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Abstract 

Minimum Redundancy Linear Arrays (MRLAs) and Uniform Linear Arrays (ULAs) investigation 

conducted with the possibility of using them in future 5G smart devices. MRLAs are designed to 

minimize the number of sensor pairs with the same spatially correlated delay. It eliminates selected 

antennas from the entire composite antenna array and preserves all possible antenna spacing.  

MRLAs have attractive features for linear sparse arrays, even if the built-in surface is deformed, it 

works without problems. To our knowledge, MRLAs have not been applied to smart devices so far. 

In this work, a 7-element ULAs and 4-element MRLAs (same aperture) were used for the 

simulation. The Half Power Beamwidth (HPBW) is 0.666 and the Null-to-Null Beamwidth (𝐵𝑊𝑁𝑁) 

is 1.385 in ψ-space. In comparison, the standard 4-element arrays are 1.429 and 3.1416, while the 

standard 7-element linear arrays are 0.801 and 1.795 respectively. Experimental results show that 4-

element MLRAs have a narrower mean beam, much higher sidelobes and shallow nulls. Therefore, 

in terms of main lobe features, 4- elements MRLAs have an improvement over the standard 7-

element ULAs. 
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1- Introduction 

Over the past two decades, the development of wireless communication systems has dramatically changed our way 

of life. Potential wireless support applications such as multimedia devices, the Internet of Things (IoT), and intelligent 

transportation systems require gigabit data rates per second that cannot be handled by current 4G communications 

systems due to limited bandwidth. An advanced mobile system is urgently needed to overcome bandwidth limitations. 

The International Telecommunication Union has licensed several millimeter-wave (mm-wave) spectrums. Potential 

fifth-generation (5G) and higher applications, including 24.25-27.5, 37-40, and 66-76 GHz [1]. Since then, millimeter-

wave research has gained widespread attention. 

MRLAs have many useful properties that have been studied primarily in the past in conjunction with radio 

astronomy. System belong to the class of linear sparse arrays, this is a subset of non-uniform linear arrays, and provide 

the maximum aperture for a given number of elements, or conversely, provide the minimum number of elements for a 

given aperture [2]. BouDaher et al. (2016) compared Direction of Arrival (DOA) estimation accuracy with three 

different non-uniform array geometries: minimum redundant array, nested array, common prime array, and mutual 

coupling of two antenna types that is, dipole antenna and microstrip antenna [3]. Jan Kui Chang et al. investigated and 

compared the results of using uniform, coprime, nested, MRA and a coprime array with displaced subarrays (CADiS)  

under the same physical sensor number, and the recommended array aperture for sparse and non-circular light sources 

have been greatly increased estimated accuracy [4]. 
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To overcome high bandwidth loss and high gigabit data rates, 5G may use several promising technologies, 

including high gain array antennas and multi-beam antenna (MBA) communication systems [5, 6]. Recently Guo et al. 

investigated two new planar aperture antennas (PAAs) with high gain and high aperture efficiency of an open cavity, 

fed differentially on two parallel edges by a grounded coplanar waveguide [7], array antennas uses a broadband 

linearly polarized antenna elements with complementary sources [8], broadband microstrip array antennas with high 

antenna gain have been proposed for millimeter-wave applications [9]. Cheng et al. (2008) [10] and Chen et al. (2009), 

various MBAs were implemented based on reflective arrays, transmission lenses [11], and beamforming circuits [12]. 

The compact size combination of millimeter-wave antennas and multiple-input multiple-output technology has also 

been studied in base stations [13] and mobile terminals [14]. In addition, Wenyao Zhai et al. studied dual-band 

technology for multi-gigabit per second (Gbps) cellular applications for 5G communications and supports low-cost 

multi-layer technologies [15, 16]. 

Wonbin Hong et al. used mmWave 5G system benchmarks to study the effectiveness, existing limits, and required 

future research topics for mmWave 5G antenna design technologies [17]. For a given number of antennas, a linear 

array that achieves maximum resolution is advantageous for Earth's rotation aperture synthesis. This type of array is 

called a minimally redundant linear array. This is achieved by reducing the redundant space present in the array. 

Various methods are being considered to find the best array for a large number of antennas [17]. A systematic analysis 

of the regular patterns of these sequences shows that it is possible to generalize the best sequences. The best 

configuration can also be used to distribute workstations in a synthetic aperture array. 

The ULA and the sparse linear array (SLA) were investigated and compared by Mohammad et al., and numerous 

advantages were discovered, including more degrees of freedom (DOF), higher resolution, and robustness against 

mutual coupling [18]. One of the applications encountered with uneven arrays is decimation or sparse array problems. 

In this case, start with a uniform linear array of TV elements or a linear aperture of length L. It has the required weight 

and associated beam pattern. Next, build a linear array with fewer elements and retain the desired beam pattern 

characteristics. In some cases, elements can be placed anywhere in the row. Otherwise, the positions are restricted to a 

uniform grid. The motivation is to reduce the cost and complexity of the array by reducing the number of sensors. 

