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Abstract 

Now, there are many codes to generate images using raytracing algorithm, which can run on CPU or 

GPU in single or multi-thread methods. In this paper, an optimized algorithm has been designed to 
generate image using raytracing algorithm to run on CPU or GPU in multi-thread algorithm.  

This algorithm employs light with depth of 8 to generate images. It is optimized by changing pixel 

travel priority and ray of light to thread, dedicating depth function to empty threads, and using 
optimized functions from MSDN library. Its code has been written in C++ and CUDA. In addition, we 

do the following to show its performance: comparing implementation in different compiler mode, 

changing thread number, examining different resolution, and investigating data bandwidth. 

The results show that one can generate at least 11 frames per second in HD (720p) resolution by GPU 

processor and GT 840M graphic card, using trace method. If better graphic card employ, this algorithm 

and program can be used to generate real-time animation. 
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1- Introduction 

The main concerns of researchers and scientists are increasing speed, enhancing live systems efficiency, and making 

systems real-time with minimum error. Thus, many attempts have been made to achieve this, and CPU process speed 

has increased very much. Yet, advances has been made to manufacture graphic cards with multicore processors, and 

their parallel processing techniques result in some operations can be done using them. In addition, efficiency 

enhancements and using 3D virtual simulation systems for computer games and entertainment software, medical 

sciences, engineering sciences, astronavigation result in more realistic rendered images using different lighting 

techniques has become an important subject to generate faster algorithms. Raytracing lightening method is one of these 

algorithms.  

This method has high precision and quality, and considers various interactions between light sources and reflection 

pages, since images are much more realistic. In addition, it has high cost and long processing time. Also, users are more 

demanding to higher resolution than HD, since it is difficult to perform, and it is employed just in offline mode. 

In this paper, we implement raytracing algorithm by function of Cuda library on graphic card to compare CPU and 

GPU maximum ability. In last, results show that graphic card processor and its core threads can be used to generate 3D 

images (720p (1280 × 720 (progressive) in pixels) and 1080p (1920 × 1080 (progressive) in pixels)) using raytracing 

algorithm rather CPU processors. This alternative decrease computation time considerably. 

There are several methods to generate 3D images such as following: 

Scanline rendering and rasterization: this method is based on mapping objects in space on image. It is fast and has 

ability to represent several million primary objects in a second, while it can’t represent reflection, refraction, and 

shadows, and it hasn’t effects [1]. 

Ray casting: In this method, rays are traced from the eye of the observer to space. Colour of pixels is determined 

when a ray intersects first object [2]. 

                                                           
* CONTACT:  Ahmadrezarazian@gmail.com  

DOI: http://dx.doi.org/10.28991/ijse-01119 

© This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

http://www.ijournalse.org/
mailto:%20Ahmadrezarazian@gmail.com
http://dx.doi.org/10.28991/ijse-01119
http://dx.doi.org/10.28991/ijse-01119


RAZIAN and MAHVASHMOHAMMADI     

Page | 168 

Raytracing: This method can simulate actual reflection a ray on objects, and generate realistic images. In these 

images, reflection, refraction, absorption, and shadow are represented well, and after a ray intersect object, also rays of 

light are computed. In this method, generating images is costly and depend on depth number of a ray of light [3]. 

Radiosity: In this method, we examine object surfaces intersected by a ray of light. In some cases, it is called global 

illumination. In fact, it generates images based on accurate analyzing of light reflection on distributed surfaces. In this 

method, shadows are very natural and have been represented softly [4].   

2- Importance of Research 

In generating 3D images, which are used in games and virtual space simulations, more realistic images has an 

important role to persuade audiences. Thus, to achieve this, various methods are created to generate such images. 

Generally, these methods are classified to two groups: object-based and pixel-based methods. Raytracing is a main pixel-

based method [5, 6]. In this method, it is tried to trace path of a light source to object and from other object to it a few 

stages. It is better than other method concerning examining shadow, reflection, and brilliance of objects on each other. 

