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Abstract 

Most applied indoor localization is based on distance and fingerprint techniques. The distance-based 
technique converts specific parameters to a distance, while the fingerprint technique stores 

parameters as the fingerprint database. The widely used Internet of Things (IoT) technologies, e.g., 

Wi-Fi and ZigBee, provide the localization parameters, i.e., received signal strength indicator 
(RSSI). The fingerprint technique advantages over the distance-based method as it straightforwardly 

uses the parameter and has better accuracy. However, the burden in database reconstruction in terms 

of complexity and cost is the disadvantage of this technique. Some solutions, i.e., interpolation, 
image-based method, machine learning (ML)-based, have been proposed to enhance the fingerprint 

methods. The limitations are complex and evaluated only in a single environment or simulation. 

This paper proposes applying classical interpolation and regression to create the synthetic 
fingerprint database using only a relatively sparse RSSI dataset. We use bilinear and polynomial 

interpolation and polynomial regression techniques to create the synthetic database and apply our 

methods to the 2D and 3D environments. We obtain an accuracy improvement of 0.2m for 2D and 
0.13m for 3D by applying the synthetic database. Adding the synthetic database can tackle the 

sparsity issues, and the offline fingerprint database construction will be less burden. 
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1- Introduction 

Internet of Things (IoT) technology advancement has been flourishing in the last decades [1, 2]. Its implementation 

cannot be excluded from our everyday life. One of the features that are frequently used is positioning. As the well-

established global positioning system (GPS) is most used for positioning, especially in the outdoor environment, it fails 

to give the proper accuracy positioning in the indoor environment [3, 4]. Therefore, some IoT-based technologies, i.e., 

Wi-Fi [5, 6], ZigBee [7], Bluetooth Low Energy (BLE) [8], Ultra-wideband (UWB) [4, 9], Radio Frequency 

Identification (RFID) [10], can be applied for Indoor Positioning Systems (IPS) instead of GPS's utilization indoor [5]. 

More commonly stated as indoor localization, IPS can be achieved by applying the technologies mentioned above and 

specific methods or techniques.  

Wireless sensor networks (WSNs), also based on IoT technology, are known as one of the most used for indoor 

localization implementation [4, 11, 12]. This paper considers the low-cost and straightforward implementation of WSNs-

based indoor localization using the ZigBee standard [13]. Compared to other technologies such as Wi-Fi, the ZigBee 

can have a more flexible setup and deployment of the WSNs system. On the other hand, indoor localization techniques 

include algorithms to identify the target's location based on several signal properties based on the technologies offered. 
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ZigBee standard provides some signal properties that can be used for localization algorithm, i.e., Received Signal 

Strength Indicator (RSSI) and Link Quality Indicator (LQI) [14, 15]. The advantages of RSSI include simple to obtain 

and straightforward implementation without additional hardware installation. However, the drawback of RSSI properties 

is that the signal somehow fluctuates and varies due to time. For LQI, the additional hardware to record the data 

transmission may require, and its implementation is not typical [16]. 

The indoor localization techniques are generally divided into two, as the range or distance becomes the center of 

concern. The distance-based and the distance-free techniques are widely applied for indoor localization techniques [17]. 

Distance-based techniques solely rely on distance measurement to estimate the location. This distance can be from the 

conversion parameter of signal power, i.e., RSSI mentioned before, or angle or time information from the signal 

transmission. One advantage of this range-based technique is that if the algorithm has received an excellent distance-

signal properties conversion, the localization can be done straight away without pre-processing or databasing. These 

advantages also depend on the kind of signal properties used for distance conversion. However, the range-based 

technique will yield a high error if unreliable signal properties are received and poorly converted as the distance 

parameter [18].  

The distance-free indoor localization technique, on the other hand, has advantages in reducing the effect of this signal 

fluctuation caused by the multipath effect in the indoor environment by collecting the spatial information of this signal 

to record as the database. The common distance-free technique in indoor localization is fingerprinting [19]. The 

fingerprinting technique requires two phases for the localization, the first phase is called the offline phase, and the second 

phase is the online phase [20]. In the offline phase, the necessary information related to the spatial information of the 

area of interest is recorded as the offline fingerprint database. The fingerprint database consists of the signal properties 

information related to a specific location on the designated grids inside the area of interest: the denser these grids, the 

more accurate and precise later for the online phase or the localization process. After the data or localization parameters 

are measured and stored in the database acquisition, the online phase, in which the target or object sends the signal 

parameter to the system and receive the same parameters as recorded in the database, the pattern matching algorithm 

will work by comparing the target's signal parameters to those in database. This algorithm then concludes that the target 

or object belongs to a particular position with similar spatial information recorded in the fingerprint database. 

However, the fingerprint technique has drawbacks in the offline database construction phase [21, 22]. It takes much 

effort, high cost, and sometimes has complexity or scalability issues when the applied indoor environment is enormous. 

There are several attempts to reduce the drawbacks, i.e., constructing the artificial grids by applying classical to machine 

learning-based techniques and reducing the database complexity by employing some compression algorithm [23]. The 

effort in signal point-of-view enhances the signal parameters using the dedicated filter to fight the signal fluctuations 

and implements several clustering techniques to remove the data outliers and improve localization accuracy [24, 25]. 

For all of this method, as the author is concerned, there are still open challenges in implementing accurate and 

straightforward fingerprint database enhancement, i.e., simple interpolation and regression techniques [26–28]. 