Antenna arrays and beamforming systems have become vital components of most modern wireless communication 

systems, and they play a critical role in delivering high capacity and data rates. Using beamforming techniques with 

antenna arrays, such as in multiple-input multiple-out (MIMO) mobile systems, radar, sonar, satellite, and many other 

recent applications, such as wireless sensors and medical networks, signals can be received more efficiently, and 

system performance can be greatly improved [19]. Millimeter-wave frequencies are used in fifth-generation (5G) 

mobile systems and networks beyond that, where wider bandwidths are available, to boost system capacity and deliver 

better data rates for consumers. However, because of substantial air propagation losses, millimeter-wave frequencies 

must be amplified using an efficient antenna array system [20]. One of the most essential capabilities of antenna arrays 

is the capacity to focus the radiation pattern in the desired directions while also controlling the level of undesirable 

radiations such as sidelobes, which collect unwanted interfering signals. As a result, one of the most essential needs 

for establishing a greater signal-to-interference ratio and spectral efficiency is to provide a high-gain mainlobe while 

minimizing sidelobe levels (SLLs). There is a variety of SLL reduction approaches in the literature, including simple 

constant tapering windows [21], optimized tapering windows [22], and a variety of additional effective optimization 

techniques [21]. 

The iterative SSL reduction is illustrated in Figure 1 by the flow chart, in which the initial conditions are set 

initially, and then the sidelobes are sequentially decreased one by one to reach the needed SLL. 

This paper presents an iterative process for adjusting the loading levels to achieve the sidelobe level limitations in 

order to provide a universal and array configuration-independent SLL reduction technique with a quicker convergence 

time and adaptive beampattern creation. The pattern errors are computed and validated against the restrictions at each 

iteration. If a constraint is exceeded, the sector's loading is increased, and the weights are adjusted. The suggested 

algorithm begins by calculating the maximum SLL, then canceling it, determining the new weighted vector that 

results, and then moving on to the next greatest SLL, and so on. The technique is repeated until the SLL is satisfactory 

or the desired form of the radiation pattern is obtained. As with most optimization techniques, the proposed technique 

has adaptation and SLL control capabilities, but with a faster convergence time, the ability to work on any array 

configuration with inter-element spacing less than one wavelength in distance, and the ability to work effectively 

under mutual coupling. The number of iterations to discover the optimum weights is independent of the array size in 

the proposed iterative technique, and the processing time can be sped up by determining the best angle sampling step 

sizes. 

The goal is to find weights that maximize the array's directivity while staying within a set of beam pattern 

constraints that keep sidelobe levels to a minimum. The method was created in the context of linear arrays of isotropic 

elements, but it can also be applied to non-isotropic elements and arrays of any shape. 
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Figure 1. The iterative sidelobe level (SLL) reduction procedure is depicted as a flowchart. 

2- Minimum Redundant Linear Arrays and Uniform Linear Arrays Model 

This section describes the antenna array models by considering MRLAs and ULAs Model. 

Start 

Input  

N = 10; d= 0.5; D = [-(N-1)/2:1:(N-1)/2]'*d;  

Steering direction 

uT = 0 ;  vT = exp(j*2*pi*D*uT); 

Design parameter 

SLLdb = -30; SLL = 10^(SLLdb/10); alpha = 0.3;  lambda0 = 1;  errtol = 0.3;  Delta = 0.02;     

Adjust left and right side mainlobe 

SLLdb = -30; SLL = 10^(SLLdb/10); alpha = 0.3; lambda 0 = 1;  errtol = 0.3; Delta = 

0.02;  

  Set 𝐴𝑄 = 𝐴 

𝐴𝑄 = 𝐴 + 𝜆𝑖𝑄𝑖            

𝑟

𝑖=1

 

Adjust sidelobe sectors 

wv = w'*vleftedge; wd = w'*dleftedge; BL = abs(wv).^2; DL = 

*real(wd.*wv); 

 

In main beam if 

beam pattern>SLL 

and increasing 

END 

Average BP 'error' from 0 in sector 

Excess above SLL*Delta in dB 

In main beam 

if beam 

pattern>SLL 

and decreasing 



Emerging Science Journal | Vol. 4, Special Issue "IoT, IoV, and Blockchain", (2020, 2021) 

Page | 73 

2-1- Minimum Redundant Linear Arrays (MRLAs) Application as Unevenly Spaced Linear Arrays 

Consider a class of non-uniform linear arrays called MRLA. We limit our attention to build arrays on Grid 

structure with grid spacing ‘d’. MRLAs are designed to minimize the number of sensor pairs with the same spatially 

correlated delay. Figure 2 shows an “ideal” MRLA. This is a 4-element array, which is equivalent to a standard linear 

array with a 7-element aperture. MLRA eliminates selected antennas from the entire composite antenna array and 

preserves all possible antenna spacing. Conventional or complete array with many antenna element combinations than 

can generates specified spatial lags d, 2d, 3d, 46, 5d, and 6d. Taking into account the numbers from 0 to 6, the antenna 

pairs {0, 1} generates a spatial lag of 1, {4, 6} generates a spatial lag of 2, {1, 4} generates a spatial lag of 3, {0, 4} 

generates a spatial lag of 4, {1, 6} generates a spatial lag of 5, and {0, 6} generates a spatial lag of 6 as represented in 

Table 1. MLRA carefully removes selected antenna elements so that fixed antenna elements can generate all gaps 

between zero and a specified maximum number. Like other sparse arrays, MLRA can identify more sources than 

sensors. However, its advantage is that it forms the largest co-array for a specified number of elements, provides the 

largest aperture in nested, co-primed, and hyper-nested arrays, and offers the highest resolution. 

 

 Figure 2. 4-element array equivalent to a standard linear array with a 7-element aperture of ideal MRLA.  