This technique result in much realistic and natural reflection, which generally have very complicated 

computationally. Since, running them is possible only in offline mode. In this method, to generate a pixel, various path 

of ray of lights from light source to an object are examined to determine colour intensity (Figure 1). This result in images 

appears to be more realistic, and reflection of an object on a shiny object can be observed. Figure 2 shows a graphical 

environment, which generated by this method. 

 

Figure 1. Raytrace Technique (https://en.wikipedia.org) 

 

Figure 2. Result of create an image by raytrace technique (http://sio2.g0dsoft.com) 

On the other hand, with technological advancement in manufacturing graphic cards such as NVIDIA and availability 

of libraries like Cuda to parallel processing in GPU cores, these contributions are used in sciences and parallel processing 

in graphic cards are very faster than CPU processing. In this architecture, most of processor power is dedicated to 

computation unit, and less power is dedicated to Cache memory (Figure 3). In addition, architecture of software is 

different with others too (Figure 4). 
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Figure 2. Compare the architecture of CPU and GPU 

 

Figure 3. Software architecture of CUDA 

New graphic cards have thread architecture in one to three dimensional, which have many applications in image 

generation. In this method, position and color, and vertices of objects are processed in parallel. It is faster than CPU in 

regard to generate images (Figure 4). 

 

 

Figure 4. The grid of threads in GPU - This can be one , two and three dimensions has 

3- Related Works 

Various papers have been published about images generation using ray-trace method by GPU processor [13-16]. In 

[14], it is asserted that CPU computational power is much lower than GPU. In [14], implementation method, image 

generation codes, and method by which functions assigned to threads is not mentioned.  

Important factors influence on running time of programs by CPU. These factors comprise active thread number, 

utilized processor capacity, the type of data transfer in memory, functions, compiler settings, operating system, and etc. 
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Because, these factors have not mentioned in many papers on raytracing method, it is difficult to test this methods 

by implement them again, and verify experiment and results. On the other hand, the type of call functions in graphic 

card, GPU synchronization with CPU when running is completed, functions which are used to determine time, version 

and technical specification of graphic card, and number of experiments are important factors, which influence on 

comparison between running time of CPU and GPU. Unfortunately, many papers haven’t mentioned impacting factors 

on running time of CPU and GPU [17-19]. 

4- Method 

Firstly, a procedure is employed to generate 3D images using raytrace method in order to generate an image with 20 

objects. Raytrace (int x, int y) function has designed to run on CPU and GPU. Its design is based on Cuda’s library 

functions. In order that results have more validity, source codes, which run program on CPU and GPU, are exactly same. 

After preparing codes, executable program has multi parallel procession with various threads.  

In this stage, computation of any pixel of image has assigned to one thread, and a variable, which is counter of last 

pixel, has used to optimize procedure. After that, next pixel assign to a thread performs its task sooner, and counter 

increase. In order to same counter don’t assign to two thread simultaneously, we have used two functions: 

EnterCriticalSection and LeaveCriticalSection [20]. In this way, CPU has most efficiency. 

A function has created to manage threads. Based on demands, it creates target number of threads in any test, then 

activate them, and free generated images. In this way, it has designed to generate images with 1, 16, 32, 64, 96, 128, 

256, 384, and 512 threads (Figure 6- goRayTraceCPU structure). They have created because we want obtain 

performance of different CPU with different number of threads, and obtain optimized performance of CPU processor 

[21]. 

To ensure that actual time has computed for a thread, image generation repeated 6 times. In the meantime, to obtain 

actual running time of program (continuously and without interruption) requires whole activities of operating system 

stop, in turn, leading to difficulty for operating system. To solve this problem, we run sleep function (100 ms) between 

tests. Running time of sleep function has considered, regardless of CPU computations time (Figure 6- Main structure). 

In this test, to ensure that computed time is only processing time, we have ignored transfer time to memories (RAM 

and graphic card’s RAM), and considered computations time. Two functions QueryPerformanceFrequency 

(computation of frequqncy) and QueryPerformanceCounter (obtaining last value of counter) have used to compute time 

accurately [22] . They have used in EndTime and StartTime Functions. 

