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Abstract 

The Non-Hermitian aspect of Quantum Mechanics has been of great interest recently. There have 

been numerous studies on non-Hermitian Hamiltonians written for natural processes. Some studies 

have even expressed the hydrogen atom in a non-Hermitian basis. In this paper the principles of 

non-Hermitian quantum mechanics is applied to both the time independent perturbation theory and 

to the time dependant theory to calculate the Stark effect. The principles of spherical harmonics has 

also been used to describe the development in the non-Hermitian case. Finally, the non-Hermitian 

aspect has been introduced to the well known Stark effect in quantum mechanics to find a condition 

in which the Stark effect will still be true even if a non-Hermitian Hamiltonian is used. This study 

completes the understanding at a fundamental level to understand the well known Stark effect. 
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1- Introduction 

In physics, the most successful theory which we have till now id quantum mechanics. The predictions made by 

quantum mechnics has been corroborated by the various experiments ranging from low energy experiments to high 

energy experiments. Quantum mechanics has been one of the theories in physics which has found numerous 

applications in interdisciplinary fields such as chemistry and biology, and fields as diverse as finance. Despite of it 

being a major success, it has been widely accepted that quantum mechanics has not been completely understood. Time 

and again it surprises and baffles researchers with its results.  

The main requirement of quantum mechanics is that it lives in a Hermitian space. This means that the quantum 

mechanical operators which expresses the behavior of a quantum system are Hermitian. This requirement points 

towards the well known principle that the energy spectrum should be real because all measurements of the energy of a 

system should give real results [1-3]. The aspect of an operator being Hermitian is pure mathematical in nature. The 

condition of an operator 𝐻 being Hermitian is given by,  

𝐻 = 𝐻†  (1) 

Where the symbol † represents the combined operations of matrix transposition and complex conjugation [1, 2]. The 

operator 𝐻 is referred to as a Hamiltonian and the eigenvalues of 𝐻 are real.  

It has been seen [1] that 𝐻 does not necessarily have to be Hermitian to necessarily obtain a real energy eigenvalue 

spectra. This gives us the opportunity to study and understand the aspects of quantum mechanics related with non-

Hermitian operators as well, which is also known as 𝒫𝒯-symmetry theory [1]. There have been some studies which 
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deal with non-Hermitian operators, and one such study deals with a complex-valued potential function whose spectra 

results are real [4-6]. Similarly, another study uses the same formulation to understand the Pais-Uhlenbeck oscillator 

model [5-7]. There have been continuous efforts in applying this formulation to understand quantum mechanical 

phenomena of known processes [6, 8, 9].  

This paper studies the non-Hermitian Hamiltonian as described in Bender (2005), Hamazaki et al. (2020), 

Ernzerhof et al. (2020), Romero et al. (2013) and Bagarello and Gargano (2020) [1, 3, 5, 10, 11] and studies the 

spherical harmonics and hydrogen atom through the 𝒫𝒯-symmetry theory. Then this is applied to the well known 

result of time-independent perturbation theory in quantum mechanics and the very well known Stark effect. 

2- Methodology 

Figure 1 shows the flowchart of the research methodology. 

 

 

Figure 1. Flowchart of the research methodology. 

3- Spherical Harmonics & Angular Momentum 

3-1- Spherical Harmonics 

 Spherical harmonics play an important part in the description of the H-atom because they represent the solutions to 

the angular part of the wave function. The wave-function of the H-atom is given as [11-13]. 

Ψ𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑛,𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜙) (2) 

Where the 𝑌𝑙𝑚(𝜃, 𝜙) are known as spherical harmonic functions given by: 

𝑌𝑙𝑚(𝜃, 𝜙) = (−1)𝑚√
(2𝑙+1)(𝑙−𝑚)!

4𝜋(𝑙+𝑚)!
𝑃𝑙𝑚(cos𝜃)𝑒(𝑖𝑚𝜙) (3) 

for 𝑚 ≥ 0, and  

𝑌𝑙,−𝑚(𝜃, 𝜙) = 𝑌𝑙𝑚
∗ (𝜃, 𝜙) (4) 

for 𝑚 < 0.  