MRLA configuration indicated in Figure 2 allows us to estimate at least one (𝑖 − 𝑗) combination from 0 to 6: 

𝐸[𝑥(𝑡, 𝑖𝑑)𝑥∗(𝑡, 𝑗𝑑)] △ 𝑅𝑥((𝑖 − 𝑗)𝑑)                                     (1) 

Table 1. Sensors position at 0, 1, 4, 6 and its corresponding lag. 

Position of the Sensors Lag in terms of d 

0-1 d 

0-4 4d 

0-6 6d 

1-4 3d 

1-6 5d 

4-6 2d 

Display the output of a 7-element standard linear sensor. When arranged in a 7×1 vector x(t), the correlation 

matrix becomes a 7×7 matrix as: 

𝑅𝑥 = 𝐸[𝑥(𝑡)𝑥
𝐻(𝑡)]                                                                       (2) 

Therefore, use a 4-element array, a 7-element standard array with a correlation matrix of all elements are all of the 

form 𝑅𝑥((𝑖 − 𝑗)𝑑), 𝑖 = 0,… ,6; 𝑗 = 0,… ,6. Many of the best processing algorithms are based on Rx. Therefore, the 

performance of a 4-element MRLA can be as good as a 7-element standard linear array. The length of the aperture is 

expressed as Na and measured by the number of grid intervals. Considering Na = 6 and N = 4 in the Figure 2. 

To compute the number of times each spatially correlated delay is included in the array, we assume that the 

elements are evenly weighted, and then calculate the correlation of w with itself. 

𝑐(𝛾) ≜ ∑ 𝑤𝑚𝑤𝑚
∗

|𝑚−𝑛|=𝛾                                                                (3) 

The resulting function in Equation 3 is called a co-array and is a symmetric function. From the perspective of 

effective space, in sampling we want to set the co-array to unity instead of the origin. N_a indicates the maximum 

aperture size required in units of the element spacing d. The total aperture distance is given by N_a d. There are 

several MRLA configurations that provide the required aperture. If an array with this property is found then N_a can 

be computed as: 
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𝑁𝑎 =
𝑁(𝑁−1)

2
                                                                     (4) 

This is the number of different off-diagonals of N × N correlation matrices Rx. Unfortunately, such an array (also 

called perfect array) 𝑁 > 4 does not exist. For large arrays, consider two options. First, this option creates an array 

such that 𝑐(𝛾) is zero or one (excluding the origin). These are called non-redundant arrays and are a representative set, 

as shown in Table 2.  

Table 2. Non-redundant arrays and representative sets of sensors. 

Number of Sensors Position of Sensors and its Separation D 

2 .  1  . 1 

3 .  1  .  2  . 1 

4 .  1  .  3  .  2  . 1 

5 .  1  .  3  .  5  .  2  . 1.10 

6 .  1  .  3  .  6  .  2  .  5  . 1.13 

7 .  1 .  3  .  6  .  8  .  5  .  2  . 1.19 

8 .  1  .  3  .  5  .   6  .  7  .  10  .  2  . 1.21 

9 .  1  .  4  . 7  . 13  .  2  .  8  .  6  .  3  . 1.22 

10 .  1  .  5  .  4  .   13  .  3  .  8  .  7  .  12  .  2  . 1.22 

Corresponding co-arrays with 𝑁 > 4 have “gap” or “holes” in their value. The value D is the ratio of the Aperture 

length Na to the aperture length of the virtual complete array  (𝑁(𝑁 − 1) 2)⁄  . Our aim is to construct gap-free 

sequences and the largest possible aperture. These are called minimal redundant arrays. Select the location of the 

sensor so that Na is as large as possible without gaps. The 𝑁𝑎 can be expressed in terms of number of redundancies 𝑁𝑅 

and number of holes 𝑁𝐻 as follows: 

𝑁𝑎 =
𝑁(𝑁−1)

2
− 𝑁𝑅 + 𝑁𝐻                               (5) 

Table 3. Minimum Redundancy Linear Arrays. 

N 𝑵𝑹 𝑵𝒂 
𝑵𝟐

𝑵𝒂
 
𝑵(𝑵− 𝟏)

𝟐𝑵𝒂
 Arrays 

3 0 3 3.0 1.0 12 

4 0 6 2.67 1.1 132 

5 1 9 2.78 1.11 1332 & 3411 

6 2 13 2.77 1.15 13162 & 15322 & 11443 

7 4 17 2.88 1.24 136232 & 114443 & 111554 

8 5 23 2.78 1.22 1366232 & 1194332 

9 7 29 2.79 1.24 136232 & 12377441 & 11(12)43332 

10 9 36 2.78 1.25 1237441 

11 12 43 2.81 1.28 1237441 

12 16 50 2.88 1.32 1237441&111(20)5433 

13 20 58 2.91 1.34 111(24)5433& 11671(10)3423143499995122 

14 23 68 2.88 1.34 11671(10)3423& 11355(11)66611 

15 26 79 2.85 1.33 11355(11)66611 

16 30 90 2.84 1.33 11355(11)66611 

17 35 101 2.86 1.35 11355(11)66611 

Some authors have developed techniques to produce low redundancy Array. Pearson et al. develop effective and 

constructive procedure Optimal placement of the sensor [18]. Ruf uses simulated annealing to obtain low-redundant 

arrays and provides results for N <30 (Na <287) [19]. Linebarger et al. developed a boundary that provides an 

algorithm for constructing sparse arrays [20]. Linebarger provides a fast calculation method for arrays [21]. Table 3 

represents all possible combination of MRLAs for 𝑁 = 3 𝑡𝑜 17 and 𝑁𝑎 = 3 𝑡𝑜 101. 
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2-2- Uniform Linear Arrays (ULAs)  

Uniform Linear Array (ULA) is a collection of sensor elements distributed equidistantly along a straight line. The 

most common type of sensor is a dipole antenna that sends and receives airborne electromagnetic waves. On the z-axis 

there are seven elements with a uniform spacing equal to 𝑑. The origin has been placed at the center of array to 

indicate coordinate system. This centering brings computing benefits and is used throughout the simulation. 

