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Abstract 

Secret sharing has been a subject of study since 1979. In the secret sharing schemes there are some 

participants and a dealer. The dealer chooses a secret. The main principle is to distribute a secret 

amongst a group of participants. Each of whom is called a share of the secret. The secret can be 

retrieved by participants. Clearly the participants combine their shares to reach the secret. One of 

the secret sharing schemes is 𝑎(𝑡, 𝑛) −  threshold secret sharing scheme. A 𝑎(𝑡, 𝑛) −  threshold 

secret sharing scheme is a method of distribution of information among 𝑛 participants such that 

𝑡 ≥ 1 can recover the secret but (𝑡 − 1) cannot. The coding theory has been an important role in the 

constructing of the secret sharing schemes. Since the code of a symmetric (𝑣, 𝑘, 𝜆) − design is a 

linear code, this study is about the multisecret-sharing schemes based on the dual code 𝐶⊥ of 𝐹2 − 

code 𝐶  of a symmetric (𝑣, 𝑘, 𝜆) − design. We construct a multisecret-sharing scheme Blakley’s 

construction of secret sharing schemes using the binary codes of the symmetric design. Our scheme 

is a threshold secret sharing scheme. The access structure of the scheme has been described and 

shows its connection to the dual code. Furthermore, the number of minimal access elements has 

been formulated under certain conditions. We explain the security of this scheme. 
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1- Introduction 

A secret sharing scheme is a process of distributing a secret to a set of participants in such a way that only certain 

subsets of them can determine the secret. The set of all subsets which can determine the secret is called the access 

structureof the scheme. Secret sharing chemes were introduced in 1979 [1, 2] and then different schemes were 

constructed. It was given a general introduction to secret sharing schemes in Stinson (1992) study [3]. An important 

class of secret sharing schemes is those which are based on linear codes. The relation between secret sharing schemes 

and linear codes was first presented in McEliece and Sarwate (1981) research [4]. Massey (1993) [5] used to linear 

codes to construct the secret sharing schemes. The access structure of schemes based on self-dual codes was analyzed 

in Dougherty et al. (2008) research using some properties of the codes [6]. 

Multisecret-sharing scheme is the other family of secret sharing schemes. This scheme was proposed in Harn 

(1995), He and Dawson (1994) and Li et al. (2005) studies [7-9]. Moreover, some authors were worked on multisecret-

sharing scheme in Pang and Wang (2005) and Bai (2006) studies [10, 11]. In the multisecret-sharing schemes [9-11] 

there is a set of secrets can be shared at once or all 𝑝 secrets cannot reconstruct. To recover the secret the participants 

need to submit a 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑠ℎ𝑎𝑟𝑒 computed from their secret share instead of the secret share itself. 

Secret sharing schemes have been working recently. Especially we constructed a multisecret-sharing scheme based 

on error correcting codes in Çalkavur and Solé (2015) research [12]. In Alahmadi et al. (2020) [13] we presented a new 

multisecret-sharing scheme based on LCD codes. We explained some multisecret-sharing schemes over finite fields in 

Çalkavur and Solé (2020) [14]. Secret sharing schemes based on extension fields were explored in Çalkavur (2018) 

study [15]. We developed in Molla and Çalkavur (2018) research [16] a new approach to construct secret sharing 
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schemes based on field extensions. However, we constructed an image secret sharing method based on Shamir secret 

sharing in Calkavur (2018) study [17]. 

There are several known constructions of linear codes as row spaces of incidence matrices of designs. This paper 

deals with constructions of multisecret-sharing schemes based on binary linear codes of symmetric designs. 

In this work we consider a multisecret-sharing scheme of the construction Blakley’s method. The next section gives 

the basic preliminaries used in the paper. The construction is presented in Section 3. In this section we explain the 

access structure and the number of minimal access elements of the scheme. Section 4 collects concluding remarks. 

2- Background and Preliminaries 

In this section we give the basic preliminaries and some necessary mathematical information used in this work. 

