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Abstract 

Herein, we propose the Bayesian approach for constructing the confidence intervals for both the 

coefficient of variation of a log-normal distribution and the difference between the coefficients of 
variation of two log-normal distributions. For the first case, the Bayesian approach was compared 

with large-sample, Chi-squared, and approximate fiducial approaches via Monte Carlo simulation. 

For the second case, the Bayesian approach was compared with the method of variance estimates 
recovery (MOVER), modified MOVER, and approximate fiducial approaches using Monte Carlo 

simulation. The results show that the Bayesian approach provided the best approach for 

constructing the confidence intervals for both the coefficient of variation of a log-normal 
distribution and the difference between the coefficients of variation of two log-normal 

distributions. To illustrate the performances of the confidence limit construction approaches with 

real data, they were applied to analyze real PM10 datasets from the Nan and Chiang Mai provinces 
in Thailand, the results of which are in agreement with the simulation results. 
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1- Introduction 

The log-normal distribution is important in statistics because log-transformation of skewed data can bring symmetry 

to the data distribution. Therefore, this distribution is used to model data in real-life applications and has been used to 

measure the size of living tissue, certain physiological characteristics, and rainfall. Furthermore, it has been used to 

analyze data in medical, pharmaceutical, economics, and hydrological studies. Specifically, the log-normal distribution 

has been used to analyze the survival times of breast and ovarian cancer patients [1], pharmacokinetic parameters [2], 

extreme values of daily rainfall [3], and air pollution.  

In 2019, the air quality in Thailand was worse than in previous years because of smog exacerbated by human 

activities. One of its components, Particulate Matter (PM), which is a complex mixture of particles and liquid droplets, 

has steadily increased. PM is categorized by particle size: PM2.5 and PM10 with diameters of 2.5 µm and 10 µm or 

less, respectively. PM is produced from various sources and activities, including construction work, landfill, agriculture, 

wildfires, waste burning, industrial sources, and motor vehicles. PM10 is of particular interest because high levels can 

lead to poor health and respiratory disease. The deleterious effects of PM10 exposure are chest pain, general respiratory 

discomfort due to lung tissue damage, cancer, and premature death. Especially, its effects on children, the elderly, and 

people with chronic lung disease are of primary concern. 
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The problem of interval estimation for the parameters of a log-normal distribution has received considerable attention 

in the literature. For instance, Krishnamoorthy and Mathew [4], Hannig et al. [5], Tian and Wu [6], Harvey and van der 

Merwe [7], and Lin and Wang [8] presented confidence intervals for functions of the means of log-normal distributions. 

Rao and D'Cunha [9] proposed a novel approach to obtain inference using the median of a log-normal distribution. 

Thangjai et al. [10], Nam and Kwon [11], Hasan and Krishnamoorthy [12], Niwitpong et al. [13], Thangjai and 

Niwitpong [14], and Thangjai et al. [15] suggested confidence intervals for functions of the coefficient of variation of a 

log-normal distribution. Furthermore, Thangjai and Niwitpong [16, 17] introduced approaches to estimate the 

confidence intervals for functions of the signal-to-noise ratio of log-normal distributions. 

The coefficient of variation is defined as the standard deviation divided by the mean. It has been used as a measure 

of precision within and between data series. For example, Tsim et al. [18] used the coefficient of variation to analyze 

blood samples taken from different laboratories. Faupel-Badger et al. [19] used the coefficient of variation to compare 

the concentrations of an estrogen metabolite measured using two methods. In environmental studies, the coefficient of 

variation has often been used for measuring the daily air quality [20]. Pollution levels in different areas can be compared 

using the coefficient of variation: larger coefficient of variation values indicate greater dispersion whereas smaller ones 

indicate lower risk. The difference between the air pollution levels in two areas can be analyzed by comparing their 

coefficients of variation. 

Niwitpong [21] proposed confidence intervals for the coefficient of variation of log-normal distribution with 

restricted parameter space. Nam and Kwon [11] and Hasan and Krishnamoorthy [12] constructed the confidence 

intervals for the ratio of coefficients of variation of two log-normal distributions. Thangjai et al. [22] proposed Bayesian 

confidence intervals for the coefficient of variation and the difference between the coefficients of variation of two normal 

distributions. For k coefficients of variation, Ng [23] estimated confidence intervals for the common coefficient of 

variation of log-normal populations. Thangjai et al. [10] presented simultaneous confidence intervals for the differences 

between the coefficients of variation of log-normal distributions. Nam and Kwon [11] proposed the method of variance 

estimates recovery (MOVER) approach for constructing a confidence interval for the ratio of coefficients of variation 

of two log-normal distributions, which Hasan and Krishnamoorthy [12] later modified. Although the MOVER approach 

is easy to compute using an exact formula, it is based on the initial confidence interval for a single parameter of interest. 

In addition, Hasan and Krishnamoorthy [12] presented the approximate fiducial approach for constructing the 

confidence interval for the ratio of coefficients of variation. Although this approach was very simple, it was based on 

simulated data. 

In statistics, classical and Bayesian inference are fundamentally different. In classical inference, the parameter is 

unknown but fixed and its value is based on the observed values in a sample. The Bayesian approach uses a prior 

distribution based on the experimenter’s belief that is updated with the sample information. Subsequently, the posterior 

distribution is used to update the prior by using Bayes’ rule. In this study, the Bayesian approach was applied for 

constructing confidence intervals for the coefficient of variation and the difference between the coefficients of variation 

of log-normal distributions. The Bayesian approach is based on combining the likelihood function and the prior 

distribution. Depending on the choice of prior distribution, we show that the Bayesian approach has equal or better 

coverage accuracy and shorter average lengths than the classical approaches. 