 

Figure 3. Uniform Linear Arrays of 7-elements located on the z-axis with uniform spacing “d”. 

Figure 3 illustrates ULAs of 7-elements located on the z-axis with uniform spacing “d”. The mathematical position 

of the antenna array element is as follows: 

𝑝𝑧𝑛 = (𝑛 −
𝑁−1

2
) 𝑑,     𝑛 = 0,1,2, … , 𝑁 − 1                                  (6) 

and;  

𝑝𝑥𝑛 = 𝑝𝑦𝑛 = 0                                                                              (7) 

The uniform antenna array manifold vector 𝑣𝑘(𝐾) can be calculated by substituting Equations 6 , 7 into 𝑣𝑘(𝐾). 

𝑣𝑘(𝐾) =

[
 
 
 
 
 
 𝑒
−𝑗𝐾𝑇𝑃0

𝑒−𝑗𝐾
𝑇𝑃1

..

.

.

𝑒−𝑗𝐾
𝑇𝑃𝑁−1]
 
 
 
 
 
 

                                                               (8) 

𝑣𝑘(𝑘𝑧) = [𝑒
𝑗(
𝑁−1

2
)𝑘𝑧𝑑| 𝑒𝑗(

𝑁−1

2
−1)𝑘𝑧𝑑| …… |𝑒𝑗(

𝑁−1

2
−1)𝑘𝑧𝑑  ]

𝑇

                                                                                              (9) 

Through;  

𝑘𝑧 = −
2𝜋

𝜆
𝑐𝑜𝑠𝜃 = −𝑘0𝑐𝑜𝑠𝜃                                 (10) 

Where 𝑘0 represents the magnitude of the signal wavenumber. 

𝑘0 ≜ |𝑘| ≜
2𝜋

𝜆
                                                                                (11) 

Note that for the uniform linear array antenna has no resolution capability in the 𝜙-direction. Substituting complex 

weight vector 𝑊𝐻 = [𝑤0
∗  𝑤1
∗  … 𝑤𝑁−1

∗ ] and 𝑣𝑘(𝑘) into 𝛾(𝜔, 𝑘) = 𝑊𝐻𝑣𝑘(𝑘) gives the following equation; 

𝛾(𝜔, 𝑘𝑧) = 𝑤
𝐻𝑣𝑘(𝑘𝑧) = ∑ 𝜔𝑛

∗𝑒−𝑗 (𝑛 −
𝑁−1

2
)𝑁−1

𝑛=0 𝑘𝑧𝑑                                                  (12) 

Defining for our convenient;  

𝜓 = −𝑘𝑧𝑑 =
2𝜋

𝜆
𝑐𝑜𝑠𝜃. 𝑑 =

2𝜋

𝜆
𝑢𝑧𝑑                                                            (13) 
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where 𝑢𝑧 = 𝑐𝑜𝑠𝜃 is the cosine direction around the z-axis. 𝛾𝜓(𝜓) can be computed with the help of Equations 12 and 

13 which gives. 

𝛾𝜓(𝜓) = 𝑒
−𝑗
𝑁−1
2
𝜓 𝜔𝑛

∗𝑒𝑗𝑛𝜓  

𝑁−1

𝑛=0

 (14) 

Frequency wavenumber function in 𝜓- space is represented by 𝛾𝜓(𝜓). 

Table 4. Visible region of 𝜸(𝝎, 𝒌𝒛) and 𝜸𝝍(𝝍) with respect to Frequency Wavenumber Function. 

Frequency Wavenumber Function 𝜸(𝝎,𝒌𝒛) 𝜸𝝍(𝝍) 

Range −∞ 𝑡𝑜 ∞ −∞ 𝑡𝑜 ∞ 

Propagation Signal Region in terms of 𝜃 0 ≤ 𝜃 ≤ 𝜋 0 ≤ 𝜃 ≤ 𝜋 

Propagation Signal Region in terms of 𝑢𝑧 −1 ≤ 𝑢𝑧 ≤ 1 −1 ≤ 𝑢𝑧 ≤ 1 

Restriction implies in terms of 𝜓 −
2𝜋𝑑

𝜆
≤ 𝜓 ≤  

2𝜋𝑑

𝜆
 −

2𝜋𝑑

𝜆
≤ 𝜓 ≤  

2𝜋𝑑

𝜆
 

Restriction implies in terms of 𝑘𝑧 −
2𝜋

𝜆
≤ 𝑘𝑧 ≤ 

2𝜋

𝜆
 −

2𝜋

𝜆
≤ 𝑘𝑧 ≤ 

2𝜋

𝜆
 

Visible region of 𝛾(𝜔, 𝑘𝑧) and 𝛾𝜓(𝜓) with respect to Frequency Wavenumber Function is represented in Table 4.  

The beam patterns can be written in three different formats represented in Table 5. The key difference between the 

frequency wavenumber and the beam pattern is that the beam pattern parameters are limited to correspond to the 

physical angle 𝜃.  

Table 5. Three Different Format of Beampattern. 