𝑃𝑙𝑚(cos𝜃) are the associated Legendre polynomials given by: 

𝑃𝑙𝑚(𝑥) = (−1)𝑚√(1 − 𝑥2)𝑚  
𝑑𝑚

𝑑𝑥𝑚 𝑃𝑙(𝑥) (5) 

Where 𝑃𝑙(𝑥) are Legendre polynomials. These polynomials can be generated using: 

𝑃𝑙(𝑥) =
(−1)𝑙

2𝑙𝑙!

𝑑𝑙

𝑑𝑥𝑙 (1 − 𝑥2)𝑙 (6) 

Where 𝑅𝑛,𝑙(𝑟) is the Radial part of the H-atom wave-function and is given by: 

𝑅𝑛,𝑙(𝑟) = √(
2

𝑛𝑎0
)3 (𝑛−𝑙−1)!

2𝑛[(𝑛+𝑙)!]3  𝑒−𝑟/3𝑎0𝐿𝑛−𝑙−1
2𝑙+1 (

2𝑟

𝑛𝑎0
) (7) 
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Where 𝐿𝑛−𝑙−1
2𝑙+1 (

2𝑟

𝑛𝑎0
) and is known as the associated Laguerre polynomials given by:  

𝐿𝑛−𝑙−1
2𝑙+1 (𝑠) = ∑𝑛−𝑙−1

𝑞=0 (−1)𝑞  
(𝑛+𝑙)!

(𝑛−𝑙−𝑞−1)!(𝑞+2𝑙+1)!
 𝑠𝑞 (8) 

 or, more generally as  

𝐿𝑝
𝑗

(𝑠) = ∑𝑝
𝑞=0 (−1)𝑞  

(𝑝+𝑗)!

(𝑝−𝑞)!(𝑗+𝑞)!𝑞!
 𝑠𝑞 (9) 

The spherical harmonics in Equation 3 satisfy the orthonormality relations  

〈𝑌𝑙′,𝑚′(𝜃, 𝜙)|𝑌𝑙𝑚(𝜃, 𝜙)〉 = ∫ 𝑑Ω 𝑌𝑙′,𝑚′(𝜃, 𝜙)𝑌𝑙𝑚(𝜃, 𝜙) = 𝛿𝑚,𝑚′ 𝛿𝑙,𝑙′ (10) 

Where 𝛿𝑎𝑏 is the Kronecker delta function.  

The spherical harmonic functions form an orthonormal basis and hence, any function 𝑓(𝜃, 𝜙) can be written as: 

𝑓(𝜃, 𝜙) = ∑𝑙≥0 ∑𝑙
𝑚=−𝑙 𝐶𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜙) (11) 

Where the coefficients 𝐶𝑙𝑚 are: 

𝐶𝑙𝑚 = ∫ 𝑑Ω 𝑌𝑙𝑚
∗ (𝜃, 𝜙)𝑓(𝜃, 𝜙)  (12) 

Substituting 𝐶𝑙𝑚 in Equation 11 and changing variables 𝑢′ = 𝑐𝑜𝑠𝜃′ and 𝑢 = 𝑐𝑜𝑠𝜃 results in: 

𝑓(𝜃, 𝜙) = ∫
2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑𝑢′𝑓(𝑢′, 𝜃′)(∑𝑙≥0 ∑𝑙

𝑚=−𝑙 𝑌𝑙𝑚
∗ (𝑢′, 𝜙′)𝑌𝑙𝑚(𝑢, 𝜙)) (13) 

Where the completeness relation for the spherical harmonics is given as:  

∑𝑙≥0 ∑𝑙
𝑚=−𝑙 𝑌𝑙𝑚

∗ (𝜃′, 𝜙′)𝑌𝑙𝑚(𝜃, 𝜙) = 𝛿(𝜃 − 𝜃′) 𝛿(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃′) (14) 

3-2- Angular Momentum 

The angular momentum operators in the Hermitian space are given by 𝐿𝑥 = −𝑖(𝑦𝜕𝑧 − 𝑧𝜕𝑦), 𝐿𝑦 = −𝑖(𝑧𝜕𝑥 − 𝑥𝜕𝑧), 

𝐿𝑧 = −𝑖(𝑥𝜕𝑦 − 𝑦𝜕𝑥) and the angular momentum algebra is [𝐿𝑥 , 𝐿𝑦] = 𝑖𝐿𝑧 , [𝐿𝑧 , 𝐿𝑥] = 𝑖𝐿𝑦 , [𝐿𝑦 , 𝐿𝑧] = 𝑖𝐿𝑥  and 𝐿𝑥
2 +

𝐿𝑦
2 + 𝐿𝑧

2 = 𝐿2 also, [𝐿2, 𝐿𝑥] = [𝐿2, 𝐿𝑦] = [𝐿2, 𝐿𝑧] = 0. 