Some proposals that applied the interpolation techniques to tackle the database sparsity have been published in [29, 

30]. The most used interpolation technique for fingerprint-based indoor localization is the Kriging technique. The authors 

in [31] showed that the Kriging for RSSI, especially in inaccessible areas, can be covered and enhance the overall 

fingerprint database. Another approach of the database enhancement by path-loss model-based interpolation is available 

in [28, 32], the crowdsourcing method [33], Spatio-temporal similarity [34], and clustering-based and interpolation on 

[35]. However, most of these approaches have limitations on algorithm complexities. Furthermore, some issues related 

to the advancement parameter, e.g., Channel State Information (CSI) and its complexity, appear and become the 

drawbacks of applying this parameter. Thus, as far as our concerns, the simple yet straightforward implementation of 

interpolation and regression technique is not yet considered—especially when using WSNs-based as the system's core. 

By utilizing RSSI following the log-loss distance, it views the linear assumption relationships between signal strength 

and the distance. By considering this, the interpolation and regression can be established as the power-distance 

relationship in the applied environment. In addition, we consider conducting an actual measurement campaign in our 

approach. The approach is the algorithm development in simulation or theory and actual implementation both for two-

dimensional (2D) and three-dimensional (3D) by using the ZigBee standard as the core of the WSNs system. Our original 

achievements are enhancing the density database by using a relatively sparse actual measurement database by applying 

basic interpolation and regression. Our approach is relatively simple compared to previously mentioned publications. 

Our significant difficulties to overcome is the RSSI fluctuation in some parts of fingerprint position because of the nature 

of the environment, i.e., near the edge, enormous metal material, and unbalanced obstruction in the environment, making 

the synthetic database challenging to assure.  

The fingerprint technique for both environments is applied, and the offline database fingerprint is obtained by the 

area of interest 5×5 m2 for the 2D environment. We utilize the bookshelf as the 3D environment, assuming several floor 

applications in a multi-story building in the same environment as the 2D settlement. We design the database grid of 1 × 

1 m for the 2D and 22×12.5×35 cm for the 3D environment. The cm-scale is to observe how our interpolation and 
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regression algorithm can work well and acceptable in such a short distance. The pattern matching used is the classical 

minimum Euclidean distance (MED) to know-how is the difference between the predicted and the actual RSSI values. 

The tiniest error yield from the target-database comparison is assigned as the target's location. From the context we have 

explained and by proposing the method for actual implementation, we would like to highlight the contribution of our 

proposed method as follows: 

 Implementing the interpolation and regression technique for database enhancement in fingerprint-based indoor 

localization considering 2D and 3D environments. 

 We compare the interpolation and regression techniques to observe the best use of the technique for the case of 2D 

and 3D environments.  

We present the structure of this paper as follows; in the first part, we discuss the introduction and background stated 

the context and importance of our proposal. In the second part, we present the indoor localization technologies and 

techniques and the fingerprint technique's comprehensive explanation. For the third part, we detail the material and 

method, including the ZigBee-based WSNs system, interpolation, regression technique we propose to implement, pattern 

matching, performance metrics, and the measurement system and setup. Results and discussion will then be presented 

in the fourth part. Finally, we will conclude our findings and discuss our proposal limitations and plan of our near-future 

works.  

2- Indoor Localization  

This part will discuss indoor localization, including its technology, distance measurement, localization, and 

fingerprint technique. 

2-1- Indoor Localization Technologies  

Indoor localization can act as an "indoor GPS," and some technologies have been introduced to develop indoor 

localization research. The technologies include radio frequency (RF)-based and other, i.e., mechanical, optical/light 

wave, acoustic wave, and vision-based, also attract the research further. However, RF-based researches are most 

common and widely implemented. Table 1 shows the most-used RF-based indoor localization technologies and their 

features [17].  

Table 1. RF-based indoor localization technology. 

Technology Accuracy (m) Range (m) Power (W) 

GPS 1 - 20 global 500 

RFID 1 1 - 50 0.02 - 0.3 

Wi-Fi 1 - 5 <100 0.5 - 1 

UWB <0.3 <300 0.03 

BLE 1 <10 0.001 

ZigBee 1 - 5 <30 0.02 – 0.04 

In this paper, we consider applying the ZigBee technology because of several reasons: 

 By comparing the accuracy of other technologies in Table 1, the ZigBee system can achieve an accuracy of 1 – 5    

m. UWB technology can achieve better accuracy than ZigBee. However, implementation of UWB need additional 

hardware, and to achieve <0.3 m accuracy, several advances and complicated algorithm are needed, e.g., Time-of-

Arrival (ToA), Ranging Time (RT). 

 Observing the range properties of ZigBee technology, the <30 m can cover almost all indoor environments, the 

scalability issues can be solved. 

 Power consumption is also low compared to other technologies; only RFID and BLE give the same or less than 

ZigBee. However, the range of BLE is relatively short, while the RFID technology also requires the line-of-sight 

(LoS) communication between tags and the RFID reader. 

ZigBee standard is the IEEE 802.15.4 standard working in industrial, scientific, and medical (ISM) bands similar to 

Wi-Fi in 2.4 GHz. In the measurement system and setup, we will explain how to reduce the effect of the signal 

interference with Wi-Fi. 

2-2- Distance Measurement Technique 

Figure 1 shows the several distance measurement or signal properties used in indoor localization. 
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Figure 1. Distance measurement technique. 