The rest of this article is organized as follows. In Section 2, confidence intervals for the coefficient of variation of a 

log-normal distribution are presented, while those for the difference between the coefficients of variation of log-normal 

distributions are given in Section 3. In Section 4, the results of simulation studies are presented. PM10 datasets from 

Nan and Chiang Mai provinces are used to illustrate the performances of the confidence intervals in Section 5, and 

concluding remarks are presented in Section 6.  

2- Confidence Intervals for the Coefficient of Variation 

If 𝑋 = ln(𝑌) follows a normal distribution with mean 𝜇 and variance 𝜎2, then 𝑌 follows a log-normal distribution 

with parameters 𝜇  and 𝜎2 . The mean and variance of 𝑌  are 𝜇𝑌 = exp(𝜇 + (𝜎2/2))  and 𝜎𝑌
2 = (exp(𝜎2) −

1)(exp(2𝜇 + 𝜎2)), respective. The coefficient of variation of 𝑌, is defined as a ratio of standard deviation and mean 

of 𝑌, is expressed as 𝜏 = √exp(𝜎2) − 1. Since the coefficient of variation of the log-normal distribution depends on 

parameter 𝜎2 only. While the coefficient of variation of the normal distribution, is defined as 𝜎/𝜇, depends on mean 𝜇 

and variance 𝜎2.   

Let 𝑋̅ and 𝑆2 be unbiased estimators of 𝜇 and 𝜎2, respectively. Also, let 𝑥̅ and 𝑠2 be observed values of 𝑋̅ and 𝑆2, 

respectively. 

2-1- Classical Confidence Intervals for the Coefficient of Variation 

In this section, there are three approaches for interval estimation of the coefficient of variation. The three approaches 

are large-sample, chi-squared, and approximate fiducial approaches. 
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2-1-1- Large-sample Confidence Intervals for the Coefficient of Variation 

Large-sample confidence intervals are constructed based on two variances. First, the variance estimate of ln(𝜏̂) is 

given by Nam and Kwon [11]. Let 𝜏̂ = √exp(𝜎̂2) − 1 be the estimator of 𝜏, where 𝜎̂2 = (𝑛 − 1)𝑆2/𝑛. The large- 

sample confidence interval for ln(𝜏) based on the variance estimate of Nam and Kwon [11] is obtained by 

]))ˆ(ln(ˆ)ˆln(,))ˆ(ln(ˆ)ˆ[ln(],[ 2/12/1   raVzraVzUL NKNK   ,                                                         (1) 

Where 𝑍1−𝛼/2 denotes the 100(1 − 𝛼/2)-th percentile of the standard normal distribution and 

𝑉𝑎̂𝑟(ln(𝜏̂)) = 𝜎̂2(1 + 𝜏̂2)2/(2𝑛𝜏̂4).                  

Therefore, the 100(1 − 𝛼)% large-sample confidence interval for the coefficient of variation 𝜏 based 

on the variance estimate of Nam and Kwon [11] is defined as: 

)]exp(),[exp(],[ 1.1.1. NKNKLSLSLS ULULCI  
                                                                    (2) 

Second, the variance estimate of 𝜏̂ is proposed by Thangjai et al. [10]. Let 𝜏̂ = √exp(𝜎̂2) − 1 be the estimator of 𝜏, 

where 𝜎̂2 = 𝑆2. Therefore, the 100(1 − 𝛼)% large-sample confidence interval for the coefficient of variation 𝜏 based 

on the variance estimate of Thangjai et al. [10] is defined as: 

])ˆ(ˆˆ,)ˆ(ˆˆ[],[ 2/12/12.2.2.   raVzraVzULCI LSLSLS   ,                                                          (3) 

Where 𝑍1−𝛼/2 denotes the 100(1 − 𝛼/2)-th percentile of the standard normal distribution and                                       

𝑉𝑎̂𝑟(𝜏̂) = 𝜎̂4(exp(2𝜎̂2))/(2(𝑛 − 1)(exp(𝜎̂2) − 1)). 

2-1-2- Chi-squared Confidence Interval for the Coefficient of Variation 

Following Niwitpong [21], the 100(1 − 𝛼)% Chi-squared confidence interval for the coefficient of variation 𝜏 is 

defined as: 
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Where 𝜒𝑛−1,1−𝛼/2
2  and 𝜒𝑛−1,𝛼/2

2  denote the 100(1 − 𝛼/2)-th and 100(𝛼/2)-th percentiles of the Chi-squared 

distribution with 𝑛 − 1 degrees of freedom.  

2-1-3- Approximate Fiducial Confidence Interval for the Coefficient of Variation 

According to Hasan and Krishnamoorthy [12], let: 
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Where 𝜒𝑛−1,0.5
2 , 𝜒𝑛−1,𝛼/2

2  and 𝜒𝑛−1,1−𝛼/2
2  denote the 100(0.5)-th, 100(𝛼/2)-th and 100(1 − 𝛼/2)-th percentiles of the 

Chi-squared distribution with 𝑛 − 1 degrees of freedom, respectively. 

Therefore, the 100(1 − 𝛼)% approximate fiducial confidence interval for the coefficient of variation 𝜏 is defined as: 
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2-2- Bayesian Confidence Interval for the Coefficient of Variation 

In classical approach, the parameter 𝜃 is unknown, but it is fixed. Let 𝑋1, 𝑋2, … , 𝑋𝑛  be an random sample from 

population indexed by parameter 𝜃. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be observed values of 𝑋1, 𝑋2, … , 𝑋𝑛. Then the value of 𝜃 is known. 

In Bayesian approach, the parameter 𝜃  is considered to be a quantity. The prior distribution, is based on the 

experimenter’s belief, is updated with the sample information. The posterior distribution is updated prior with the use 

of Bayes’ Rule: see Casella and Berger [24].  
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Let 𝑋̅ be the sample mean and let 𝑆2 be the sample variance. Also, 𝑥̅ and 𝑠2 are the observed values of 𝑋̅ and 𝑆2, 

respectively. 