The eigenvalue equation is given by  

𝐿2𝑌𝑙𝑚(𝜃, 𝜙) = 𝑙(𝑙 + 1)𝑌𝑙𝑚(𝜃, 𝜙)  (15) 

Where 𝑙 = 0,1,2. . .. 

4- 𝓟𝓣 Symmetric Spherical Harmonics & Angular Momentum 

This section is a brief review of 𝒫𝒯 symmetry and the application to spherical harmonics and angular momentum 

[10, 13].  

4-1- 𝓟𝓣 Symmetry Basics 

In 𝒫𝒯 symmetry, 𝒫 stands for the parity operator and 𝒯 stands for the time reversal operator. When the parity 

operator is applied to a function it results in 𝒫𝑓(𝑥, 𝑦, 𝑧) = 𝑓(−𝑥, −𝑦, −𝑧) and the time reversal operator is defined 

when 𝑡 → −𝑡 or 𝑖 → −𝑖. So when the operator is applied 𝒫𝒯 the result is 𝒫𝒯[𝑓(𝑥⃖)] = 𝑓∗(−𝑥⃖). 

In spherical harmonics the parity operator transforms as (𝑟, 𝜃, 𝜙) → (𝑟, 𝜋 − 𝜃, 𝜙 + 𝜋) , so 𝒫𝒯[𝑓(𝑟, 𝜃, 𝜙)] =
𝑓∗(𝑟, 𝜋 − 𝜃, 𝜙 + 𝜋) and with two functions 𝑓&𝑔: 

〈𝑓|𝑔〉 = ∫ 𝑑𝑥⃖[𝒫𝒯𝑓(𝑥)]𝑔(𝑥)  (16) 

 4-2- 𝓟𝓣 Symmetric Spherical Harmonics 

Under the parity operator the spherical harmonics transform as: 

𝒫[𝑌𝑙𝑚(𝜃, 𝜙)] = 𝑌𝑙𝑚(𝜋 − 𝜃, 𝜙 + 𝜋) = (−1)𝑙𝑌𝑙𝑚(𝜃, 𝜙)  (17) 

and operated on by the 𝒫𝒯 operator: 

𝒫𝒯[𝑌𝑙𝑚(𝜃, 𝜙)] = 𝑌𝑙𝑚
∗ (𝜋 − 𝜃, 𝜙 + 𝜋) = (−1)𝑙𝑌𝑙𝑚

∗ (𝜃, 𝜙)  (18) 

defining the 𝒫𝒯 symmetric spherical harmonics as: 

𝑌𝑙𝑚
𝑔

(𝜃, 𝜙) = 𝑒𝑔 𝑌𝑙𝑚(𝜃, 𝜙)  (19) 

Where 𝑔 ≡ 𝑔(𝑟, 𝜃, 𝜙) is any function and the inner product is given as: 
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〈𝑌𝑙′,𝑚′
𝑔

(𝜃, 𝜙)|𝑌𝑙𝑚
𝑔

(𝜃, 𝜙)〉 = ∫ 𝑑Ω 𝒫𝒯[𝑌𝑙′,𝑚′
𝑔

(𝜃, 𝜙)]𝑌𝑙𝑚
𝑔

(𝜃, 𝜙)  (20) 

And also; 

𝒫𝒯[𝑌𝑙′,𝑚′
𝑔

(𝜃, 𝜙)] = 𝑒𝑔(𝑟,𝜋−𝜃,𝜙+𝜋)(−1)𝑙𝑌𝑙𝑚
∗ (𝜃, 𝜙)  (21) 

Hence,  

〈𝑌𝑙′,𝑚′
𝑔

(𝜃, 𝜙)|𝑌𝑙𝑚
𝑔

(𝜃, 𝜙)〉 = (−1)𝑙 ∫ 𝑑Ω 𝑒[𝑔∗(𝑟,𝜋−𝜃,𝜙+𝜋)+𝑔(𝑟,𝜃,𝜙)]𝑌𝑙′,𝑚′
∗ (𝜃, 𝜙)𝑌𝑙𝑚(𝜃, 𝜙) (22) 