There are some advantages and disadvantages of each distance measurement technique. However, we can note from 

the illustration that the RSSI parameter has the most prospective implementation, especially in our approach. First, it 

has advantages in the straightforward implementation, the second there are disadvantages point that becomes a focal 

point, especially for the database enhancement in our proposal. RSSI is defined as the received power, and it follows the 

log-loss distance model [36]: 

𝑅𝑆𝑆𝐼(𝑑𝐵𝑚) = 𝐴 − 10 · 𝑛 · 𝑙𝑜𝑔10 [
𝑑0

𝑑
]. (1) 

RSSI in dBm related to the distance, 𝑑, is equal to the 𝐴, power in dBm of reference distance, 𝑑0 subtracted by the 

path loss exponent, 𝑛, multiply the log distance of 𝑑0 divided by the 𝑑; generally 𝑑0 is 1 m. The values of 𝑛 can be 

measured by empirical in the particular indoor environment used. In our approach, we collected the RSSI values from 

the ZigBee standard without considering the RSSI-distance conversion.  

2-3- Indoor Localization Methods 

Figure 2 shows several basic methods applied in indoor localization systems.  

 

Figure 2. Localization methods. 
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The fingerprint technique gives advantages when there is no need for distance-parameter conversion. Furthermore, 

the fingerprint technique gives better accuracy than several range-based techniques, i.e., triangulation or trilateration, 

min-max, and iRingLa compared based on RSSI as localization parameters [37]. The other techniques can also yield 

high accuracy but need additional support in the algorithm, precise clocking, accurate angle estimation, and the high 

number of nodes or beacons used for positioning. For previously mentioned advantages of fingerprint technique, 

however, there is a drawback of fingerprint technique, especially in the offline database construction process, with the 

burden of the cost and time inefficient, moreover, if there is an application in the large-scale indoor environment, the 

system will be more complex and needs more human resources. The trade-off of this technique is that if we do not have 

enough density of fingerprint database, the localization error will be high. On the contrary, when we need to have a very 

dense fingerprint database, multiple drawbacks will appear related to offline databasing. In this paper, we propose the 

database enhancement in tackling the drawbacks of the fingerprint technique, especially in the database sparsity, by 

applying the interpolation and regression technique. 

2-4- Fingerprint Technique 

The fingerprint technique is similar to fingerprint pattern recognition in image processing. However, the terms 

fingerprint here refers to radio fingerprints' spatial information. In the previous section, we discussed the general 

definition of the fingerprint technique. We have also shown the disadvantages in the fingerprint technique 

implementation, especially in the database construction process. This section will discuss other related fingerprint 

techniques, their disadvantages, and solutions. The illustration of the fingerprint technique process can be depicted in 

Figure 3.  

 

Figure 3. Fingerprint technique. 

The fingerprint technique works by constructing the database with spatial information needed to estimate target or 

object position. This spatial information is the location of the fingerprint point with its corresponding parameter. In this 

Figure 3, the corresponding parameter is RSSI values from three reference nodes/beacons. The fingerprint technique 

applies the two phases; the first phase is the offline phase for storing the spatial information as the database, and the 

second is the signal measurement by an object to be localized by a localization algorithm or pattern matching algorithm. 

For our proposal, the detail of our fingerprint technique workflow is depicted in Figure 4. 

The known fingerprint location depicted in Figure 3 shown in the RSSI-based fingerprint technique in Figure 4 as 

the 𝐹𝑃 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1, 𝐹𝑃 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2, … , 𝐹𝑃 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑁 will collect the RSSI from the reference nodes 𝑖 to 𝑀, with 𝑖 =

1,2, … , 𝑀 as the 𝐹𝐷𝑖 , … . , 𝐹𝐷𝑀. After all, the fingerprint points and their corresponding RSSI values are stored in the 

database. The online phase is when the target calculates the RSSI values from the same 𝑖 to 𝑀 nodes and comparing to 

those in database by applying a pattern matching algorithm. In our proposal, we propose applying the minimum 

Euclidean distance (MED) algorithm to find the similarity between target parameter, 𝑇 and the 𝐹𝐷𝑖 , … . , 𝐹𝐷𝑀 in the 

database. Once the 𝑖𝑡ℎ  fingerprint database, which has similar RSSI values, is successfully concluded, the 

correspondence location of this 𝑖𝑡ℎ database, the 𝑖𝑡ℎ FP Location is estimated as the target or object location. 
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Figure 4. RSSI-based fingerprint technique. 

The fingerprint technique performance metrics, i.e., accuracy and precision, are heavily dependent on the quality of 

the database. One of the factors is the density of the database. However, there will be more burden processes in the 

offline phase to get a denser database. Some challenges and their prospective solutions can be seen in Figure 5. 

 

Figure 5. Challenges and prospective solutions of the fingerprint technique. 

Cutting down extensive surveys or the database's density improvement can be one of the solutions [39]. Some 

proposals on the propagation model-based database enhancement have a drawback in the high cost of the channel 

measurement device and measurement campaigns [40–42]. The other approaches are by using the image method in 

which the grayscale image of the image processing method is applied to convert the RSSI values in the area of interest 

[38]. The imaging method is promising but highly complex in the super-resolution image conversion from the RSSI to 

grayscale image conversion. The ML-based method for database augmentation has abundantly proposed, and because 

of the threshold in the number of data required in some ML techniques, the complexity is also high [22, 43, 44]. As far 

as the author is concerned, there are few, or there is no attempt yet in using the classical interpolation technique for this 

database synthesis. Therefore, this paper proposes utilizing the classical interpolation and regression technique with low 

complexity and achieving acceptable performance results. 