In this paper, a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 is drawn from a normal population with parameter 𝜃 = (𝜇, 𝜎2). The 

likelihood function is: 

















])()1[(

2

1
exp

1
)|,( 22

2

2/

2

2 xnsndataL

n




 ,                                     (9) 

The logarithm of the likelihood can be written as 
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Therefore, the Fischer information matrix is; 
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Following the Fischer information matrix, the Jeffreys Independence prior is;  

)()(),( 22  ppp  ,                                                                                           (12) 

In this paper is interested in the coefficient of variation. Then a flat prior for coefficient of variation is defined by; 
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Hence, the Jeffreys Independence prior is defined by; 
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Let 𝜇|𝜎2, 𝑥 be the conditional posterior distribution for 𝜇 given 𝜎2 and 𝑥. The 𝜇|𝜎2, 𝑥 is normal distribution with 

mean 𝜇̂ and variance 𝜎2/𝑛. It can written as;  
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Furthermore, let 𝜎2|𝑥  be the posterior distribution for 𝜎2  given 𝑥 . It is inverse gamma distribution with shape 

parameter (𝑛 − 1)/2 and scale parameter (𝑛 − 1)𝑠2/2. That is;   
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The posterior distribution is used to make statements for parameter which is considered a random quantity. Then the 

posterior distribution of the coefficient of variation can be used as a point estimate of coefficient of variation. It is 

denoted by: 

1)exp( 2   BS
,                                                                                                     (17) 

Where 𝜎2 is simulated through Monte Carlo simulation from the posterior distribution defined as in Equation 16. 

A smallest confidence interval with a specified coverage probability can be obtained using the Bayesian criteria. A 

highest posterior density region is used to obtain the shortest confidence interval. The posterior density region consists 

of the values of the parameter which is highest.  

Therefore, the 100(1 − 𝛼)% Bayesian confidence interval for the coefficient of variation 𝜏 is defined as; 

],[ ... BSBSBS ULCI   ,                                                                                                (18) 

Where 𝐿𝜏.𝐵𝑆 and 𝑈𝜏.𝐵𝑆 are the lower and upper limits of the highest posterior density region of 𝜏𝐵𝑆, respectively. 

Since the Bayesian confidence interval in Equation 18 can be estimated using a computational procedure given in the 

following algorithm. 
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Algorithm 1.  

Step 1: Generate )2/)1(,2/)1((~| 22 snnIGx  ; 

Step 2: Calculate the value of BS  as given in Equation 17; 

Step 3: Repeat the step 1 - step 2 for 𝑞 times and obtain 
q

BSBSBS  ,...,, 21
;  

Step 4: Calculate 𝐿𝜏.𝐵𝑆 and 𝑈𝜏.𝐵𝑆 from the 100(𝛼/2)-th and 100(1 − 𝛼/2)-th percentiles of 
q

BSBSBS  ,...,, 21
. 

The coverage probabilities and average lengths of the confidence intervals for the coefficient of variation can be 

approximated via Monte Carlo simulations using the following algorithm. 

Algorithm 2. For a given 𝑛, 𝜇, 𝜎, and 𝜏: 

Step 1: Generate x  from ),( 2N ; 

Step 2: Calculate x  and 𝑠2; 

Step 3: Construct ],[ )(1.)(1.)(1. hLShLShLS ULCI   ; 

Step 4: Construct ],[ )(2.)(2.)(2. hLShLShLS ULCI   ; 

Step 5: Construct ],[ )(.)(.)(. hCHIhCHIhCHI ULCI   ; 

Step 6: Construct ],[ )(.)(.)(. hAFhAFhAF ULCI   ; 

Step 7: Construct ],[ )(.)(.)(. hBShBShBS ULCI   ; 

Step 8: If )()( hh UL   set )(hp  1, else )(hp  0; 

Step 9: Calculate 
)()( hh LU  . 

Step 10: Repeat the step 1 to step 9 for a large number of times (say, 𝑀 times) and calculate coverage probability 
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3- Confidence Intervals for Difference between the Coefficients of Variation 

Assume that 𝑋1 = ln(𝑌1) is a random sample of size 𝑛1 from normal distribution with mean 𝜇1 and variance 𝜎1
2. 

Since 𝑋̅1  is the sample mean and 𝑆1
2  is the sample variance. Also, 𝑋2 = ln(𝑌2) is a random sample of size 𝑛2  from 

normal distribution with mean 𝜇2  and variance 𝜎2
2 . And 𝑋̅2  and 𝑆2

2  are the sample mean and sample variance, 

respectively. The coefficients of variation of 𝑌1  and 𝑌2  are defined as 𝜏1 = √exp(𝜎1
2) − 1  and  

𝜏2 = √exp(𝜎2
2) − 1. Therefore, the difference between the coefficients of variation is 𝛿 = 𝜏1 − 𝜏2 = √exp(𝜎1

2) − 1 −

√exp(𝜎2
2) − 1.           

3-1- Classical Confidence Intervals for Difference between the Coefficients of Variation 

Three approaches are used to construct the confidence intervals for the difference between the coefficients of variation 

of log-normal distributions. 

3-1-1- MOVER Confidence Interval for Difference between the Coefficients of Variation 

The variance estimate of )ˆln(  given in Nam and Kwon [11] is used. The estimator of difference between the 

coefficients of variation is obtained by; 
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Donner and Zou [25] proposed the idea of the MOVER approach for the confidence interval for difference between 

the parameters using the confidence interval ],[ ii ul , where 𝑖 = 1, 2. From Equation 3, the confidence intervals for the 

coefficient of variation of  𝑌1 and 𝑌2 are defined by; 
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Where 𝑍1−𝛼/2  denotes the 100(1 − 𝛼/2) -th percentile of the standard normal distribution, 
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The lower and upper limits of the confidence interval for the difference between the coefficients of variation based 

on MOVER approach are; 
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Therefore, the 100(1 − 𝛼)% MOVER confidence interval for difference between the coefficients of variation 𝛿 is 

defined as; 

],[ ... MOVERMOVERMOVER ULCI   ,                                                                                      (24) 

Where 
MOVERL .

 and 
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 are defined in Equations 22 and 23, respectively.  