If the following condition [3, 10] is fulfilled,  

𝑒[𝑔∗(𝑟,𝜋−𝜃,𝜙+𝜋)+𝑔(𝑟,𝜃,𝜙)] = 𝛼 (23) 

Then;  

〈𝑌𝑙′,𝑚′
𝑔

(𝜃, 𝜙)|𝑌𝑙𝑚
𝑔

(𝜃, 𝜙)〉 = (−1)𝑙𝛼 𝛿𝑚,𝑚′ 𝛿𝑙,𝑙′ (24) 

So it is observed that the spherical harmonics are orthogonal under 𝒫𝒯 transformation if Equation 23 is satisfied. 

Applying the 𝒫𝒯 transformation,  

𝑓(𝜃, 𝜙) = ∑𝑙≥0 ∑𝑙
𝑚=−𝑙 𝐶𝑙𝑚𝑌𝑙𝑚

𝑔
(𝜃, 𝜙) (25) 

And applying the orthonormality conditions results in: 

𝐶𝑙𝑚 =
(−1)𝑙

𝜆
〈𝑌𝑙𝑚

𝑔
(𝜃, 𝜙)|𝑓(𝜃, 𝜙)〉 =

(−1)𝑙

𝜆
∫ 𝑑Ω𝒫𝒯[𝑌𝑙𝑚

𝑔
(𝜃, 𝜙)𝑓(𝜃, 𝜙) (26) 

So the 𝒫𝒯 symmetric hydrogen atom wave function can be defined as  

Ψ𝑛𝑙𝑚
𝑔

= 𝑒𝑔(𝑟,𝜃,𝜙)Ψ𝑛𝑙𝑚 (27) 

Where Ψ𝑛𝑙𝑚 is defined in Equation 2. For simplicity we will write this as: 

|𝑛𝑙𝑚〉𝑔 = 𝑒𝑔|𝑛𝑙𝑚〉 (28) 

and the complex conjugate as,  

〈𝑛𝑙𝑚|𝑔 = 𝑒𝑔∗
〈𝑛𝑙𝑚| (29) 

4-3- 𝓟𝓣 Symmetric Angular Momentum 

As defined, 𝑔 ≡ 𝑔(𝑟, 𝜃, 𝜙), the angular momentum operator is [10]: 

𝐿𝑖
𝑔

= 𝑒𝑔𝐿𝑖𝑒
−𝑔  (30) 

In general 𝐿𝑖
𝑔

 is non-Hermitian, and their algebra is given as: 

[𝐿𝑥
𝑔

, 𝐿𝑦
𝑔

] = 𝑖𝐿𝑧
𝑔

, [𝐿𝑧
𝑔

, 𝐿𝑥
𝑔

] = 𝑖𝐿𝑦
𝑔

, [𝐿𝑦
𝑔

, 𝐿𝑧
𝑔

] = 𝑖𝐿𝑥
𝑔

 (31) 

Also,  

(𝐿𝑔)2 = (𝐿𝑥
𝑔

)2 + (𝐿𝑦
𝑔

)2 + (𝐿𝑧
𝑔

)2, [(𝐿𝑔)2, 𝐿𝑖
𝑔

] = 0 (32) 

Similar to Equation 15: 

(𝐿𝑔)2𝑌𝑙𝑚
𝑔

(𝜃, 𝜙) = 𝑙(𝑙 + 1)𝑌𝑙𝑚
𝑔

(𝜃, 𝜙), 𝑌𝑙𝑚
𝑔

(𝜃, 𝜙) = 𝑒𝑔𝑌𝑙𝑚(𝜃, 𝜙) (33) 

and similar to Equation 10. 