Beam Pattern Mathematical Expression Range of Beam Pattern 

𝐵𝜃(𝜃) = 𝑤
𝐻𝑣𝜃(𝜃) 𝑒−𝑗

(
𝑁−1
2
)
2𝜋𝑑
𝜆
𝑐𝑜𝑠𝜃∑ 𝜔𝑛

∗ 𝑒
𝑗𝑛
2𝜋𝑑
𝜆
𝑐𝑜𝑠𝜃𝑁−1

𝑛=0  0 ≤ 𝜃 ≤ 𝜋 

𝐵𝑢(𝑢) = 𝑤
𝐻𝑣𝑢(𝑢) 𝑒−𝑗

(
𝑁−1
2
)
2𝜋𝑑
𝜆
𝑢∑ 𝜔𝑛

∗ 𝑒
𝑗𝑛
2𝜋𝑑
𝜆
𝑢𝑁−1

𝑛=0  −1 ≤ 𝑢 ≤ 𝑢 

𝐵𝜓(𝜓) = 𝑤
𝐻𝑣𝜓(𝜓) 𝑒−𝑗

(
𝑁−1
2
)
2𝜋𝑑
𝜆
𝜓∑ 𝜔𝑛

∗ 𝑒𝑗𝑛𝜓𝑁−1
𝑛=0  −

2𝜋𝑑

𝜆
≤ 𝜓 ≤

2𝜋𝑑

𝜆
 

Suppose 𝐵𝜓(𝜓) = 𝑤
𝐻𝑣𝜓(𝜓) is defined in Table 5. In other words, it is generated from the complex Nx1 vector 𝑤. 

If you start with, use an arbitrary function 𝐵𝜓(𝜓) and 𝑤 = [𝑉𝐻𝜓]−1𝐵𝐻  to generate a pattern that matches 𝐵(𝜓𝑖), 𝑖 =
1,…𝑁 but does not necessarily match function 𝐵𝜓(𝜓). We present this result in the context of a uniform linear array. 

However, the derivation is valid for any N-element array geometry. 

2-3- The Smart City Scenario of a 5G Smart Devices for Machine-to-Machine Talk Integration 

Considering the coordinates system of smart devices layout of the system antenna array for the smart city scenario 

of a 5G smart devices for Machine-to-Machine talk integration as defined in Lau et al. (2000) [22]. A longer smart 

devices is along the y-axis, and a smaller smart devices is along the x-axis. The ULA antenna array can be placed 

along the z-axis. If the smart device antenna array is bent, the displacement is on the z-axis. Flexible electronics smart 

devices often have a wraparound provision. In this case, the array is still in the yz-plane, but curved downward in the 

negative direction z-axis. As before, the first and last elements of the curved array are not on the y-axis. 

3- Matlab Based Simulation Methodology of MRLAs and ULAs Model 

This section describes the simulation methods of proposed MRLAs and ULAs Model. The simulation is performed 

in MATLAB. Considering the current form factor of 6 inches of smart electronics devices with operating frequency of 

30 GHz, the ULA size is fixed at 7 elements. Antenna elements are not customized, and elemental patterns do not 

appear in the analysis because they correspond to a specific type. The far-field mode depends only on the array and 

can be mathematically analyzed and evaluated. 

3-1- Array Factor Calculation 

The first term is often referred to as the beam pattern of an array with isotropic elements. MRLA structure of 

Figure 2 need to be converted to the 𝜔𝑛 format. For example, for a four-element MRLA, the value of 𝜔𝑛 is {0 1 4 6} 

and an aperture of {1 1 0 0 1 0 1} can be provided. Conveniently represented as an array factor as follows: 

𝐴𝐹(𝑘𝑧) =≜ ∑ 𝜔𝑛
∗ . 𝑒−𝑗𝑘𝑧𝑧𝑛                       𝑁−1

𝑛=0                           (15) 

The steps followed to evaluate the antenna array response of a flexible or curved array is shown in Figure 4. 
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Figure 4. Steps to evaluate the antenna array response of a flexible or curved array. 

A total number of 132 MRLA configurations can provide for the required 𝑁 = 4,𝑁𝑎 = 6 openings. All possible 

configurations of MRLAs for 𝑁 = 3 → 17 is summarized in Table 3. 

4- Experimental Results and Analysis 

Consider a standard linear array with 7 elements of weighting for 𝜓0 = 0.1𝜋, 0.2𝜋, 0.3𝜋, 0. 𝜋4. Figure 5 illustrates 

the Beam patterns as a function of 𝜓0 = 0.1𝜋, 0.2𝜋, 0.3𝜋, 0. 𝜋4 , Discrete Prolate Spheroidal Sequences (DPSS) 

weighting, N=7. Computer simulated 𝐻𝑃𝐵𝑊 (𝑢 =
𝜓

𝜋
 ), 𝐻𝑃𝐵𝑊(𝑑𝑒𝑔), 𝐵𝑊𝑁𝑁 (𝑢 =

𝜓

𝜋
 ), 𝐵𝑊𝑁𝑁(𝑑𝑒𝑔) and the height of 

highest sidelobe (SL Ht.(dB)) is shown in Table 6. 

 

Figure 5. Beam patterns as a function of 𝝍𝟎 = 𝟎. 𝟏𝝅, 𝟎. 𝟐𝝅, 𝟎. 𝟑𝝅, 𝟎. 𝝅𝟒: Discrete Prolate Spheroidal 

Sequences (DPSS) weighting, N=7. 