2-1-  Linear Codes 

Let q be a prime power and denote the finite field of order q by Fq. An [𝑛, 𝑘] −code C over Fq is a subspace in 

(𝐹𝑞)
𝑛

, where n is length of the code C and k  is dimension of C. The dual code of C is defined to be the set of those 

vectors (𝐹𝑞)
𝑛

 which are orthogonal to every codeword of C. It is denoted by 𝐶⊥. The code 𝐶⊥ is a [𝑛, 𝑛 − 𝑘] − code. 

A generator matrix G for a linear code C is a 𝑘 × 𝑛 matrix for which the rows are a basis of C. 

Let C be an ],[ kn code over 
qF  with generator matrix G. C contains 𝑞𝑘  codewords and can be used to 

communicate any one of 𝑞𝑘 distinct messages. We encode the message vector 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑘  as the codeword 𝑥𝐺. 

If G is a generator matrix for C, then 𝐶 = {𝑢𝐺|𝑢 ∈ (𝐹𝑞)
𝑘

} . 𝑢 → 𝑢𝐺  maps the vector space 𝑞𝑘  onto a 𝑘 − 

dimensional subspace of (𝐹𝑞)
𝑛

. 

2-2- Secret Sharing 

Secret sharing refers to methods for distributing a secret amongst a group of participants, each of whom is allocated 

a share of the secret. The secret can be reconstructed only when a sufficient number, of possibly different types, of 

shares are combined together; individual shares are of no use their own. 

In one type of secret sharing scheme there is one dealer and players. The dealer gives a share of the secret to the 

players, but only when specific conditions are fulfilled will the players be able to reconstruct the secret from their 

shares. The dealer accomplishes this by giving each player a share in such a way that any group of t  (for threshold) or 

more players can together reconstruct the secret but no group of fewer than  players can such a system is called a 

),( nt threshold scheme. 

Shamir’s secret sharing method is an old cryptography algorithm. This scheme is a ),( nt threshold scheme. 

Shamir’s scheme was based on polynomial interpolation. Blakley’s scheme is also a ),( nt threshold scheme. 

Blakley uses hyperplane geometry to solve the secret sharing problem. 

2-3- Symmetric Designs 

A symmetric (𝑣, 𝑘, 𝜆) −design consists of a set of  P of 𝑣 points and a set of  𝑣 subsets of P called blocks such that 

1. Each block contains exactly k points, 

2. Each point lies in exactly k blocks, 

3. Each pairs of points occurs together in exactly 𝜆 blocks, 

4. Intersection of each pair of blocks contain exactly 𝜆 points. 

In a symmetric (𝑣, 𝑘, 𝜆) − design the value (𝑘 −  𝜆) is called n  the order of a symmetric (𝑣, 𝑘, 𝜆) − design, where 

𝑛 = 𝑘 − 𝜆 . The incidence matrix 𝐴 = [𝑎𝑖𝑗] of a symmetric (𝑣, 𝑘, 𝜆) −design is the 𝑣 × 𝑣  matrix whose rows are 

indexed by blocks and whose columns are indexed by points. The entries of matrix are defined as follows. 

 1ija , if 
thj  point is in 

thi  block 

 0ija  , otherwise 

Proposition 1.   

If A  is the incidence matrix of a symmetric (𝑣, 𝑘, 𝜆) − design, then |det 𝐴| = 𝑘(𝑘 − 𝜆)
𝑣−1

2   [18]. 
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The 𝐹𝑞 − code of a symmetric (𝑣, 𝑘, 𝜆) −design is a subspace of (𝐹𝑞)
𝑣
 generated by the incidence matrix A of the 

symmetric design. The extended 𝐹𝑞 − code 𝐶𝑒𝑥𝑡. of a symmetric (𝑣, 𝑘, 𝜆) −design is a code generated by the rows of 

the extended matrix is: 

.1

1

























k

AB

 









 

3- Multisecret-Sharing Schemes Based on the Dual Code of the Binary Code of a Symmetric 
(𝒗, 𝒌, 𝝀) −Design 