3-1-2- Modified MOVER Confidence Interval for Difference between the Coefficients of Variation 

Suppose that the coefficient of variation estimators of 𝑌1  and 𝑌2  are defined as 𝜏̂1 = √exp(𝜎̂1
2) − 1  and 𝜏̂2 =
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2) − 1, where 𝜎̂1
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2  and 𝜎̂2

2 = 𝑆2
2. This paper is interested in the difference between the coefficients of 

variation. The estimator of difference between the coefficients of variation of 𝑌1 and 𝑌2 is 𝛿̂ = 𝜏̂1 − 𝜏̂2.      

The concept of the MOVER approach is modified to construct the confidence interval for difference between the 

coefficients of variation. It is called the modified MOVER approach. Using the Equation 4, the confidence intervals for 

the coefficient of variation of 𝑌1 and 𝑌2 are defined by ],[ *
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Where 𝜒𝑛𝑖−1,1−𝛼/2
2  and 𝜒𝑛𝑖−1,𝛼/2

2  denote the 100(1 − 𝛼/2)-th and 100(𝛼/2)-th percentiles of the Chi-squared 

distribution with 1in  degrees of freedom for 2,1i .  

Applying the MOVER approach, the lower and upper limits of the confidence interval for the difference between the 

coefficients of variation based on modified MOVER approach are 

2

2

*

2

2*

1121. )ˆ()ˆ(ˆˆ   ulL MMOVER
,                                                           (27)  

and                    
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121. )ˆ()ˆ(ˆˆ luU MMOVER   ,                                                          (28)    

Therefore, the )% -100(1   modified MOVER confidence interval for difference between the coefficients of 

variation   is defined as; 

],[ ... MMOVERMMOVERMMOVER ULCI   ,                                                                    (29) 

Where MMOVERL .  and MMOVERU .  are defined in Equations 27 and 28, respectively. 
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3-1-3- Approximate Fiducial Confidence Interval for Difference between the Coefficients of Variation 

Suppose that 50.T , T , and 1T  are the modified normal based approximations given in Krishnamoorthy [26]. For 

𝑖 = 1, 2, the approximations for the coefficient of variation of 𝑌𝑖 are defined by; 
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Where  𝜒𝑛𝑖−1,0.5
2 , 𝜒𝑛𝑖−1,𝛼/2

2  and 𝜒𝑛𝑖−1,1−𝛼/2
2  denote the 100(0.5)-th, 100(𝛼/2)-th and 100(1 − 𝛼/2)-th percentiles of 

the Chi-squared distribution with 𝑛𝑖 − 1 degrees of freedom, respectively. 

Applying Hasan and Krishnamoorthy [12] and the MOVER approach, the lower and upper limits for difference 

between the coefficients of variation are obtained by; 
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and 
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Therefore, the 100(1 − 𝛼)% approximate fiducial confidence interval for difference between the coefficients of 

variation 𝛿 is defined as; 

],[ ... AFAFAF ULCI   ,                                                                                        (35)  

Where AFL .  and AFU . are defined in Equations 33 and 34, respectively. 

3-2- Bayesian Confidence Interval for Difference between the Coefficients of Variation 

For 𝑖 = 1, 2, let ),...,,( 21 iiniii XXXX   be the random samples from normal populations with parameter 

),( 2

iii   . Also, let ),...,,( 21 iiniii xxxx   be the observed values of 𝑋𝑖, where 𝑖 = 1, 2. The 𝑥̅𝑖 and 𝑠𝑖
2 are observed 

values of 𝑋̅𝑖 and 𝑆𝑖
2, respectively, where 𝑋̅𝑖 is sample mean and 𝑆𝑖

2 is sample variance. The likelihood function of 
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The logarithm of the likelihood is; 
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From the logarithm of the likelihood, the Fischer information matrix is; 
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Therefore, the Jeffreys Independence prior is;  
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For 2,1i , the flat prior for coefficient of variation is defined by; 
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The Jeffreys Independence prior is;  
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The joint posterior distribution for
1 , 

2 , 
2

1 , and 
2

2  is given by 
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Therefore, the conditional posterior distribution for 𝜇𝑖 given 𝜎𝑖
2 and 𝑥𝑖 is given by; 
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Where 𝑖 = 1, 2. 

The posterior distribution for 𝜎𝑖
2 given 𝑥𝑖 is obtained by; 
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Where 𝑖 = 1, 2. 

The posterior distribution for the difference between the coefficients of variation is denoted by; 

1)exp(1)exp( 2
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,                                                                        (45) 

Where 𝜎1
2 and 𝜎2

2 are simulated through Monte Carlo simulation from the posterior distribution defined as in Equation 44.  

Therefore, the 100(1 − 𝛼)% Bayesian confidence interval for difference between the coefficients of variation 𝛿 is 

defined as;  

],[ ... BSBSBS ULCI   ,                                                                                         (46) 

Where 𝐿𝛿.𝐵𝑆 and 𝑈𝛿.𝐵𝑆 are the lower and upper limits of the highest posterior density region of 𝛿𝐵𝑆, respectively. 

The computational procedure for constructing the Bayesian confidence interval in Equation 46 is presented in 

Algorithm 3. 

Algorithm 3.  

Step 1: Generate )2/)1(,2/)1((~| 22

iiiii snnIGx  , where 𝑖 = 1, 2; 

Step 2: Calculate the value of 𝛿𝐵𝑆 as given in Equation 45; 

Step 3: Repeat the step 1 - step 2 for 𝑞 times and obtain q

BSBSBS  ,...,, 21 ;  

Step 4: Calculate 𝐿𝛿.𝐵𝑆 and 𝑈𝛿.𝐵𝑆 from the 100(𝛼/2)-th and 100(1 − 𝛼/2)-th percentiles of 𝛿𝐵𝑆
1 , 𝛿𝐵𝑆

2 , … , 𝛿𝐵𝑆
𝑞

. 