5- Transformations 

If A, B and C are operators that satisfy commutation relations such as: 

[𝐴, 𝐵] = 𝐶  (34) 

These operators transform as;  

𝐴𝑔 = 𝑒𝑔𝐴𝑒−𝑔,       𝐵𝑔 = 𝑒𝑔𝐵𝑒−𝑔,        𝐶𝑔 = 𝑒𝑔𝐶𝑒−𝑔 (35) 

now the commutation rules are,  

[𝐴𝑔, 𝐵𝑔] = 𝐶𝑔  (36) 

 Taking the transformation of the position and the momentum operator as: 
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𝑥𝑖
𝑔

= 𝑒𝑔𝑥𝑖𝑒−𝑔, 𝑝𝑖
𝑔

= 𝑒𝑔𝑝𝑖𝑒−𝑔 (37) 

The following commutation rules using this transformation are given as,  

[𝐿𝑖
𝑔

, 𝑥𝑗] = 𝑖𝜖𝑖𝑗𝑘𝑥𝑘  (38) 

  

[𝐿𝑖
𝑔

, 𝑝𝑗] ≠ 𝑖𝜖𝑖𝑗𝑘𝑝𝑘  (39) 

And,  

[𝐿𝑖
𝑔

, 𝑝𝑗
𝑔

] = 𝑖𝜖𝑖𝑗𝑘𝑝𝑘
𝑔

 (40) 

Defining the Hamiltonian in the 𝒫𝒯 symmetric case as: 

𝐻𝑔 = 𝑒𝑔𝐻𝑒−𝑔  (41) 

then the commutation relations with the Hamiltonian are given as,  

[𝐿𝑖 , 𝐻𝑔] ≠ 0  (42) 

and  

[𝐿𝑖
𝑔

, 𝐻𝑔] = 0  (43) 

So we see that 𝐿𝑖 is a conserved quantity but 𝐿𝑖
𝑔

 is not. 

6- Time Independent Perturbation Theory & Stark Effect 

The methodology of a perturbation theory is to apply a slight deformation or deviation in the system and observe as 

to how the system is behaving. The complete Hamiltonian is the unperturbed Hamiltonian plus the perturbation term 

[14, 15]. The Stark effect is the phenomena of altering atomic energy levels by an external electric field. The external 

electric field can be applied to an atom or molecule and acts as a perturbation. This effect, though small compared to 

the spacings between the unperturbed atomic levels, is quite significant. The Stark effect can be readily observed as 

shifting and splitting of spectral lines in atoms and molecules. Here we have calculated the Stark effect in a Hydrogen 

atom, and in the following sections applied this to the non-Hermitian case. 

6-1- Basics of Perturbation Theory (Time-independent) 

Considering the time-independent case, let us write the total Hamiltonian as [14],  

𝐻 = 𝐻0 + 𝑎𝐻′  (44) 

Where 𝐻0 is the unperturbed Hamiltonian and 𝐻′ is the interaction term with "𝑎" as a small quantity. We consider that 

𝐻0 is solved and has well-known eigenfunctions and eigenvalues, 𝑖. 𝑒.  

𝐻0|𝑚(0)〉 = 𝐸𝑚
(0)

|𝑚(0)〉 (45) 

Where the eigenfunctions are normalized, 𝑖. 𝑒.  

〈𝑚0|𝑛0〉 = 𝛿𝑚𝑛  (46) 

So now we can write the total Hamiltonian and calculate the energy eigenvalues 𝐸𝑚 and eigenfunctions |𝑚〉 of the 

total Hamiltonian,  

𝐻|𝑚〉 = 𝐸𝑚|𝑚〉  (47) 

The idea of perturbation theory is to find the change in energy and the wavefunctions which arises because of the 

perturbation. To get that we will expand the eigenvalues and eigenfunctions in a power series. Let the power series of 

the eigenvalues and eigenfunctions be written as,  

𝐸𝑚 = 𝐸𝑚
(0)

+ 𝑎𝐸𝑚
(1)

+ 𝑎2𝐸𝑚
(2)

+ − − − − − (48) 

and  

|𝑚〉 = |𝑚(0)〉 + 𝑎|𝑚(1)〉 + 𝑎2|𝑚(2)〉 + − − − − (49) 

Using Equations 48 and 49 we get Equation 44 as, 

(𝐻0 + 𝑎𝐻′)(|𝑚(0)〉 + 𝑎|𝑚(1)〉 + 𝑎2|𝑚(2)〉+. . . . ) =

(𝐸𝑚
(0)

+ 𝑎𝐸𝑚
(1)

+ 𝑎2𝐸𝑚
(2)

+. . . . )

(|𝑚(0)〉 + 𝑎|𝑚(1)〉 + 𝑎2|𝑚(2)〉+. . . . )