3-1- Scheme Description 

The code of a symmetric (𝑣, 𝑘, 𝜆) −design is also linear code. It is known that every linear code can be used to 

construct the secret sharing schemes. In this section we examine a multisecret-sharing scheme based on the dual code 

of the binary code of a symmetric (𝑣, 𝑘, 𝜆) −design. Let: 























vvvv

v

v

aaa

aaa

aaa

A









21

22221

11211

 

be a vv   incidence matrix of a symmetric (𝑣, 𝑘, 𝜆) −design. The 𝐹2 − code C of a symmetric (𝑣, 𝑘, 𝜆) −design is a 

subspace of  (𝐹2)v generated by the rows of the incidence matrix A of the symmetric design.  

Let 𝐺 = (𝑔0, 𝑔1, … , 𝑔𝑣−1) be a generator matrix of C, where 𝑔0, 𝑔1, … , 𝑔𝑣−1 are column vectors of C. So: 























rvrr

v

v

ggg

ggg

ggg

G









21

22221

11211

 

is a 𝑟 × 𝑣 matrix. Now we construct a multisecret-sharing scheme based on 𝐶⊥, where 𝐶⊥ is the dual code of the 

binary code C of a symmetric (𝑣, 𝑘, 𝜆) −design. 

Let (𝐹2)𝑣  be the secret space and a vector in subspace of (𝐹2)v be the secret. Let C be a [𝑣, 𝑟] − code over 𝐹2 

generated by a symmetric (𝑣, 𝑘, 𝜆) −design and 𝐶⊥ be an [𝑣, 𝑣 − 𝑟] − code over 𝐹2. 

3-2- Proposed Method 

Consider the matrix: 



























vrvrvrv

v

v

ggg

ggg

ggg

G

)(2)(1)(

22221

11211









, 

Where 𝐺⊥is a generator matrix of 𝐶⊥. Let any element of  𝐶⊥ be the secret = (𝑠1, 𝑠2, … , 𝑠𝑣). All of rows of generator 

matrix 𝐺⊥ are minimal access elements and all of codewords of 
C  are participants in this scheme. We consider the 

row vectors of  𝐺⊥ to calculate the shares iy , 𝑖 = 1, 2, … , 𝑣. 

TT SGY .  

We write the following linear equation system for each participant. 
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





























































 rvvrv y

y

y

s

s

s

g

g

g


2

1

2

1

2

1

.  

It can reach by solving this equation system. 

 Theorem 1.   

    In this multisecret-sharing scheme we have the following. 

1) The access structure consists of the (𝑣 − 𝑟) elements. 

2) No element of number less than (𝑣 − 𝑟) can be used in recovering the secret. 

Proof.  

1) The secret is recovered thanks to the rows of  𝐺⊥ and their number is (𝑣 − 𝑟). 

2) The number of rows of 𝐺⊥cannot be less than (𝑣 − 𝑟) by definition. Otherwise the secret cannot be 

reached. So only (𝑣 − 𝑟) elements can be used to recover the secret but (𝑣 − 𝑟 − 1) cannot. 

 Corollary 1.  

The multisecret-sharing scheme satisfying the hypothesis of the above theorem is also a (𝑣 − 𝑟, 2𝑣−𝑟) − threshold 

secret sharing scheme. 

        Proof. 

It is clear that the participants are all of elements of 𝐶⊥  and their number is 2𝑣−𝑟 . The (𝑣 − 𝑟) out of 

2𝑣−𝑟 participants can be reached the secret by combining their shares. 

3-3- Statistics on Coalitions 

Theorem 2. 

Let C be an [𝑣, 𝑟] − code over F2 generated by a symmetric (𝑣, 𝑘, 𝜆) −design, where 𝑣 is the length of C and r is 

dimension of C. In a multisecret-sharing scheme based on 𝐶⊥ the number of minimal coalitions is (
2𝑣−𝑟

𝑣 − 𝑟
), where 𝐶⊥ 

is the dual code of C. 