Figure 6 shows whole procedure of running in the form of pseudo-code. 

 

Figure 6. Pseudocode of raytrace alghorithm by CPU 

Since quality and resolution of images of videos and games is HD and Full HD, in this test, we have used images 

Main: 

1. Get Dimension of Image (W,H) 

2. Create Image Pixel Buffer (IPB) 

3. Create World Object Buffer(WOB) 

4. Create List of thread Counts (LTC) 

5. For each member of LTC by ltc 

6. Sleep (250) 

7. For iTry=1 to 7 

8. Set IPB with zero 

9. Sleep (20) 

10. Get StartTime 

11. Call goRayTraceCPU(ltc) 

12. Get EndTime 

13. Check Image with Correct Sample 

14. End for 

15. End for each 

goRayTraceCPU (ltc): 

1. Create Thread Handle Buffer (THB) 

2. InitializeCriticalSection(&critical) 

3. Set CursorIPB to 0 for first pixel 

4. For iThread=1 to ltc 

5. Run THB[iThread] by beginthreadex for 

RayTraceCPU function 

6. End for 

7. For iThread=1 to ltc 

8. Wait for finish THB[iThread] 

9. End for 

10. Close all THB 

11. DeleteCriticalSection(&critical) 

12. return 

__stdcall  RayTraceCPU : 

1. While CursorIPB <W*H 

2. EnterCriticalSection(&critical); 

3. int posNow = CursorIPB ++; 

4. LeaveCriticalSection(&critical);  

5. X=(int)(posNow % width) 

6. Y=(int)(posNow / Height) 

7. IPB[posNow]= Raytrace(x,y) 

8. End While 

9. Return 1 

Global variables: 

1. W,H 

2. IPB 

3. WOB 

4. CursorIPB  
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with 720p and 1080p resolutions. 

Firstly, to test processor speed, we have used 4 CPUs with different specifications and different number of cores. 

We have considered processor score in [23] as computational rank. In addition, we have used Gb-DDR3-1600MHz as 

RAM memory. Table 1 shows specifications of processors. 

Table 1. Specifictions of proccesors 

NO Processor Speed GHz Physical Cores Average CPU Mark 

1 Intel Core i7 4790 3.6 4 10090 

2 Intel Core i5 4460 3.2 4 6675 

3 Intel Core i7 3632QM 2.2 4 6966 

4 Intel Core i7 4510U 2.0 2 3986 

 

These processors are most common and appropriate one for computational programs. At the time of testing, we used 

i7 4790 model, which is best and most powerful CPU on the shelf. Its overall rank in [23] is 64. If, Intel Xeon and AMD 

FX have been ignored (they are used in servers), it is very powerful processor. It is worth noting that for other available 

processors, we have used information in “cpubenchmark.net” and “videocardenchmark.net”, which own by PassMark 

Company . PassMark Software is a Microsoft Registered Partner and an Intel Software Partner [24]. 

Final program (release configuration) has been compiled and running time has been recorded for different number 

of threads and resolution. To record best running time, all current programs excluded from memory, the test repeated 6 

times, and minimum time recorded as final value. Figure 5 shows final image with this program. 

 

Figure 5. Image created from 19 spheres and a light source with a depth of 8 reflection in 1080p resulation 

As Figure 6 shows, we compare image generation (1080p) in release and debug version to show time difference. As 

we can see, processing time in release version at least 14 time faster than debug version (Figure 7). Since, we have used 

release version to conduct tests. 

 



RAZIAN and MAHVASHMOHAMMADI     

Page | 172 

 

Figure 6. Compare the behavior of the application in Debug and Release modes to generate an image in 1080p resulation by 

different threads  

 

Figure 7. Compare the best runtime CPU in Debug and Release modes 

On the other hand, Cuda libraries (introduced by NVIDIA) are used to run programs on graphic card (GPU). We 

have altered functions and statements, which have been called from raytrace library, according to environment and Cuda 

library for parallel processing. None of statements of main functions was not changed, and source code to generate 

images and source code to generate by CPU remained unchanged. 