Consider 4-element array equivalent to a standard linear array with a 7-element aperture of ideal MRLA shown in 

Figure 2 with 𝑑 = 𝜆 2⁄ . Figure 6 shows a beam pattern with uniform weights. HPBW is 0.666 and is BWNOT is 1.385 

in 𝜓-spaces. The beampattern does not have true nulls (𝐵(𝜓) = 0), therefore the “null-to-null beamwidth is really the 

“ minimum-to minimum” beamwidth. The minima occur at 𝜓𝑚 = ±0.2205𝜋 = ±0.6927  with 𝐵(𝜓𝑚) = 0.0862. 
Thus 𝐵𝑊𝑚𝑚 = 0.4410𝜋 = 1.3854. 

i. For 7-element uniform linear array, null occur at 𝜓𝑁 = ±
2

7
= 0.0910𝜋 = 0.2858, with 𝐵𝑊𝑁𝑁 =

4

7
= 0.5714𝜋 =

1.7952.  
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ii. 4-element array has narrower mean beam. 

iii. 4-element array has much higher sidelobes and shallow nulls. 

We use a BW notch-notch because the beam pattern does not have perfect zeros. In comparison, the standard 4-

element arrays are 1.429 and 3.1416, while the standard 7-element linear arrays are 0.801 and 1.795 respectively. 

Therefore, in terms of main lobe features, MRLA is an improvement over the standard 7-element array. 

Table 6. Half Power Beam Width (𝑯𝑷𝑩𝑾) and 𝑩𝑾𝑵𝑵 (null to null) for different Weight. 

𝝍𝟎 𝟎. 𝟏𝝅 𝟎. 𝟐𝝅 𝟎. 𝟑𝝅 𝟎. 𝟒𝝅 

Weight 

0.8655 0.5872 0.3542 0.2144 

0.9387 0.7993 0.6569 0.5433 

0.9845 0.9470 0.9044 0.8652 

1.0000 1.0000 1.0000 1.0000 

0.9845 0.9470 0.9044 0.8652 

0.9387 0.7993 0.6569 0.5433 

0.8655 0.5872 0.3542 0.2144 

𝐻𝑃𝐵𝑊(𝑢 =
𝜓

𝜋
 ) 0.2622 0.2818 0.3100 0.3396 

𝐻𝑃𝐵𝑊(𝑑𝑒𝑔) 15.0663 16.1999 17.8336 19.5524 

𝐵𝑊𝑁𝑁 (𝑢 =
𝜓

𝜋
 ) 0.5934 0.6626 0.7772 0.9238 

𝐵𝑊𝑁𝑁(𝑑𝑒𝑔) 34.5190 38.6954 45.7348 55.0196 

SL Ht.(dB) -13.8148 -17.4409 -23.5034 -33.8102 

 

Figure 6. Beam pattern of a uniformly weighted 4-element MRLAs and Conventional (ULAs). 

Table 7. Minimum redundancy arrays HPBW, BW and 𝑩𝑾𝑵𝑵 null-to null for Non-Uniform and Uniform 4 –element arrays. 

Specification Computer Simulated Values 

𝐻𝑃𝐵𝑊 Non-uniform 4-element array 0.6616 

𝐻𝑃𝐵𝑊 Uniform 4-element array 1.4307 

𝐻𝑃𝐵𝑊 Uniform 7-element array 0.8024 

𝐵𝑊𝑀𝑀 (min-min) Non-uniform 4-element array 1.3854 

𝐵𝑊𝑁𝑁 (null-null) Uniform 4-element array 1.7957 

𝐵𝑊𝑁𝑁 (null-null) Uniform 7-element array 1.7957 
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Table 7 illustrates MRLAs HPBW, BW and 𝐵𝑊𝑁𝑁 null-to null for non-uniform and uniform 4-element arrays.  

Consider 𝑁 = 5,𝑁𝑅 = 1,𝑁𝑎 = 9 and case (i) arrays 1332, case (ii) arrays 3411 as per Table 3. Beam pattern for 5-

element arrays 1332 MRLAs and conventional (ULAs) is shown in Figure 7 (a).   

 

Figure 7 (a). Beam pattern for 5-element arrays 1332 MRLAs and conventional (ULAs). 

Table 8. Minimum redundancy arrays HPBW and 𝑩𝑾𝑵𝑶𝑻 for 5-element array. 

Case HPBW 𝑩𝑾𝑵𝑶𝑻 

Case 1 (1,3,3,2) 0.464 0.98 

Case 2 (3,4,1,1), 0.473 0.94 

Beam pattern for 5-element arrays 3411 MRLAs and conventional (ULAs) is shown in Figure 7(b). Table 8 

represents minimum redundancy arrays HPBW and 𝐵𝑊𝑁𝑂𝑇  for 5-element array. In contrast, the standard 10-element 

linear arrays are 0.559 and 1.25, respectively. As with the uniform linear case, non-uniform weighting can be used to 

improve sidelobe behavior. 

 

Figure 7 (b). Beam pattern for 5-element arrays 3411 MRLAs and conventional (ULAs). 



Emerging Science Journal | Vol. 4, Special Issue "IoT, IoV, and Blockchain", (2020, 2021) 

Page | 80 

4-1- MRLA Sidelobe Reduction Algorithms 

To reduce the sidelobe in MRLA, develop an algorithm that gives a simple iterative technique for constructing 

desired beam patterns for arbitrary arrays. The goal is to discover weights that maximize the array's directivity while 

adhering to a set of beam pattern limitations that limit sidelobe levels. The approach is developed in the setting of 

linear arrays of isotropic elements, but it can also be used with arrays of any shape and non-isotropic elements. I 

assume a linear array of isotropic elements with NX1 array response vector 𝑣(𝑢) The directivity is indicated by D 

when the pattern response at the primary response axis or pointing direction is equal to one. 