      Proof.  

  Recall that our scheme is a (𝑣 − 𝑟, 2𝑣−𝑟) −threshold scheme. This means (𝑣 − 𝑟) out of  2𝑣−𝑟 participants can 

recover the secret. These (𝑣 − 𝑟) participants consist of minimal access sets. So the  number of  minimal  coalitions  is 

(
2𝑣−𝑟

𝑣 − 𝑟
).  

Theorem 3.  

Suppose that C is 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design D. If )(|2 k , then there are altogether m 

minimal  access  elements  in  the   multisecret-sharing   scheme   based  on   𝐶⊥  of  C  and  m  satisfy   the  inequality 

).2()1(
2

1
 vmv  

    Proof. 

If C is the 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design D and 2|(𝑘 − 𝜆), then: 

)1(
2

1
dim2  vC  [20] (1) 

First we have to give the proof of this statement. Suppose that 2|(𝑘 − 𝜆). If  2|𝑘, then we find  that  2|𝑘. So the 

scalar product of any two blocks is equal to zero since the 𝐹2 −code C of D is generated by the blocks of D and C is 

self-orthogonal (𝐶 ⊆ 𝐶⊥) with respect to Euclidean scalar product [18]. Therefore we obtain dim 𝐶 ≤ 𝑣 −

dim 𝐶 , dim 𝐶 ≤
𝑣

2
. 
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If 2|(𝑘 − 𝜆), but 2 ∤ 𝑘. Then consider )( 121  vv xxxxx   and )...( 121  vv yyyyy be any two rows vectors 

of B, where B is the extended incidence matrix of a symmetric (𝑣, 𝑘, 𝜆) −design. 

1111),(  vvvv yxyxyxyx   is a bilinear form [18]. 

     There are four options for x and y : 

1) )1,,,,( 21 vxxxx  and )1,,,,( 21 vyyyy  ; 

2) )1,,,,( 21 vxxxx  and ),,,,( ky   ; 

3) ),,,,( kx   and )1,,,,( 21 vyyyy  ; 

4) ),,,,( kx   and ),,,,( ky   . 

For the case 1) 01.1.),(   yx . 

For the case 2) 0..),(  kkyx  . 

For the case 3) 0..),(  kkyx   (mod 2). 

For the case 4) 0)(..),( 22  kkvyx   (mod 2). 

     The scalar products of two blocks are equal to 0 (mod 2). Therefore dim 𝐶𝑒𝑥𝑡. ≤
𝑣+1

2
. 

Now we have to prove that dim 𝐶 = dim 𝐶𝑒𝑥𝑡.. 

If 2 ∤ 𝑘 The sum of first v columns of B is equal to 
Tvkk ],,,[  . It is obtained that: 

TT kvvkkk ],1,,1[],,,[ 11      (mod 2) from 121 )(   kkkkv   (mod 2) k  (mod 2). 

The last column of B is equal to −𝑘 times of the sum of first v columns of B with respect to modulo 2. On the other 

hand the sum of first v  rows of B is equal to ],,,,[ vkkk  . So ],,,,[],,,,[1 kkkkk   
(mod 2). 

Hence the last row of B is equal to 𝜆𝑘−1 times the sum of first v  rows of B. Therefore we obtain the last row of B 

is a linear combination of first v  rows of B and also the last column of B is the linear combination of first v columns 

of B. We conclude that rankBrankA , so dim 𝐶 = dim 𝐶𝑒𝑥𝑡.; dim 𝐶 ≤
𝑣+1

2
. 

It is also clear that dim 𝐶 ≥ 2 [18]. 

     By Theorem 1, there are altogether (𝑣 − 𝑟) = dim 𝐶⊥ minimal access elements in the multisecret-sharing scheme 

based on 𝐶⊥. 

     Now we consider the inequality (1). 

)1(
2

1
dim2  vC . 