 (50) 
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Now, equating coefficients of 𝑎0, 𝑎1 and 𝑎2 we get,  

𝐻0|𝑚(0)〉 = 𝐸𝑚
(0)

|𝑚(0)〉 (51) 

𝐻0|𝑚(1)〉 + 𝐻′|𝑚(0)〉 = 𝐸𝑚
(0)

|𝑚(1)〉 + 𝐸𝑚
(1)

|𝑚(0)〉  (52) 

And, 

𝐻0|𝑚(2)〉 + 𝐻′|𝑚(1)〉 = 𝐸𝑚
(0)

|𝑚(2)〉 + 𝐸𝑚
(1)

|𝑚(1)〉 + 𝐸𝑚
(2)

|𝑚(0)〉 (53) 

Respectively. We have neglected the terms with higher powers of 𝑎  because we are taking into account the 

dominant terms only.  

First and Second Order Corrections: Using Equation 52 we get the energy corrections for the first order as,  

𝐸𝑚
(1)

= 〈𝑚(0)|𝐻′|𝑚(0)〉 (54) 

The first order corrections to the eigenstate is given by,  

|𝑚(1)〉 = ∑𝑛≠𝑚 |𝑛(0)〉〈𝑛(0)|𝑚(1)〉 (55) 

Using Equation 52 it is trivial to show that: 

〈𝑛(0)|𝑚(1)〉 =
〈𝑛(0)|𝐻′|𝑚(0)〉

𝐸𝑚
(0)

−𝐸𝑛
(0)  (56) 

So the first order corrections to the eigenstate is given by substituting Equation 56 in Equation 55 which is,  

|𝑚(1)〉 = ∑𝑛≠𝑚
〈𝑛(0)|𝐻′|𝑚(0)〉

𝐸𝑚
(0)

−𝐸𝑛
(0)  |𝑛(0)〉 (57) 

Similarly, we can calculate the second order corrections to the energy and we get,  

𝐸𝑚
(2)

= ∑𝑛≠𝑚
|〈𝑛(0)|𝐻′|𝑚(0)〉|2

𝐸𝑚
(0)

−𝐸𝑛
(0)  (58) 

Here we have not calculated the higher orders because they will be negligible. 

6-2- Stark Effect 

The Stark effect occurs when a Hydrogen atom is subjected to an electric field. This results in splitting of the 

energy levels because of the externally applied electric field. The term which includes the electric field acts as the 

perturbation term, which results in the splitting of the energy levels. This splitting of energy levels is due to the 

corrections in the energy of the unperturbed Hamiltonian. There have been various studies on the Stark effect with 

different conditions as mentioned in [16-19]. The unperturbed Hamiltonian for the Hydrogen atom is,  

𝐻0 =
𝑝2

2𝑚
−

𝑘𝑒2

𝑟2   (59) 

all the quantities in Equation 59 are defined for the electron. The perturbation term is given by,  

𝐻′ = 𝑒ℰ𝑧  (60) 

Where ℰ denotes the magnitude of the electric field and the direction of electric field is along the z-axis.  

The energy eigenstate of the unperturbed Hamiltonian is characterized in terms of quantum numbers, namely 𝑛, 𝑙 
and 𝑚. So we can define the eigenstate of the H-atom as |𝑛𝑙𝑚〉 and the energy eigenvalues as 𝐸𝑛𝑙𝑚. Using Equation 

54 and 58 the first and second order energy corrections can be written as,  

Δ𝐸𝑛𝑙𝑚 = 𝑒ℰ〈𝑛𝑙𝑚|𝑧|𝑛𝑙𝑚〉 + ∑𝑛′𝑙′𝑚′≠𝑛𝑙𝑚
𝑒2ℰ2|〈𝑛𝑙𝑚|𝑧|𝑛′𝑙′𝑚′〉|2

(𝐸𝑛′𝑙′𝑚′−𝐸𝑛𝑙𝑚)
 (61) 

This shift in the energy from the unperturbed energy is called the Stark effect. Here again we have neglected higer 

order energy corrections becauase we are interested only in the dominant terms. The selection rules for the quantum 

numbers 𝑙 and 𝑚 are,  

𝑙′ = 𝑙 ± 1  (62) 

𝑚′ = 𝑚  (63) 