𝐷 = {
1

2
∫ |𝐵(𝑢)|2𝑑𝑢
1

−1
}
−1

                                         (16) 

= {
1

2
∫ |𝑊𝐻𝑣(𝑢)|2
1

−1
𝑑𝑢}
−1

= {𝑊𝐻𝐴𝑊}−1                          (17) 

where: 

𝐴 =
1

2
∫𝑣(𝑢)𝑣𝐻(𝑢)𝑑𝑢         

1

−1

 (18) 

The following are the entries in A: 

[𝐴]𝑚𝑛 = 𝑠𝑖𝑛𝑐 (
2𝜋

𝜆
|𝑝𝑚 − 𝑝𝑛|) 

where 𝑝𝑛 denotes the nth element's location. Let 𝑉𝑇 = 𝑣(𝑢𝑇) be the steering direction's array response vector. The 

primary difficulty is to maximize directivity (more accurately, decrease the inverse of directivity) while adhering to 

the unity response constraint on the major response axis. 

min𝑤𝐻𝐴𝑤  𝑠. 𝑡 𝑤𝐻𝑣𝑇 = 1                                                                       (19) 

The solution for sidelobe reduction is mathematically expressed as follows: 

𝑤 = 𝐴−1𝑣𝑇(𝑣𝑇
𝐻𝐴−1𝑣𝑇)

−1                                                      (20) 

The maximum directivity weight vector is the uniform weight vector steered in the desired direction, 𝑤 =
1

𝑁
𝑣𝑇, in 

the exceptional situation of a uniform linear array, A = I. For both uniformly and non-uniformly spaced arrays, my aim 

is to reduce sidelobes by sacrificing some directivity. This can be done by splitting u-space into r sectors (Ω1, Ω2,  
…..Ω𝑟  etc.) and defining a desired (but not necessarily realizable) beam pattern in each sector. Limiting discrepancies 

between the synthesized and required beam pattern. Assume that 𝐵𝑑,𝑖(𝑢) = 𝑤𝑑,𝑖
𝐻 𝑣(𝑢) represents the equivalent beam 

pattern. Over region Ω1, the square error between the beam pattern generated by the synthesized weight vector w and 

the desired beam pattern is: 

𝜖𝑖
2 = ∫|𝐵(𝑢) − 𝐵𝑑,𝑖(𝑢)|

2
𝑑𝑢 = ∫|𝑤𝐻𝑣(𝑢) − 𝑤𝑑,𝑖

𝐻 𝑣(𝑢)|
2
𝑑𝑢 = (𝑤 − 𝑤𝑑,𝑖)

𝐻
𝑄𝑖(𝑤 − 𝑤𝑑,𝑖)                                   (21) 

where;  

𝑄𝑖 = ∫𝑣(𝑢)𝑣(𝑢)
𝐻𝑑𝑢                                                                  (22) 

Considering Ω1be the region 𝑢𝑖 − ∆𝑖, 𝑢𝑖 + ∆𝑖. The following are the entries in 𝑄𝑖: 

[𝑄𝑖]𝑚𝑛 = 𝑒
𝑗
2𝜋

𝜆
(𝑝𝑚−𝑝𝑛)2∆𝑖𝑠𝑖𝑛𝑐 (

2𝜋∆𝑖

𝜆
|(𝑝𝑚 − 𝑝𝑛)|)                                            (23) 

Now, subject to pattern error limitations, I can maximize directivity as follows: 

𝑚𝑖𝑛  𝑤𝐻𝐴𝑤 𝑠. 𝑡 𝑤
𝐻𝑣𝑇 = 1                                                         (24) 

s.t   (𝑤 − 𝑤𝑑,𝑖)
𝐻
𝑄𝑖(𝑤 − 𝑤𝑑,𝑖) ≤ 𝐿𝑖           1…… . . 𝑟. 

Define: 

 𝐹 = 𝑤𝐻𝐴𝑤 + 𝜆0(𝑤
𝐻𝑣𝑇 − 1) + 𝜆0

∗(𝑣𝑇
𝐻𝑤 − 1) + ∑ 𝜆𝑖(𝑤 − 𝑤𝑑,𝑖)

𝐻
𝑄𝑖

𝑟
𝑖=1 (𝑤 − 𝑤𝑑,𝑖)                        (25) 
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When I differentiate with respect to 𝑤𝐻  and setting the result equal to zero, gives expression as follows; 

𝐴𝑤 + 𝜆0𝑣𝑇
𝐻 ∑ 𝜆𝑖[𝑄𝑖(𝑤 − 𝑤𝑑,𝑖)] = 0                 
𝑟
𝑖=𝑖                      (26) 

𝐴𝑄 and 𝑤𝑄  are defined as follows: 

𝐴𝑄 = 𝐴 + ∑ 𝜆𝑖𝑄𝑖                     
𝑟
𝑖=1                      (27) 

And; 

𝑤𝑄 = ∑ 𝜆𝑖𝑄𝑖𝑤𝑑,𝑖               
𝑟
𝑖=1                      (28) 

Eqn. (26) can be written as follows; 

𝑤 = −𝜆0 + 𝐴𝑄
−1𝑣𝑇 + 𝐴𝑄

−1𝑤𝑄                                           (29) 