Since  CvC dimdim , 

)1(
2

1
dim2   vCv  (2) 

)1(
2

1
dim)2( vCv    (3) 

)2(dim)1(
2

1
  vCv  (4) 

)2()1(
2

1
 vmv  (5) 

Theorem 4. 

     Let C be 𝐹2 −code of a symmetric (𝑣, 𝑘, 𝜆) −design D. If 2 ∤ (𝑘 − 𝜆) and 2|𝑘 , then in the multisecret-sharing 

scheme based on 𝐶⊥ of 𝐹2 − code C of D there are altogether 1 minimal access elements. 

      Proof. 

      If C is 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design D and 2 ∤ (𝑘 − 𝜆) and 2|𝑘, then dim 𝐶 = 𝑣 − 1 [20]. First we 

will prove it. 

Suppose that 2 ∤ (𝑘 − 𝜆) and 2|𝑘. Every row of A is orthogonal to (1, 1,…, 1) with respect to the scalar product: 
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0)1,,1,1).(,,,( 2121  kxxxxxx vv   (mod 2): 

Thus 1dim  vC . 

     The sum all of rows containing 0 in the 𝑖𝑡ℎ column is the vector ),,,0,,,(   kkkk  , where 

the 0 is in the 
thi  column. These vectors generate the (𝑣 − 1) − dimensional subspace of 

vF )( 2
.  

     By Theorem 1, there are altogether (𝑣 − 𝑟) = dim 𝐶⊥ minimal access elements in the multisecret-sharing scheme 

based on 𝐶⊥. If we combine these results, then we obtain there are altogether dim 𝐶⊥ = 𝑣 − dim 𝐶 = 𝑣 − (𝑣 − 1) =
1 minimal access elements. 

Theorem 5.  

     Let C be 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design D. If 2 ∤ (𝑘 − 𝜆) and 2 ∤ 𝑘, then in the multisecret-sharing 

scheme based on 𝐶⊥ of 𝐹2 − code C of D there is no minimal access element. 

     Proof.  

    This is similar to the proof of Theorem 4. If C is 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design D and 2 ∤ (𝑘 − 𝜆) and 

2 ∤ 𝑘, then vC dim  [18]. Now we will prove it. 

    Suppose that 2 ∤ (𝑘 − 𝜆) and 2 ∤ 𝑘. By Proposition 1, 2

1

)(|det|



v

kkA  . 

Thus the matrix A is invertible over 𝐹2. Hence vC dim . We combine this result with Theorem 1. So we obtain: 

0dimdim  vvCvC  

This means there is no minimal access element. In this case, the secret cannot be reached. 

   Example 1. 

Consider the symmetric (7, 3, 1) − symmetric design, where 𝑣 = 7, 𝑘 = 3, 𝜆 = 1. The set of points is ,0{P ,1 ,2
,3 ,4 ,5 }6  and the blocks are ,0{1 B ,1 }3 , ,1{2 B ,2 }4 , ,2{3 B ,3 }5 , ,3{4 B ,4 }6 , ,4{5 B ,5
}0 , ,5{6 B ,6 }1 , ,6{7 B ,0 }2 . 

    The incidence matrix of this design is: 































1000101

1100010

0110001

1011000

0101100

0010110

0001011

A . 

      The 𝐹2 − code C of the symmetric (7, 3, 1) −design is a subspace of (𝐹2)7 generated by the rows of the incidence 

matrix A.  























1111000

0110100

1010010

1100001

G  is a generator matrix of C. The codewords of C are ,1101000{ ,0110100

,0011010 ,0001101 ,1000110 ,0100011 ,1010001 ,0101110 ,0010111  ,1001011 ,1100101 ,1110010

,0111001 ,1011100 ,0000000 }1111111 . 