3- Material and Methods  

3-1- Wireless Sensor Networks (WSNs) using ZigBee Standard 

The ZigBee device, XBee-24ZB, is utilized for both the target and reference nodes in our WSNs setup. We apply the 

topology star for the localization system. Here, the sink node is the target located inside the area of interest, while the 

reference nodes are in the corners of the area of interest. Figure 6 shows the illustration of our WSNs based on ZigBee 

[17, 45]. 
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(a) (b) 

Figure 6. a) Topology star illustration, b) The RSSI acquiring process. 

The RSSI acquiring process starts with request from the sink node/target to the reference nodes. The reference nodes 

then get the RSSI packet request by sending back the RSSI from the XBee stack to the sink node. The sink node then 

translates the packet and store the RSSI values to the storing device/personal computer. 

3-2- Interpolation and Regression Technique 

The interpolation technique predicts a point or a value between two or more known points/values. The basic 

interpolation techniques are divided into linear and polynomial interpolation. The linear interpolation technique predicts 

the values between two points, while interpolation can predict specific points using several known data points. 

Bilinear Interpolation Teukolsky et al. [46] 

 Take example of a simple linear interpolation for two data points, 𝑦1 and 𝑦2, as in Figure 7. 

 

Figure 7. Linear interpolation illustration.  

The 𝑦 between 𝑦1 and 𝑦2 can be predicted as in Equation 2; 

𝑦 =
𝑥 − 𝑥1

𝑥2 − 𝑥1

(𝑦2 − 𝑦1) + 𝑦1 (2) 

 Bilinear interpolation extends a linear interpolation on two cartesian coordinate axes, the 𝑥-axis and the 𝑦-axis. 

Suppose there are 4 points (𝑥1, 𝑦1) , (𝑥2, 𝑦1), (𝑥2, 𝑦2), dan (𝑥1, 𝑦2), having functions of 𝑓(𝑥1, 𝑦1) , 𝑓(𝑥2, 𝑦1) , 

𝑓(𝑥2, 𝑦2), and 𝑓(𝑥1, 𝑦2). We can use these values to predict the 𝑓(𝑥, 𝑦) value at (𝑥, 𝑦) as illustrated in Figure 8.  

 

Figure 8. Bilinear interpolation illustration.  
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The value at (𝑥, 𝑦) can be predicted by first, we first interpolate the x-axis as 

𝑓(𝑥, 𝑦1) =
𝑥 − 𝑥1

𝑥2 − 𝑥1
(𝑓(𝑥2, 𝑦1) − 𝑓(𝑥1, 𝑦1)) + 𝑓(𝑥1, 𝑦1). (3) 

𝑓(𝑥, 𝑦2) =
𝑥−𝑥1

𝑥2−𝑥1
(𝑓(𝑥2, 𝑦2) − 𝑓(𝑥1, 𝑦2)) + 𝑓(𝑥1, 𝑦2). (4) 

Thus, by using Equations 3 and 4, we can the proceed to y-axis interpolation by Equation 5.  

(𝑥, 𝑦) =
𝑦−𝑦1

𝑦2−𝑦1
(𝑓(𝑥, 𝑦2) − 𝑓(𝑥, 𝑦1)) + 𝑓(𝑥, 𝑦1). (5) 

Polynomial Interpolation Kiusalaas (2013) [47] 

 If we have more than two data points, polynomial interpolation can predict the data points within the data range. 

Polynomial interpolation can also handle non-linear pattern data. Neville interpolation is one of the polynomial 

interpolation methods.  

 Predicted value within the data range can be obtained using general equation shown in Equation 6. 

𝑃𝑘[𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘] =
(𝑥−𝑥𝑖+𝑘)𝑃𝑘−1[𝑥𝑖,𝑥𝑖+1,…,𝑥𝑖+𝑘−1]+(𝑥𝑖−𝑥)𝑃𝑘−1[𝑥𝑖+1,𝑥𝑖+2,…,𝑥𝑖+𝑘]

𝑥𝑖−𝑥𝑖+𝑘
.  (6) 

We can solve the Equation 6 by using Neville Method Settlement detailed in Table 2 and 𝑘 is the degree of the 

polynomial equation. 

Table 2. Neville Method Settlement. 

 𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 

𝑥0 𝑃0[𝑥0] = 𝑦0 𝑃1[𝑥0,  𝑥1] 𝑃2[𝑥0,  𝑥1,  𝑥2] 𝑃3[𝑥0,  𝑥1,  𝑥2,  𝑥3] 

𝑥1 𝑃0[𝑥1] = 𝑦1 𝑃1[𝑥1,  𝑥2] 𝑃2[𝑥1,  𝑥2,  𝑥3]  

𝑥2 𝑃0[𝑥2] = 𝑦2 𝑃1[𝑥2,  𝑥3]   

𝑥3 𝑃0[𝑥3] = 𝑦3    

 There are three solution steps for solving the Neville interpolation. 