Since, Cuda’s library prepares threads to computation based on power of graphic card, therefore we can’t activate 

some of top and down threads, and they are recorded in complete threads list. Resolution of images was HD and Full 

HD. 

We have used three common graphic cards listed in Table 2 . Table 2  shows their scores in reference [25] . These 

graphic cards perform less than current cards such as GeForceGTX 780, GeForceGTX 770, GeForceGTX 960, and their 

processing speed are very lower than latter. 
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Table 2. Specifictions of graphic proccesors 

NO Graphic Processor Speed GHz Memory Average G3D Mark 

1 GeForce GTX 650 1.1 1Gb DDR5 1833 

2 GeForce 840M 1.0 1Gb DDR3 844 

3 GeForce GT 635M 0.65 2Gb DDR3 710 

 

In [25], GeForceGTX 650 has rank 131 with score 1833. It has good position in comparison with other graphic cards. 

However, in comparison with GeForce GTX 780 with score 9022, it has very lower score, thus GeForceGTX 880 Ti 

outperform it significantly. 

After completing the program, we have compiled release version for any graphic card, and computed and recorded 

processing time with different number of threads and resolution. 

Since, the test aims to compute processing time and speed, we ignore transfer time of information from RAM memory 

of system to RAM memory of graphic card and vice versa. Now, it is worth noting that when running functions in 

graphic card, we don’t know when program is completed, therefore, we have used cudaDeviceSynchronize. 

In fact, it creates an interruption in CPU until graphic card completes his task, and function is completed when 

graphic card ends his operations (Figure 8). Thus, starting time is before the running RayTraceGPU, and after calling 

cudaDeviceSynchronize, program is completed. Difference between both computed and recorded. The rest of function 

is concerned with copying data in graphic card’s memory to internal storage, and freeing allocated memories (Figure 8- 

goRayTraceGPU procedure). 

Now, we transfer data in RAM to graphic card’s RAM, and then call the function, which generate image in graphic 

card with memory addresses of parameters. Time of processor utilization by graphic card is difference between starting 

time of running and end time of function. Lastly, we transfer data in graphic card’s RAM to system’s RAM, and free 

graphic card memories. 

We have used values of blockDim, blockldx, and threadldx parameters to compute current position of pointer, and 

call RayTraceGPU function after computing width and height (Figure 8- RayTraceGPU procedure). 

 

Figure 8. Pseudocode of raytrace alghorithm by GPU 

Lastly, we present the following tables and figures (Table 3-Table 4) (Figure 9-Figure 12), which shows information 

about running the program on different CPU and GPU and for different threads. When running the program, we have 

closed all unnecessary programs of operating system. We have repeated test 6 time, and recorded average time for any 

resolution and threads for graphic card and minimum time for CPU. 

Main: 

1. Get Dimension of Image (W,H) 

2. Create Image Pixel Buffer (IPB) 

3. Create World Object Buffer(WOB) 

4. Create List of thread Counts (LTC) 

5. For each member of LTC by ltc 

6. Sleep (250) 

7. For iTry=1 to 7 

8. Set IPB with zero 

9. Sleep (20) 

10. Call goRayTraceGPU(ltc) 

11. Check Image with Correct Sample 

12. End for 

13. End for each 

goRayTraceGPU (ltc): 

1. Allocate Free CUDA Memory 

2. Check CUDA Errors 

3. Copy data from RAM to Device 

4. Check CUDA Errors 

5. Get StartTime 

6. Run RayTraceGPU CUDA function by ltc thread per 

block 

7. Check CUDA Errors 

8. Call cudaDeviceSynchronize 

9. Get EndTime 

10. Copy data from Device to RAM 

11. Free CUDA Memory 

12. cudaDeviceReset 

13. return EndTime- StartTime 

RayTraceGPU: 

1. posNow = blockDim.x * blockIdx.x + threadIdx.x 

2. if posNow >=W*H return; 