      We examine a multisecret-sharing scheme based on the dual code of the binary code of the symmetric (7, 3, 1) −
 design. C is the binary [7, 4] − code. The dual code of  𝐶⊥ of  C is a linear [7, 3] − code. So |𝐶⊥| = 23 = 8. 
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

















1110100

1010011

0111010

G  is a generator matrix  of  𝐶⊥. The codewords of 𝐶⊥ are ,0101110{ ,0010111

,1001011 ,1100101 ,1110010 ,0111001 ,1011100 }0000000 . 

Let the secret vector be )1101000(S . We calculate the shares as follows. 

0)1101000).(0010111(.

0)1101000).(1100101(.

0)1101000).(0101110(.

33

22

11







TT

TT

TT

Sgy

Sgy

Sgy

 

The participants (the rows of 𝐺⊥) can reach the secret by combining their shares as below: 


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




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
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
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0
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It is seen that the secret 𝑆 = (1101000) by solving the above linear system. This scheme is also a (3, 8) − 

threshold secret sharing scheme. 

3-4- Security Analysis 

Our scheme has been constructed based on the dual code of 𝐹2 − code of a symmetric (𝑣, 𝑘, 𝜆) −design. We use 

Blakley’s method. The secret can be reached by the rows of generator matrix of the dual code. It is needed the 

following linear equation system. 

TT YSG .  

This system has always a solution and it is not easy to find it. Also it has a unique solution since we work over 𝐹2. 

So the multisecret-sharing scheme is attractive in against cheating. This scheme is more resilient to algebraic attacks 

due to the reconstruction algorithm. 

Moreover, one of the basic parameters in secret sharing is information rate 𝜌 of the scheme, which is defined to be 

the ratio between the length (in bits) of the secret and the maximum length of the shares given to the participants. That 

is 
||logmax

||log

pS

K
   [19]. 

A secret sharing scheme is said to be ideal if its information rate is equal to one, which is the maximum possible 

value. 

)log(max

log

rv

v


  for our scheme. If the shares are too large, the memory requirements for the participants will be too 

strong and the algorithms used to compute the shares will become inefficient. 𝜌 > 1 since 𝑣 > 𝑣 − 𝑟. By the above 

information this scheme is too strong to the possible attacks. 

3-5- Comparison with Other Schemes 

In this section, we compare our scheme with other secret sharing scheme. We denote the number of participants, 

the size of a secret, the number of coalitions for arithmetic over 𝐹𝑞 by M, R, T in the following table. We consider a 

[𝑛, 𝑘, 𝑑 ≥ 2𝑡 + 1] − code over 𝐹𝑞 and an [𝑣, 𝑟] −code over 𝐹2 generated by a symmetric (𝑣, 𝑘, 𝜆) −design. 

Massey (1993) [5] has a single secret sharing scheme and constructed it based on linear codes. Ding et al. (1997) 

[20] used to linear algebra. In Çalkavur et al. [12] scheme, it is used to decoding to explain the reconstruction 
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algorithm. We use Blakley’s method to recover the secret in the new scheme. Since the system has a unique solution, 

it is very difficult to find the secret by attackers. So our new system is too safe. 

Table 1. Comparison with other schemes. 

System 
Massey (1993) 

[5] 

Ding et al. (1997) 

[20] 

Çalkavur and Solé (2015) 

[12] 
This paper 

𝑀 𝑛 − 1 𝑛 𝑛 2𝑣−𝑟 

𝑅 𝑞 𝑞𝑘 𝑞𝑘 2𝑣−𝑟 

𝑇 (
𝑛
𝑘

) (
𝑛
𝑘

) ≥ (
𝑛

𝑑 − 𝑡
) 𝑣 − 𝑟 

𝜌 1 
𝑘

𝑘 − 1
 1 > 1 

4- Conclusion 

In the present article, we have introduced a new multisecret-sharing scheme based on the dual code of the binary 

code of a symmetric (𝑣, 𝑘, 𝜆) −design. The reconstruction algorithm is based on Blakley’s method. We determine the 

access structure and calculate the information rate of this scheme. We give the number of minimal access elements 

under certain conditions. We compare our scheme with the other schemes in the literature. The new system stands 

well, in terms of security. 
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