This results in Equation 61 giving the first term as zero and so we get the energy correction which is only the 

second order corresction as,  

Δ𝐸𝑛𝑙𝑚
(2)

= ∑𝑛′𝑙′≠𝑛𝑙
𝑒2ℰ2|〈𝑛𝑙𝑚|𝑧|𝑛′𝑙′𝑚〉|2

(𝐸𝑛𝑙𝑚−𝐸𝑛′𝑙′𝑚)
 (64) 
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 𝑛 = 1, 𝑙 = 0, 𝑚 = 0  

Δ𝐸100
(2)

= ∑𝑛′>1
𝑒2ℰ2|〈100|𝑧|𝑛′10〉|2

(𝐸𝑛′10−𝐸100)
 (65) 

 

 

Figure 2. The Stark effect shows the splitting of lines in Hydrogen atom. source(starkeffects.com). 

For 𝑛′ = 2 and using the inequality [14]; 

𝐸𝑛′00 − 𝐸100 ≥ 𝐸200 − 𝐸100 (66) 

And defining 𝛼′ as the polarizability [14] where: 

𝛼′ = 2𝑒2 ∑𝑛′>1  
|〈100|𝑧|𝑛′10〉|2

(𝐸𝑛′10−𝐸100)
 (67) 

We get;  

𝛼′ <
16

3
𝑎0

3  (68) 

Where we know that the expectation value 〈𝑧2〉 = 𝑎0
3 with 𝑎0 being the Bohr radius. The experimental value for the 

polarizability [14] is,  

𝛼′ =
9

2
𝑎0

3  (69) 

6-3- 𝓟𝓣 Symmetric Perturbation Theory & Stark Effect 

In this section we have calculated the energy corrections for the hydrogen atom using the 𝒫𝒯  symmetric 

wavefunction which is given in Equation 27. We know that the Stark effect is described as given in Equation 50. The 

total Hamiltonian in the non-Hermitian case can be expressed using as,  

𝐻𝑔 = 𝑒𝑔𝐻𝑒−𝑔  (70) 

𝐻𝑔 = 𝑒𝑔(𝐻0 + 𝐻′)𝑒−𝑔  (71) 

Where 𝐻0  is the unperturbed Hamiltonian and 𝐻′ = 𝑒ℰ𝑧 is the perturbation as shown in Equation 60. So we get 

Equation 71 as,  

𝐻𝑔 = 𝑒𝑔(𝐻0 + 𝑒ℰ𝑧)𝑒−𝑔 (72) 

Which simplifies to,  

𝐻𝑔 = 𝑒𝑔𝐻0𝑒−𝑔 + 𝑒ℰ𝑧 (73) 

Using Equations 27 to 29, we see that Equation 68 can be written as a result from Equation 67 as,  

𝛼′ < |𝑒(𝑔+𝑔∗)|2 16

3
𝑎0

3 (74) 

Comparing with Equation 69 it follows that: 
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𝑒𝑔(𝑟,𝜃,𝜙)+𝑔∗(𝑟,𝜃,𝜙) = ±1 (75) 

So, if the 𝒫𝒯 symmetric wavefunction for the hydrogen atom is defined as in Equation 27, the condition which has 

to be satisfied is that given in Equation 71. We see that even though we express the Hamiltonian as a non-Hermitian 

one, we can still express the result from Stark effect if the condition given by Equation 75 is satisfied. 

7- Conclusion 

There have been numerous studies which describe the application of non-Hermitian quantum mechanics to 

calculate matrices and eigen values which is an important way to understand the mathematical aspects of quantum 

mechanics [3, 6, 13].  

Our approach to understanding the non-Hermitian quantum mechanics is to understand the well known 

experimental results in quantum mechanics through the non-Hermitian way which were initially explained using 

Hemitian properties. In this paper we have shown how to express a 𝒫𝒯 symmetric wave function for the hydrgen atom 

using the radial function and spherical harmonics [10]. Using this wave function we calculated the wavefunction of the 

hydrogen atom in the 𝒫𝒯 symmetric case and we have shown that the multiplicative factor should equal one if the 

results of the 𝒫𝒯 symmetric case should match with the experimental results of Stark effect. Thus, we have shown the 

conditions under which the 𝒫𝒯 symmetric Stark effect can be calculated and compared with experimental result. 
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