The following algorithm is given to calculate the coverage probabilities and average lengths of the confidence 

intervals for difference between the coefficients of variation.  

Algorithm 4. For a given 𝑛1, 𝑛2, 𝜇1, 𝜇2, 𝜎1, 𝜎2, and 𝛿: 

Step 1: Generate 𝑥1 from 𝑁(𝜇1, 𝜎1
2) and generate 𝑥2 from 𝑁(𝜇2, 𝜎2

2); 

Step 2: Calculate 𝑥̅1, 𝑥̅2, 𝑠1
2 and 𝑠2

2;  

Step 3: Construct 𝐶𝐼𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ) = [𝐿𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ), 𝑈𝛿.𝑀𝑂𝑉𝐸𝑅(ℎ)]; 

Step 4: Construct 𝐶𝐼𝛿.𝑀𝑀𝑂𝑉𝐸𝑅(ℎ) = [𝐿𝛿.𝑀𝑀𝑂𝑉𝐸𝑅(ℎ), 𝑈𝛿.𝑀𝑀𝑂𝑉𝐸𝑅(ℎ)]; 

Step 5: Construct 𝐶𝐼𝛿.𝐴𝐹(ℎ) = [𝐿𝛿.𝐴𝐹(ℎ), 𝑈𝛿.𝐴𝐹(ℎ)];   

Step 6: Construct 𝐶𝐼𝛿.𝐵𝑆(ℎ) = [𝐿𝛿.𝐵𝑆(ℎ), 𝑈𝛿.𝐵𝑆(ℎ)]; 

Step 7: If 𝐿(ℎ) ≤ 𝛿 ≤ 𝑈(ℎ) set 𝑝(ℎ) = 1, else 𝑝(ℎ) = 0; 
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Step 8: Calculate 𝑈(ℎ) − 𝐿(ℎ); 

Step 9: Repeat the step 1 to step 8 for a large number of times (say, 𝑀 times) and calculate coverage probability and 

average length. 

4- Simulation Studies 

A simulation study with 10,000 replications and 2,500 repetitions of the Bayesian calculation was conducted to 

estimate the performance of the confidence intervals based on the Bayesian method and existing confidence intervals. 

A comparison of their performances in terms of coverage probability and average length is presented in Figure 1. A 

coverage probability of greater than or equal to the nominal confidence level of 0.95 and the shortest average length are 

the criteria for the best-performing confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Monte Carlo simulation flowchart. 
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For the coefficient of variation of a single log-normal distribution, a random sample with sample size n  was 

generated from a normal distribution with mean 𝜇 = 1 and standard deviation 𝜎 = 0.1, 0.7, 1.2, and 1.6; the results are 

given in Table 1. For a large sample size, the coverage probabilities of the confidence intervals of Nam and Kwon [11] 

and Thangjai et al. [10] were close to 1.00 and 0.95, respectively, for 𝜎 ≤ 1.2 and both were less than the nominal 

confidence level of 0.95 for 𝜎 > 1.2. Although the Bayesian, Chi-squared, and approximate fiducial confidence intervals 

provided coverage probabilities close to the nominal confidence level of 0.95 for all values of 𝜎, the Bayesian confidence 

interval obtained the shortest average length in all cases. Therefore, the Bayesian confidence interval was better than the 

other methods for constructing the confidence intervals for the coefficient of variation of a log-normal distribution. 

Table 1. The coverage probabilities (CP) and average lengths (AL) of 95% two-sided confidence intervals for the coefficient 
of variation of log-normal distribution. 

