristics, ultimately improving patient outcomes. However, the proposed model is speaker-dependent; then 

the dataset is split randomly, deprived of confirming speaker-level separation, and hence the model is limited for speaker-

independence. As a result, it will be evaluated in a future study. Additionally, the research will focus on expanding the 

dataset to include a broader range of phonetic elements and exploring the application of these methodologies in mobile 

or web-based platforms. This would not only facilitate remote monitoring of speech changes over time but also enhance 

patient engagement in their care, paving the way for more personalized treatment plans as the disease progresses. 
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