1. First step: Performing the interpolation of degree 1 by using the Equation 7. 

𝑃1[𝑥0,  𝑥1] =
(𝑥−𝑥1)𝑃0[𝑥0]+(𝑥0−𝑥)𝑃0[𝑥1]

𝑥0−𝑥1
. (7) 

2. Second step: Performing the interpolation of degree 2 by using the Equation 8. 

𝑃2𝑃2[𝑥0,  𝑥1,  𝑥2] =
(𝑥−𝑥2)𝑃1[𝑥0, 𝑥1]+(𝑥0−𝑥)𝑃1[𝑥1, 𝑥2]

𝑥0−𝑥2
. (8) 

3. Third step: Performing the interpolation of degree 3 by using the Equation 9. 

𝑃3𝑃3[𝑥0,  𝑥1,  𝑥2,  𝑥3] =
(𝑥−𝑥3)𝑃2[𝑥0, 𝑥1, 𝑥2]+(𝑥0−𝑥)𝑃2[𝑥1, 𝑥2, 𝑥3]

𝑥0−𝑥3
. (9) 

Polynomial Regression Ostertagová (2012) [48] 

 Polynomial regression is a multiple regression with one independent variable. In one variable polynomial 

regression equation shown as Equation 10, 𝑥 is expressed as an independent variable. 

𝑦 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 + ⋯ + 𝑎𝑛𝑥𝑖

𝑘 + 𝑒𝑖, 𝑖 = 1, 2, … , 𝑘. (10) 

3-3- Pattern Matching and Performance Metrics 

We applied a simple Minimum Euclidean Distance (MED) to match the RSSI of the target with those in the database. 

To validate our localization system's accuracy, we used average distance error (ADE) from all errors of target positions 

in each scenario, both for 2D and 3D environments [5]. Nevertheless, first, we evaluate the RSSI error value between 

the actual and predicted RSSI form interpolation and regression techniques by Equation 11. This error will be presented 

in the results and discussion for only 2D, as the RSSI maps from 2D will be easier to interpret. The absolute symbol 
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shows the RSSI discrepancy on the values (because RSSI in dBm is in a negative form). The RSSI error is considered 

in some points of the 2D fingerprint database to ensure that the proposed method is visible to apply by observing these 

errors. 

𝑅𝑆𝑆𝐼 𝑒𝑟𝑟𝑜𝑟 (𝑑𝐵𝑚) = |𝑅𝑆𝑆𝐼 𝑣𝑎𝑙𝑢𝑒(𝑑𝐵𝑚)𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑅𝑆𝑆𝐼 𝑣𝑎𝑙𝑢𝑒(𝑑𝐵𝑚)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|. (11) 

MED as pattern matching utilizes the Euclidean distance to measure the distance from two points; in our case, the 

Euclidean distance is the distance of RSSI values in the database and RSSI values of the target. The tiniest error or the 

minimum error of RSSI by their Euclidean distance for specific fingerprint location is assigned as the target's location.  

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚) = √(𝑅𝑆𝑆𝐼𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 − 𝑅𝑆𝑆𝐼𝑡𝑎𝑟𝑔𝑒𝑡)
2
. (12) 

After we obtain the predicted location based on the similarity of the target and database by the MED, we evaluate 

the accuracy by the error in the meter of the predicted and the actual target location. Thus, the system's performance 

metric in our proposal is how the error of the target location prediction, 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝑦
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

, is compared to the actual 

target location, 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑦
𝑎𝑐𝑡𝑢𝑎𝑙

. Suppose there are 𝐿 number of target locations, we utilized ADE as the performance 

metric, the mean value of all Euclidean distances for all target locations. If the position of the target node as 𝑖 =
1,2, … . , 𝐿, we can express the ADE as in Equation 13 [49].  

𝐴𝐷𝐸 =
1

𝐿
 ∑ √(𝑥𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2
+ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2
𝐿

𝑖=1

 (13) 

3-4- Methodology Flow Diagram 

We design the measurement by applying wireless sensor networks (WSNs)-based data collection. For the flow 

diagram, we divide into two flows; first flow is an interpolation confirmation step where some of the database points 

are replaced by the interpolated RSSI values, and the second flow is the interpolation implementation step where the 

synthetic database from interpolation and regression are combined and evaluated by the localization performance. We 

start with the confirmation step, where the preparation is to design the measurement for two-dimensional (2D) and three-

dimensional (3D) environments, including how we propose the grids of fingerprint and target locations in the area of 

interest.  

 

Figure 9. Flowchart of the research Methodology. 

The RSSI data acquisition step uses the personal computer connected to the sink node (acts as the target node) and 

follows the star topology. We obtained the actual RSSI and stored it as the fingerprint database. The next step is to do 
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interpolation in the same grid points as the substituted database to ensure the feasibility of using the interpolated data. 

After confirmation, the second flow uses the actual RSSI values for the database. We applied classical interpolation and 

regression methods to augment the denser data. We combine the actual and the synthetic database, then evaluate the 

localization results using the substituted RSSI in some points between and outside (in the case of the 3D environment) 

of the fingerprint database. The primary step is to make the database denser by applying interpolation and regression as 

our proposal. We evaluate and compare the localization results for interpolation and regression techniques for the 

synthetic database as we have the denser database. We discuss the results and conclude what we find. 

3-5- Measurement Campaign 

We consider the two 2D and 3D environments for indoor localization system deployment. The first environment is 

the lobby environment in our department, and we consider only a 2D scenario. For the 3D environment, we simulate the 

actual multi-story building by using a 4-level bookshelf for elevation parameters. The ZigBee devices are configured as 

reference nodes and target nodes; both acted as transceivers and were configured as a star topology.  