𝒏 Approach 

𝝈 

0.1 0.7 1.2 1.6 

CP AL CP AL CP AL CP AL 

4 

LS1 1.0000 4.1747 1.0000 4.3016 0.9896 5.0059 0.7080 105.2728 

LS2 0.9818 0.1612 0.9835 1.6097 0.9612 5.4197 0.9388 15.3395 

CHI 0.9519 0.3095 0.9456 30002 0.9480 1.2146e+29 0.9470 6.0419e+50 

AF 0.9519 0.3095 0.9456 30002 0.9480 1.2146e+29 0.9470 6.0419e+50 

BS 0.9482 0.2392 0.9467 602.4821 0.9495 9.6344e+16 0.9476 2.1661e+32 

8 

LS1 1.0000 4.0455 1.0000 4.1128 0.9832 4.3784 0.7608 5.1539 

LS2 0.9557 0.1056 0.9725 1.0538 0.9582 3.5480 0.9339 10.0420 

CHI 0.9444 0.1346 0.9520 2.5814 0.9560 232.5419 0.9479 1014553 

AF 0.9444 0.1346 0.9520 2.5814 0.9560 232.5419 0.9479 1014553 

BS 0.9433 0.1208 0.9516 1.7921 0.9554 38.6583 0.9511 16648.0000 

10 

LS1 1.0000 4.0201 1.0000 4.0750 0.9883 4.2778 0.7982 4.7939 

LS2 0.9591 0.0931 0.9680 0.9293 0.9583 3.1291 0.9401 8.8562 

CHI 0.9504 0.1122 0.9478 1.6902 0.9506 26.5996 0.9504 36232.9300 

AF 0.9504 0.1122 0.9478 1.6902 0.9506 26.5996 0.9504 36232.9300 

BS 0.9506 0.1029 0.9504 1.3329 0.9515 11.5776 0.9490 1353.3980 

12 

LS1 1.0000 4.0032 1.0000 4.0499 0.9894 4.2206 0.8232 4.6353 

LS2 0.9538 0.0842 0.9652 0.8406 0.9549 2.8303 0.9374 8.0108 

CHI 0.9470 0.0979 0.9517 1.3316 0.9523 12.4236 0.9476 424.2455 

AF 0.9470 0.0979 0.9517 1.3316 0.9523 12.4236 0.9476 424.2455 

BS 0.9458 0.0912 0.9539 1.1136 0.9556 7.1811 0.9511 101.4081 

15 

LS1 1.0000 3.9864 1.0000 4.0238 0.9933 4.1583 0.8506 4.4747 

LS2 0.9544 0.0746 0.9614 0.7451 0.9577 2.5088 0.9373 7.1008 

CHI 0.9505 0.0840 0.9524 1.0386 0.9501 6.7495 0.9462 68.9924 

AF 0.9505 0.0840 0.9524 1.0386 0.9501 6.7495 0.9462 68.9924 

BS 0.9470 0.0793 0.9564 0.9105 0.9507 4.7040 0.9491 31.4261 

20 

LS1 1.0000 3.9697 1.0000 3.9980 0.9957 4.0972 0.8849 4.3223 

LS2 0.9532 0.0641 0.9571 0.6396 0.9564 2.1536 0.9403 6.0953 

CHI 0.9503 0.0697 0.9488 0.8066 0.9468 4.0851 0.9453 23.5648 

AF 0.9503 0.0697 0.9488 0.8066 0.9468 4.0851 0.9453 23.5648 

BS 0.9475 0.0666 0.9509 0.7343 0.9514 3.2299 0.9469 14.7982 

30 

LS1 1.0000 3.9531 1.0000 3.9722 0.9996 4.0375 0.9244 4.1806 

LS2 0.9521 0.0519 0.9542 0.5177 0.9529 1.7432 0.9445 4.9337 

CHI 0.9503 0.0548 0.9484 0.6008 0.9496 2.5382 0.9509 10.2423 

AF 0.9503 0.0548 0.9484 0.6008 0.9496 2.5382 0.9509 10.2423 

BS 0.9477 0.0531 0.9515 0.5650 0.9562 2.2044 0.9504 7.8984 

 

The coefficient of variation of log-normal distribution depends on the value of 𝜎2 only and is independent of 𝜇. To 

simplify matters, the population means (𝜇1, 𝜇2) were given the same value (𝜇1 = 𝜇2 = 1) when testing the confidence 
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intervals for the difference between the coefficients of variation of log-normal distributions. Four confidence intervals 

constructed using the MOVER, modified MOVER, approximate fiducial, and Bayesian approaches were compared 

(Tables 2 and 3). The results indicate that the MOVER confidence interval was conservative since the coverage 

probabilities were in the range from 0.98 to 1.00 for (𝜎1, 𝜎2) = (0.1,0.3), (0.1,0.7), (0.3,0.7), (0.3,0.9), and (0.4,1.2). 

However, the MOVER confidence interval performed better than the others when the sample sizes were small and the 

values of (𝜎1, 𝜎2) were large. Meanwhile, the Bayesian confidence interval performed better than the others in terms of 

the coverage probability and average length. 

Table 2. The CP and AL of 95% two-sided confidence intervals for difference between the coefficients of variation of log-
normal distributions as function of parameters. 

(𝒏𝟏, 𝒏𝟐) Approach 

(𝝈𝟏, 𝝈𝟐) 

(0.1, 0.3) (0.3, 0.7) (0.4, 1.2) (0.5, 1.6) 

CP AL CP AL CP AL CP AL 

(4,8) 

MOVER 1.0000 5.8198 1.0000 5.8726 0.9905 6.0767 0.9092 6.7016 

MMOVER 0.9611 0.6596 0.9628 3.9692 0.9597 217.7059 0.9572 12342172 

AF 0.9560 0.6426 0.9581 3.9056 0.9571 217.5643 0.9561 12342171 

BS 0.9780 0.6038 0.9894 3.2132 0.9825 59.5095 0.9807 33278.1700 

(5,10) 

MOVER 1.0000 5.7634 1.0000 5.8067 0.9931 5.9633 0.9135 6.3768 

MMOVER 0.9604 0.4948 0.9582 2.2795 0.9559 27.9188 0.9540 2448.4490 

AF 0.9565 0.4834 0.9553 2.2374 0.9548 27.8399 0.9529 2448.3010 

BS 0.9727 0.4599 0.9804 2.0027 0.9756 14.3499 0.9688 337.3556 

(10,5) 

MOVER 1.0000 5.7681 1.0000 5.8386 0.9875 6.2159 0.9071 10.1079 

MMOVER 0.9549 0.9219 0.9531 82.6247 0.9502 1.0649e+13 0.9502 7.1655e+24 

AF 0.9543 0.9160 0.9522 82.6017 0.9501 1.0649e+13 0.9505 7.1655e+24 

BS 0.9563 0.7139 0.9613 9.2918 0.9548 54697391 0.9552 2.3896e+14 

(7,12) 

MOVER 1.0000 5.7088 1.0000 5.7443 0.9960 5.8731 0.9145 6.2009 

MMOVER 0.9575 0.3888 0.9553 1.5815 0.9541 12.7382 0.9518 332.6372 

AF 0.9556 0.3821 0.9527 1.5568 0.9538 12.7001 0.9513 332.5826 

BS 0.9660 0.3648 0.9711 1.4170 0.9691 7.8683 0.9653 88.4367 

(10,10) 

MOVER 1.0000 5.6906 1.0000 5.7297 0.9936 5.8837 0.9129 6.3096 

MMOVER 0.9547 0.4124 0.9544 1.8389 0.9510 46.5689 0.9487 9118.4900 

AF 0.9527 0.4081 0.9521 1.8225 0.9517 46.5477 0.9493 9118.4640 

BS 0.9593 0.3793 0.9664 1.5237 0.9588 13.7952 0.9540 613.5661 

(10,15) 