Substituting the result of the 𝜆0 into Equation 29 yields: 

𝑤 = 𝐴𝑄
−1𝑣𝑇(𝑣𝑇

𝐻𝐴𝑄
−1𝑣𝑇)

−1
+ [𝐴𝑄

−1 − 𝐴𝑄
−1𝑣𝑇(𝑣𝑇

𝐻𝐴𝑄
−1𝑣𝑇)

−1
𝑣𝑇
𝐻𝐴𝑄
−1] 𝑤𝑄                                                                            (30) 

By establishing a set of small sectors in the sidelobe zone and setting the desired beam pattern to zero in these 

regions, can achieve tight sidelobe control. In each sector, the desired weight vector is simply the all-zero vector. The 

pattern error constraints become limits on the magnitude squared of the beam pattern at every location in the sidelobe 

area in the limit of infinitesimally small sectors. The highest acceptable sidelobe level can be specified as the allowed 

deviation, and the sidelobe levels can be regulated directly. I can manage sidelobe levels fairly accurately by picking 

wider but relatively tiny sectors. Further, if I only constrain pattern "error" in the sidelobe region rather than the main 

beam, the intended weight vector in each constrained sector will be zero, and the second term in Equation 30 will be 

removed, resulting in a weight vector of zero. 

𝑤 = 𝐴𝑄
−1𝑣𝑇(𝑣𝑇

𝐻𝐴𝑄
−1𝑣𝑇)

−1
                                                     (31) 

To achieve the sidelobe level limitations, an iterative procedure can be employed to change the loading levels. The 

pattern errors are computed and validated against the restrictions at each iteration. If a constraint is exceeded, the 

sector's loading is increased, and the weights are adjusted. The iteration steps followed to evaluate the convergence 

criterion is shown in Figure 8. 

 

Figure 8. Steps to evaluate the repetitive iteration until conversion criterion satisfied.  

The iterative SSL reduction technique is tested for numerous cycles using a conventional 10-element MRLA array, 

as illustrated in Figure 8. 𝑢𝑇 = 0 is the ideal look direction, while -30 dB is the desired sidelobe level considered? 80 

sidelobe regions are originally established as sectors with a width of 2Δ𝑖 = 0.02 in the region 0 ≤ 𝑢 ≤ −0.2 and 

0.2 ≤ 𝑢 ≤ 1. The constraint levels are all set to 𝐿𝑖 = 2 × 10
−5, which is the sidelobe level multiplied by the width of 

each region. 𝜆0 = 1 and 𝛼 = 0.3 are the starting loading levels. Figure 9 depicts the progression of the beam pattern 

and sidelobe region. After 14 repetitions iteration, the final beam pattern is established. 
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(a) First iteration sidelobe in range of -30dB to -10dB (b) Fifth iteration sidelobe in range of -30dB to -20dB 

  

(c) Tenth iteration sidelone in range of -30dB to -25dB (d) Fourteenth iteration sidelobe -30dB 

Figure 9. Iteration approaches for SLL -30dB  sidelobe reduction. 

4-2- Result Comparison with Previous Work  

It has been demonstrated that when sensor elements are arranged in the minimum redundancy fashion, an M 

element array can be made to estimate the directions of arrival of as many as M (M -1)/2 uncorrelated sources 

unambiguously using an augmentation technique on the covariances obtained from the array outputs [23]  First, for 

uniform spatial sampling with M and N sensors where M and N are co-prime with sufficient interelement spacing, the 

difference co-array has O (MN) freedoms exploited in beam forming and in the direction of arrival estimation. Their 

motivation for this array extension scheme is to achieve a co-array difference which fully populated all the lags. It is 

an interesting question to contrast Vaidyanathan and Pal's proposed single array extension scheme with the ECSA 

approach proposed in this paper, which extends both subarrays. Their motivation for this array extension scheme is to 

achieve a co-array difference, which fully populated all the lags. The proposed coprime sensor array (CSA) by 

Kaushallya Adhikari is a non-uniform linear array obtained by intersection of two uniform linear arrays (ULAs) that 

are undersampled by coprime factors [24]. A CSA uses fewer sensors to resolve a fully populated ULA of the same 

aperture. The peak side lobe level in a CSA is however higher than the peak lobe with the same resolution of the 

comparable maximum ULA side. Adding more sensors to a CSA may reduce the level of its peak side lobe. 

5- Conclusion  

This study came up with the concept of MRLAs and its advantages for 5-G smart devices application for future 

Machine-Machine talk integration. Synthesis techniques for MRLAs and ULAs spacing were developed and 

processing modes result has been compared. Synthesis of low sidelobe differential beams; these beams are widely 

used in Machine – Machine talk applications to estimate the angle at which the plane wave signal reaches the array 

from the target has been analyzed. Array construction procedure developed to evaluate the integer position of a 

particular sensor array over a specified distance, so the missing integer is represented as the difference between the 

two sensor positions. The main advantage of MRLAs is that it can directly synthesize very large refined arrays with 
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very low computations and the lowest verbosity ever reported. MRLAs configurations can be used to define a new 

high-resolution synthetic aperture interferometer array structure for smart devices. The pattern in the center of the 

array facilitates the construction of space-scalable structures. Experimental results show that MLRAs 4-element array 

has a narrower mean beam and has much higher sidelobes and shallow nulls. Therefore, in terms of main lobe 

features, MRLAs has an improvement over the standard 7-element ULAs array. 
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