The 2D Measurement Campaign 

We conducted a measurement campaign for the 2D environment in the lobby of our building for a 5 × 5 m2 area of 

interest. The layout and the actual setup of the measurement campaign for the 2D case are shown in Figure 8. We 

consider using four reference nodes in a 2D environment; this selection assumes that each reference node will be located 

in each corner of the rectangular shape measurement area. Thus, the interpolation techniques will likely have a better 

linear relationship between each reference node and its corresponding distance. We have applied more reference nodes 

for fingerprint-based in the same measurement area and can be found in [50–52]. Some results suggested that more 

reference nodes yield better accuracy (scalability). However, our previous publications do not consider interpolation 

techniques. 

  

(a) (b) 

Figure 8. 2D area of interest measurement campaign, a) layout illustration, and b) actual setup.  

The four reference nodes are deployed in each rectangular shape's corner, as depicted in Figure 8. The measurement 

grid is 1×1 m2; we have 36 fingerprint locations measurement for the database construction in 5×5 m2 area of interest. 

The measurement area size has been validated since the RSSI values from the XBee-24ZB device are best in under 8-

9m. The 5×5 m2 is still relatively line-of-sight for the lobby itself to support our approach to ensure that the relationship 

between signal strength and distance is log-loss or linearly decreased. The interpolation techniques need the linear 

relationship, which is the distance vs. signal strength. ZigBee standard works in the center frequency of 2.4 GHz, the 

same band with Wi-Fi. To minimize the interference between signals, we turned off all Wi-Fi access points in the 

measurement area while doing the measurement. The target node is statically placed inside the area of interest. Some 

positions are the same positions with the fingerprint locations to ensure the quality of the database, some others between 

two or in the center of four fingerprint locations. The detail of target locations and target type position is shown in Figure 

9. 

The diagonally, vertically, and horizontally placement are considered because of the placement of four reference 

nodes shown in Figure 8a. The effects of the distance and orientation of the target with the reference nodes can be 

explored by these target positions setup. 
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     (a)        (b) 

  

 (c)     (d) 

Figure 9. Target types’ position, a) type 1, b) type 2, c) type 3, d) type 4.  

The 3D Measurement Campaign 

To simulate the multi-story building with different levels/floors, we used a four-level wooden bookshelf. We also 

considered three scenarios in this 3D environment; clean environment, human body effects, and interference objects of 

books. The body effect is considered by a standing person in 1m distance from the bookshelf. The bookshelf's 

dimensions are 92 × 25 × 152 cm3 and the detailed dimension and illustration are depicted in Figure 10. 

 

Figure 10. The illustration of a 3D environment in a bookshelf.  

The fingerprint node (FP node) and target node can be illustrated in Figure 11. Unlike in the 2D environment, in the 

3D environment, we employed six reference nodes. This selection ensures that the elevation properties are well 

represented as the XBee antenna directional pattern is more horizontally shaped. Moreover, we have only six reference 

nodes in the dataset's measurement setup and have not yet published the approach.  The target, 𝑇 is placed in the different 

levels of the bookshelf statically. 
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(a) (b) 

Figure 11. The illustration of a 3D environment in a bookshelf, a) fingerprint position and b) target position.  

  

Figure 12. The real setup of 3D environment in a bookshelf.  

The 12 FP node locations are used to collect the RSSI values for the fingerprint database. Similar to the 2D 

environment, here, we also use XBee-24ZB as the core of the system. The fingerprint grid size is 22×12.5×35 cm3, for 

length, width, and elevation. The total target node position is 16, located between the FP nodes or near the reference 

nodes. Figure 12 shows the actual placement of XBee-24ZB for the 3D environment setup. The coordinate of fingerprint 

and target position in the 3D environment is presented in Table 4. 

Table 3. 3D fingerprint and target coordinate. 

Fingerprint Node Coordinate (x, y, z) Target Node Coordinate (x, y, z) 

1. 22 cm, 12.5 cm, 105 cm 1. 11 cm, 12.5 cm, 105 cm 

2. 44 cm, 12.5 cm, 105 cm 2. 33 cm, 12.5 cm, 105 cm 

3. 66 cm, 12.5 cm, 105 cm 3. 55 cm, 12.5 cm, 105 cm 

4. 22 cm, 12.5 cm, 70 cm 4. 77 cm, 12.5 cm, 150 cm 

5. 44 cm, 12.5 cm, 70 cm 5. 11 cm, 12.5 cm, 70 cm 

6. 66 cm, 12.5 cm, 70 cm 6. 33 cm, 12.5 cm, 70 cm 

7. 22 cm, 12.5 cm, 35 cm 7. 55 cm, 12.5 cm, 70 cm 

8. 44 cm, 12.5 cm, 35 cm 8. 77 cm, 12.5 cm, 70 cm 

9. 66 cm, 12.5 cm, 35 cm 9. 11 cm, 12.5 cm, 35 cm 

10. 22 cm, 12.5 cm, 0 cm 10. 33 cm, 12.5 cm, 35 cm 

11. 44 cm, 12.5 cm, 0 cm 11. 55 cm, 12.5 cm, 35 cm 

12. 66 cm, 12.5 cm, 0 cm 12. 77 cm, 12.5 cm, 35 cm 

- - 13. 11 cm, 12.5 cm, 0 cm 

- - 14. 33 cm, 12.5 cm, 0 cm 

- - 15. 55 cm, 12.5 cm, 0 cm 

- - 16. 77 cm, 12.5 cm, 0 cm 



Emerging Science Journal | Vol. 4, Special Issue "IoT, IoV, and Blockchain", (2020, 2021) 

Page | 179 

3-6- Database Enhancement 

We offer database enhancement by constructing a synthetic database to tackle sparsity. 