MOVER 1.0000 5.6652 1.0000 5.6932 0.9975 5.7934 0.9323 6.0299 

MMOVER 0.9547 0.3134 0.9511 1.1802 0.9497 6.8152 0.9547 63.5273 

AF 0.9532 0.3096 0.9498 1.1662 0.9496 6.7967 0.9550 63.5051 

BS 0.9603 0.2966 0.9682 1.0749 0.9621 4.9215 0.9589 29.8344 

(20,20) 

MOVER 1.0000 5.6168 1.0000 5.6369 0.9987 5.7100 0.9403 5.8787 

MMOVER 0.9519 0.2424 0.9561 0.8641 0.9488 4.1163 0.9499 23.0779 

AF 0.9517 0.2411 0.9568 0.8592 0.9483 4.1110 0.9506 23.0726 

BS 0.9546 0.2316 0.9645 0.7997 0.9533 3.2893 0.9536 14.7232 

(20,30) 

MOVER 1.0000 5.6041 1.0000 5.6184 1.0000 5.6674 0.9607 5.7748 

MMOVER 0.9527 0.1948 0.9494 0.6594 0.9475 2.5841 0.9521 10.3191 

AF 0.9520 0.1936 0.9492 0.6550 0.9476 2.5793 0.9520 10.3145 

BS 0.9535 0.1884 0.9583 0.6281 0.9570 2.2667 0.9556 7.9961 

(30,30) 

MOVER 1.0000 5.5923 1.0000 5.6058 0.9999 5.6545 0.9640 5.7600 

MMOVER 0.9502 0.1876 0.9508 0.6339 0.9494 2.5885 0.9496 10.2430 

AF 0.9494 0.1870 0.9502 0.6314 0.9497 2.5860 0.9495 10.2406 

BS 0.9495 0.1816 0.9566 0.6019 0.9555 2.2590 0.9491 7.9242 
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Table 3. The CP and AL of 95% two-sided confidence intervals for difference between the coefficients of variation of log-
normal distributions as function of sample sizes. 

(𝝈𝟏, 𝝈𝟐) Approach 

(𝒏𝟏, 𝒏𝟐) 

(5,5) (10,10) (10,20) (30,40) 

CP AL CP AL CP AL CP AL 

(0.1,0.7) 

MOVER 1.0000 5.9054 1.0000 5.7244 1.0000 5.6696 1.0000 5.5947 

MMOVER 0.9487 88.3996 0.9489 1.7185 0.9485 0.8220 0.9486 0.5000 

AF 0.9487 88.3867 0.9489 1.7161 0.9484 0.8199 0.9481 0.4997 

BS 0.9590 9.2059 0.9543 1.3623 0.9536 0.7520 0.9488 0.4775 

(0.3,0.9) 

MOVER 0.9994 5.9936 0.9999 5.7672 1.0000 5.6931 1.0000 5.6058 

MMOVER 0.9563 81962.3600 0.9476 4.2557 0.9524 1.5728 0.9461 0.8719 

AF 0.9548 81962.3000 0.9470 4.2408 0.9525 1.5608 0.9455 0.8700 

BS 0.9716 339.8361 0.9597 2.9684 0.9634 1.4138 0.9516 0.8230 

(0.5,1.4) 

MOVER 0.9635 6.9065 0.9618 6.0404 0.9865 5.8194 0.9978 5.6657 

MMOVER 0.9525 8.0748e+16 0.9462 226.2264 0.9497 9.2485 0.9478 3.7011 

AF 0.9513 8.0748e+16 0.9457 226.1946 0.9483 9.2237 0.9478 3.6979 

BS 0.9703 200005367179 0.9565 52.8499 0.9616 6.8973 0.9568 3.2364 

(0.3,1.5) 

MOVER 0.9517 7.6320 0.9418 6.1432 0.9717 5.8507 0.9924 5.6817 

MMOVER 0.9510 9.6776e+19 0.9497 725.8446 0.9527 13.6975 0.9523 5.0227 

AF 0.9514 9.6776e+19 0.9498 725.8370 0.9527 13.6916 0.9520 5.0220 

BS 0.9603 1.9951e+12 0.9534 111.5663 0.9539 9.4326 0.9555 4.2822 

(0.9,1.8) 

MOVER 0.6441 9241.6420 0.7121 6.8877 0.8209 6.1364 0.8988 5.8026 

MMOVER 0.9566 1.9579e+37 0.9496 149904 0.9537 67.4141 0.9495 14.9772 

AF 0.9541 1.9579e+37 0.9491 149903.8000 0.9529 67.2834 0.9497 14.9633 

BS 0.9820 4.6013e+24 0.9652 6082.4660 0.9718 41.0790 0.9565 11.9328 

(0.4,0.5) 

MOVER 1.0000 5.8818 1.0000 5.7130 1.0000 5.6690 1.0000 5.5928 

MMOVER 0.9570 5.0863 0.9554 1.1138 0.9549 0.7881 0.9503 0.3973 

AF 0.9495 5.0159 0.9515 1.0913 0.9527 0.7741 0.9493 0.3938 

BS 0.9888 3.5582 0.9752 1.0292 0.9713 0.7424 0.9589 0.3873 

 

5- Empirical Application 

In this section, the performances of the existing and Bayesian confidence intervals were compared using real datasets. 

The Bayesian confidence interval was first computed using 2,500 repetitions via Monte Carlo simulation. The datasets 

comprising PM10 data from 24 March 2019 to 17 April 2019 reported by the Pollution Control Department for the Nan 

and Chiang Mai provinces in Thailand are given in Table 4 and statistics based on them are summarized in Table 5. 

Figures 2 and 3 show histograms and normal QQ-plots of the data, respectively. The Akaike Information Criterion (AIC) 

results in Table 6 indicate that the datasets can be fitted to log-normal distributions. 