3. X=(int)(posNow % width) 

4. Y=(int)(posNow / Height) 

5. Pixel[posNow]= Raytrace(x,y) 

Global variables: 

1. W,H 

2. IPB 

3. WOB 
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Table 3. Time consumed for image generation in 1080p (in seconds) for CPU and GPU 

Threads I7-4790 I5-4460 I7-4510U I7-3632Q GTX 650 GT 840M GT 645M 

# Minimum Minimum Minimum Minimum Average Average Average 

1 0.695528 0.820396 0.893412 0.999228 - - - 

2 0.401127 0.486939 0.585698 0.56015 - - - 

3 0.346617 0.427676 0.580105 0.476088 - - - 

4 0.32397 0.462727 0.521141 0.481387 - - - 

5 0.324967 0.460111 0.521363 0.478693 - - - 

6 0.318503 0.462873 0.522432 0.492961 - - - 

7 0.311319 0.462502 0.521903 0.564989 - - - 

8 0.307968 0.465548 0.523018 0.581722 - - - 

9 0.308173 0.469619 0.522194 0.580295 - - - 

10 0.30679 0.47094 0.522065 0.580766 - - - 

11 0.308213 0.476522 0.523217 0.596155 - - - 

12 0.308677 0.499486 0.523162 0.581727 - - - 

13 0.307169 0.462428 0.524425 0.605497 - - - 

14 0.306563 0.46391 0.526204 0.598913 - - - 

15 0.309082 0.518888 0.521874 0.607529 - - - 

16 0.307423 0.472505 0.545148 0.634072 - - - 

32 0.309687 0.487009 0.543526 0.657048 0.282855 0.189197 0.481744 

64 0.308304 0.463364 0.52512 0.637412 0.202116 0.191502 0.326614 

96 0.308919 0.46657 0.545377 0.585703 0.199024 0.202683 0.318356 

128 0.31034 0.522144 0.547631 0.667465 0.192983 0.200104 0.329752 

256 0.310854 0.481799 0.551629 0.646758 0.216074 0.345308 0.421372 

384 - 0.475016 0.536905 0.694873 0.26635 0.253347 0.576244 

512 - 0.549487 0.53855 0.704896 0.288551 - 0.522649 

Best 0.306563 0.427676 0.521141 0.476088 0.192983 0.189197 0.318356 

Table 4 . Time consumed for image generation in 720p (in seconds) for CPU and GPU 

Threads I7-4790 I5-4460 I7-4510U I7-3632Q GTX 650 GT 840M GT 645M 

# Minimum Minimum Minimum Minimum Average Average Average 

1 0.314179 0.373793 0.429487 0.445047 - - - 

2 0.185583 0.215437 0.263864 0.248423 - - - 

3 0.155889 0.194349 0.255944 0.214074 - - - 

4 0.146863 0.222304 0.231582 0.213757 - - - 

5 0.146161 0.22365 0.231004 0.221414 - - - 

6 0.14308 0.222576 0.229904 0.232401 - - - 

7 0.141235 0.223856 0.231126 0.252598 - - - 

8 0.138973 0.222141 0.230571 0.259816 - - - 

9 0.13737 0.222734 0.230687 0.260662 - - - 

10 0.139179 0.222547 0.23069 0.257964 - - - 

11 0.139018 0.224714 0.230515 0.261307 - - - 

12 0.138927 0.224484 0.230703 0.275723 - - - 

13 0.138418 0.226093 0.231035 0.261548 - - - 

14 0.143709 0.237154 0.230705 0.274463 - - - 

15 0.141259 0.224953 0.23038 0.261787 0.233808 0.145283 0.384195 

16 0.140403 0.22192 0.231277 0.270979 0.222961 0.137081 0.367078 

32 0.14383 0.222043 0.231716 0.276234 0.141435 0.092146 0.240667 

64 0.14412 0.242275 0.232659 0.26425 0.102196 0.094989 0.166053 
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96 0.144661 0.227757 0.235156 0.278369 0.097897 0.099897 0.160196 