The 2D Measurement Database Enhancement 

Some data at measured RSSI database or we called as fingerprint are omitted and replaced with artificial data 

according to Figure 13. The blue dots represent the measurement data, and the point other than the blue dots are the 

points where the data was replaced. From the blue dots, we created the synthetic data. The red dots are reproduced from 

interpolation or regression using the blue dots on the x-axis. While green dots were created using blue dots on the y-

axis. Last step, artificial data in orange dots were made using the green ones. Later, we order these artificial data as 

bottom to top rows, left to right columns, e.g., the first red dot in the bottom grid is in the first order (1,0), continue to 

the second red dot as (4,0). Move to the upper row; the green dot is in order three as (0,1), then continue to order 20 as 

a red dot in (4,5). The artificial data order and coordinate can be summarized in Table 3. In the next step, we added 

artificial data into the measurement database to have a new database with a 0.5 × 0.5 m2 grid database from the 

fingerprint database that we created using bilinear interpolation, polynomial regression, and polynomial interpolation 

and named as fp+intBil_db, fp+regPoly, and fp+intPoly_db. The method to make the database denser is applied based 

on the authors' works in [53, 54]. 

(a)  (b)  

(c)  

Figure 13. Database: a) Actual, b) Replacement scheme in 1 × 1 m2, c) Synthetic database for 0.5 × 0.5 m2.  

Table 4. Data Replacement Order. 

Order No. 
Coordinate 

Order No. 
Coordinate 

𝒙 𝒚 𝒙 𝒚 

1. 1 0 11. 1 3 

2. 4 0 12. 4 3 

3. 0 1 13. 0 4 

4. 1 1 14. 1 4 

5. 2 1 15. 2 4 

6. 3 1 16. 3 4 

7. 4 1 17. 4 4 

8. 5 1 18. 5 4 

9. 1 2 19. 1 5 

10. 4 2 20. 4 5 
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The 3D Measurement Database Enhancement 

The 3D measurement database enhancement was applying interpolation and regression to generate artificial data 

between or within the measured data range; we also created new data outside the range or what we call extrapolation in 

positions 1, 4, 5, 8, 9, 12, 13, 16 according to Figure 11 b.  

4- Results and Discussions 

4-1- 2D Environment 

We present the results by using Average Distance Error (ADE) comparison of bilinear interpolation, polynomial 

interpolation, and polynomial regression for replacement and enhancement data schemes applied as fingerprint 

databases. 

RSSI Data Replacement  

We examined the discrepancy values between prediction results and the actual RSSI measurements for all reference 

nodes (four). This RSSI discrepancy is only observed in the replacement order in Table 3. We evaluated the RSSI values 

predicted results; data is presented in the form of the difference between the data created using polynomial interpolation, 

polynomial regression, and bilinear interpolation on the RSSI value of the measurement results. Figure 15 showed that 

the highest error value is at order no. 14, with an error from the polynomial interpolation is 5.97 dBm. This result shows 

a high difference compared to the error from polynomial regression and bilinear interpolation, with 2.44 dBm and 2.20 

dBm, respectively. This result is also the highest among all RSSI prediction error data from reference node 1. While the 

slightest error is generated at point 11 using the polynomial interpolation method with an error value of 0.00 dBm. 

 

Figure 15. RSSI values error for reference node 1. 

Figure 16 shows the RSSI heatmap comparison for reference node 1. It shows the gradation of the RSSI values as 

the brighter color refers to the highest RSSI, and the darker color is the low RSSI values. The average RSSI means from 

the five-time measurement we took the mean value. For interpolation and regression, it was applied to each measurement 

dataset and also took the average values. Figure 16 also shows the similarity pattern between measured RSSI and bilinear 

interpolation results. On the other hand, polynomial interpolation results are more scattered than the measurement. The 

results also confirmed the RSSI error discrepancy that is relatively high for polynomial interpolation, as observed in 

Figure 15.  
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(a) (b) 

  
(c) (d) 

Figure 16. RSSI heatmap reference node 1: a) Bilinear inter., b) Polynomial reg., c) Polynomial inter., d) Measurement. 

Figure 17 shows the RSSI values discrepancy for reference node 2. It shows that the majority of the RSSI values 

prediction using the polynomial interpolation produces a more significant error than polynomial regression and bilinear 

interpolation. The most significant prediction errors are at orders 11, 14, and 15, with 3.27 dBm, 3.83 dBm, and 4.44 

dBm. On the other hand, the polynomial regression method produces the most significant errors at orders 9, 12, and 19, 

with each point having errors of 2.38 dBm, 2.73 dBm, and 3.14 dBm, respectively. At the same time, the most negligible 

error results in the prediction of RSSI values using polynomial interpolation, polynomial regression, and bilinear 

interpolation are 0.09 dBm, 0.02 dBm, and 0.10 dBm. Figure 18 depicts the RSSI heatmap comparison for reference 

node 2. The brighter colour gradation is origin from the bottom right as the reference node two positions in the 

measurement. 