For the coefficient of variation of a log-normal distribution, the PM10 data for the Nan province had a coefficient of 

variation for the log-normal distribution of 𝜏̂ = 0.2930. The large-sample confidence intervals were 𝐶𝐼𝜏.𝐿𝑆1 = 

[-1.6893,2.2752] and 𝐶𝐼𝜏.𝐿𝑆2 = [0.2048,0.3812] with interval lengths of 3.9645 and 0.1764, respectively, while those of 

the Chi-squared, approximate fiducial, and Bayesian confidence intervals were 𝐶𝐼𝜏.𝐶𝐻𝐼 =  [0.2308,0.4292], 

𝐶𝐼𝜏.𝐴𝐹 = [0.2308,0.4292], and 𝐶𝐼𝜏.𝐵𝑆 =  [0.2292,0.4088] with interval lengths of 0.1984, 0.1984, and 0.1796, 

respectively. For the PM10 data for Chiang Mai province, the coefficient of variation of the log-normal distribution was 

̂  0.2656. The 95% confidence intervals for the large-sample approaches were 𝐶𝐼𝜏.𝐿𝑆1 =  [-1.7154,2.2467] and 

𝐶𝐼𝜏.𝐿𝑆2 = [0.1879,0.3433] with interval lengths of 3.9621 and 0.1554, respectively, while those using the Chi-squared, 

approximate fiducial, and Bayesian approaches were [0.2103,0.3838], [0.2103,0.3838], and [0.2034,0.3641] with 

interval lengths of 0.1735, 0.1735, and 0.1607, respectively. 

The difference between the coefficients of variation of log-normal distributions of the PM10 data for the Nan and 

Chiang Mai provinces was 𝛿̂ = 0.0274. The MOVER, modified MOVER, and approximate fiducial, and Bayesian 

confidence intervals were 𝐶𝐼𝛿.𝑀𝑂𝑉𝐸𝑅 = [-2.7751,2.8299], 𝐶𝐼𝛿.𝑀𝑀𝑂𝑉𝐸𝑅 = [-0.1036,0.1716], 𝐶𝐼𝛿.𝐴𝐹 =  

[-0.1021,0.1698], and 𝐶𝐼𝛿.𝐵𝑆 =  [-0.0937,0.1693] with interval lengths of 5.6050, 0.2752, 0.2719, and 0.2630, 

respectively. 

The results show that the confidence intervals in both scenarios covered the population coefficient of variation and 

the difference between the population coefficients of variation, respectively, with the Bayesian confidence interval 

having the shortest length in both cases. In concert with the simulation results, the Bayesian confidence interval can be 
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suggested for constructing the confidence intervals for the coefficient of variation and the difference between the 

coefficients of variation of log-normal distributions. 

Table 4. PM10 data of the Nan and Chiang Mai provinces (µg/m3). 

Nan province Chiang Mai province 

224 134 138 148 190 227 170 164 105 128 

145 232 136 144 127 156 262 167 112 103 

114 199 100 155 116 138 146 166 123 94 

107 176 90 178 126 125 191 142 139 96 

80 130 126 254  113 184 117 138 98 

Source: Pollution Control Department (http://air4thai.pcd.go.th/webV2/download.php). 

Table 5. Sample statistics of the Nan and Chiang Mai provinces. 

Statistics Nan province Chiang Mai province 

𝑛 24 25 

𝑦̅ 148.7083 144.1600 

𝑠𝑌 44.9662 41.2580 

𝑥̅ 4.9603 4.9355 

𝑠𝑋 0.2931 0.2665 

𝜏̂ 0.2930 0.2656 
 

 

Figure 2. Histogram plots of PM10 data of the Nan and Chiang Mai provinces. 

 

Figure 3. The normal QQ-plots of log-PM10 data of the Nan and Chiang Mai provinces. 
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Table 6. The minimum Akaike Information Criterion (AIC) values of the Nan and Chiang Mai provinces. 

Distribution Nan province Chiang Mai province 

Normal 253.7713 259.9186 

Log-Normal 250.2824 254.5765 

Gamma 250.9095 255.8663 

Exponential 289.0954 299.5462 

6- Discussion 

Classical and Bayesian inference are fundamentally different in statistics, and we evaluated the performances of the 

confidence intervals for the coefficient of variation and the difference of the coefficients of variation of log-normal 

distributions using both approaches. For the coefficient of variation of a log-normal distribution, four classical 

confidence intervals constructed via two large-sample approaches based on the two variances definitions of Thangjai et 

al. [10] and Nam and Kwon [11], the Chi-squared approach of Niwitpong [21], and the approximate fiducial approach 

of Hasan and Krishnamoorthy [12]. The classical confidence intervals were derived use formulas whereas the Bayesian 

approach was based on a simulation technique.  

For the difference between the coefficients of variation of log-normal distributions, the three classical confidence 

intervals: MOVER by using the variance of Nam and Kwon [11], modified MOVER by using the Chi-squared approach 

of Niwitpong [21], and the approximate fiducial approach with modified normal-based approximations were compared 

with the Bayesian confidence interval. The results in this investigation were similar to those of Harvey and van der 

Merwe [7], Rao and D'Cunha [9], Thangjai and Niwitpong [14], and Thangjai et al. [22]. 

7- Conclusion 

In this study, the Bayesian approach was used to construct confidence intervals for the coefficient of variation of a 

log-normal distribution and the difference between the coefficients of variation of two log-normal distributions, both of 

which were then compared with several classical approaches. For the first scenario, although the coverage probabilities 

of all of the confidence intervals were close to the nominal confidence level, the Bayesian confidence interval provided 

the shortest average length in all cases. For the difference between the coefficients of variation of two log-normal 

distributions, the Bayesian confidence interval was once again the best in terms of the coverage probability and average 

length.  

The performances of all of the approaches were appraised by application to real PM10 data from the Nan and Chiang 

Mai provinces in Thailand. As with the results of the simulation study, the Bayesian approach was better than the others 

in terms of average length. Therefore, the Bayesian approach is recommended for constructing the confidence intervals 

for the coefficient of variation and the difference between the coefficients of variation of log-normal distributions. 
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