128 0.145159 0.228203 0.234394 0.298117 0.099155 0.100978 0.167897 

256 0.142522 0.242579 0.238672 0.280703 0.104543 0.166054 0.205327 

384 - 0.239906 0.24274 0.28309 0.128571 0.140076 0.322207 

512 - 0.239318 0.248375 0.282848 0.145405 - 0.26393 

Best 0.13737 0.194349 0.229904 0.213757 0.097897 0.092146 0.160196 

 

Figure 9. Compare the runtime of different threads for different CPU and GPU to generate an image in 1080p resolution 

 

Figure 10. Compare the runtime of different threads for different CPU and GPU to generate an image in 720p resolution 
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Figure 11. Compare the best runtime of different threads for different CPU and GPU to generate an image in 1080p 

resolution 

 

Figure 12. Compare the best runtime of different threads for different CPU and GPU to generate an image in 720p 

resolution 

5- Results 

According the results shown in figures 3 and 4, graphic card performs better than CPU processor significantly. In 

comparison, image generation speed in GPU (GT 840M) to CPU (i7-4790) has been increased 162% (1080p; see Figure 

11), and 148% (720p; see Figure 12). Consecutive image generation (1080p) is 5.3 frames per second (1080p), and 10.8 

frames per second (720p) using GPU. 

On the other hand, it can be said that CPU processing on data underperform GPU processing, when data traffic 

increase. Because, according to the equation (1) and (2)), in 720p and 1080p, image generation time ratio (CPU/GPU) 

has increased 49% and 62% respectively. While, according to the equation (3), pixel computations ratio has increased 

125% in both resolutions. This is also true for the CPU i5-4460 by 125% (1080p) and 110% (720p). 
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𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑛𝑑𝑒𝑟 𝑇𝑖𝑚𝑒 ∶  (
𝐶𝑃𝑈 𝑅𝑒𝑛𝑑𝑒𝑟𝑇𝑖𝑚𝑒

𝐺𝑃𝑈  𝑅𝑒𝑛𝑑𝑒𝑟𝑇𝑖𝑚𝑒 𝐺𝑇 840𝑀
) × 100%                                                                        (1) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ∶  100 − [𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑅𝑒𝑛𝑑𝑒𝑟 𝑇𝑖𝑚𝑒]                                                                                          (2) 

𝑖7 − 4790 (3.6 𝐺𝐻𝑧) 1920 × 1080:       100 − (
0.306

0.189
) × 100 = 61.9% 

𝑖7 − 4790 (3.6 𝐺𝐻𝑧) 1280 × 720 ∶        100 − (
0.137

0.092
) × 100 = 48.9% 

𝑖5 − 4460 (3.2 𝐺𝐻𝑧)1920 × 1080 ∶       100 − (
0.427

0.189
) × 100 = 125.9% 

𝑖5 − 4460 (3.2 𝐺𝐻𝑧)1280 × 720 ∶          100 − (
0.194

0.092
) × 100 = 110.8% 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙 𝐵𝑎𝑛𝑑𝑤𝑖𝑐ℎ ∶
1920×1080

1280×720
× 100 = 225%                                                                                               (3) 

In this experiment, only gt 635m has longer processing time than i7-4790. Considering the time of manufacturing, 

comparing processors speed (675 MHz to 3.6 GHz), and given that the graphic card has very lower level than CPU, the 

comparison is absurd, and we can ignore it. Nevertheless, as Figure 11 and Figure 12 show, this graphic card overperform 

other processors. Thus, we can perform parallel process better, since increased power of graphic cards, using Cuda 

programming, and optimal and appropriate selection of thread number. 

6- Conclusion 

Based on results, it is showed that despite time cost and high computational works needed to generate images using 

Ray-trace algorithms, we can optimize codes to run in multi-threads method, and use parallel processing in a graphic 

card to generate HD and Full HD images in real time. We save time by transfer computations from CPU to GPU. We 

achieved better performance, when data traffic increased. This means that, in near future, we can employ Ray-trace 

technique in online and real time. 
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