 

Figure 17. RSSI values error for reference node 2  
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 (a) (b) 

  

(c)   (d) 

Figure 18. RSSI heatmap reference node 2. a) Bilinear inter., b) Polynomial reg., c) Polynomial inter., d) Measurement 

Figure 19 shows the RSSI error values discrepancy comparison between the three proposed methods and actual RSSI 

values from measurement. We found that the most significant errors are at orders 2, 8, and 18, where the replacement 

of RSSI values using the polynomial interpolation method produces errors of 3.89 dBm, 4.53 dBm, and 3.47 dBm. In 

reference node 3, the minor RSSI error from polynomial interpolation, polynomial regression, and bilinear interpolation 

are 0.06 dBm, 0.08 dBm, and 0.10 dBm. Overall, the mean RSSI prediction error using polynomial interpolation, 

polynomial regression, and bilinear interpolation methods are 1.81 dBm, 0.95 dBm, and 0.81 dBm, respectively. To 

observe the precise RSSI values distribution, Figure 20 shows the RSSI heatmap comparison for reference node three, 

and the brighter to darker color gradation originates from the upper left (the position of reference node 3 in 

measurement). 

 

Figure 19. RSSI values error for reference node 3  
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(a) (b) 

  

(c) (d) 

Figure 20. RSSI heatmap reference node 3. a) Bilinear inter., b) Polynomial reg., c) Polynomial inter., d) Measurement 

The RSSI values discrepancy from three methods compared to the measurement for the reference node four is shown 

in Figure 21. The results also show that polynomial interpolation produces the most significant error with the largest 

error at the first order with an error value of 5.11 dBm. In comparison, the polynomial regression method and bilinear 

interpolation at the same point resulted in an error of 2.92 dBm and 3.90 dBm, respectively. By implementing 

polynomial interpolation, polynomial regression, and bilinear interpolation methods, the mean RSSI prediction error is 

1.74 dBm, 1.16 dBm, and 1.04 dBm, respectively. From these results, we can conclude that the bilinear interpolation 

performed relatively better than polynomial interpolation and regression. Figure 22 shows the RSSI heatmap comparison 

for reference node 4. 

 

Figure 21. RSSI values error for reference node 4  
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(a)   (b)  

(c)   (d)  

Figure 22. RSSI heatmap reference node 4. a) Bilinear inter., b) Polynomial reg., c) Polynomial inter., d) Measurement 

Localization Results  

The synthetic fingerprint databases are labelled as and fp+intBil_db, fp+regPoly_db, fp+intPoly_db, for bilinear 

interpolation, regression polynomial, and polynomial interpolation, respectively. For 2D environment, we consider the 

4 types of target position namely as target type 1–4. We compare the localization results, fp+intBil_db, fp+regPoly_db, 

fp+intPoly_db databases with the actual measured fingerprint database, fp_meas_db. For the target types 1-4, the 

comparison of ADE results can be seen in Figure 23. The database used in the positioning results is illustrated in Figure 

14. By implementing polynomial interpolation, polynomial regression, and bilinear interpolation methods, new data is 

added so that a database is formed with the amount of data at points where the RSSI value is not measured. The new 

database is then labelled as fp+intPoly_db, fp+regPoly_db, and fp+intBil_db. The three databases are then compared 

with the fp_meas_db database. 

(a)  (b)  

(c)  (d)  

Figure 23. Localization results comparison, a) target type 1, b) target type 2, c) target type 3, and d) target type 4.
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For target type 1 in Figure 23.a)., the ADE values obtained using fp+intBil_db, fp+regPoly_db, fp+intPoly_db, and 

fp_meas_db are 0.29 m, 0.34 m, 0.35 m and 0.39, respectively. These results show that applying all the interpolation 

and regression techniques can reduce the average error of 0.1m in the target type 1 scenario. The database scarcity, or 

in other words, by reducing the number of database size in the offline database and we compensated with the classical 

interpolation and regression technique, has been proven to improve the localization performance.  

For target type 2, the ADE values obtained using fp+intBil_db, fp+regPoly_db, fp+intPoly_db, and fp_meas_db are 

0.42, 0.48, 0.72, and 0.57 m as shown in Figure 23.b). Positioning results with reduced lattice size database using 

polynomial interpolation method resulted in higher ADE values with an increase of 0.15 m. Meanwhile, polynomial 

regression and bilinear interpolation reduced ADE by 0.09 and 0.15 m, respectively. 

For the horizontal movement of target type 3, the positioning results using fp+intBil_db, fp+regPoly_db, 

fp+intPoly_db, and fp_meas_db is shown in Figure 23.c). Only fp+intPoly_db obtained the less accurate results 

compared to fp+regPoly_db, and fp+intBil_db. The 0.2 m error improvement was achieved by the fp+intBil_db, which 

so far achieved the best results. The last scenario is the target type 4 in the vertical movement. Figure 23.d) shows the 

results of improvement by all types of the additional database; fp+intBil_db, fp+regPoly_db, and fp+intPoly_db. These 

results proved that the interpolation and regression for enhancing the database by adding the artificial points between 

actual measurement points were successfully implemented and validated.  

We would like to explore how the RSSI values from 4 reference nodes are placed in each corner of the rectangular 

shape measurement area by selecting these four target position types. In target types 1 and 2, the diagonal is easier to 

imagine that the gradation of the RSSI values will follow the diagonal line. However, as the position is somehow in the 

middle of the area of interest for horizontal and vertical target type positions, it is expected to make the estimation more 

prone to error, as observed in Figures 23.c and 23.d. 

4-2- 3D Environment 

Unlike 2D environment, results for the 3D environment were analyzed and validated by considering three types of 

scenarios in the bookshelf; the first scenario is a clean environment when there is no obstruction objects on the bookshelf, 

the second scenario, during the measurement campaign, the first author standing close to the bookshelf (0.5 m) facing 

front. The third scenario is to place books and other stationaries between the reference nodes in every level of the 

bookshelf having the reference nodes. We expected that by putting a kind of 'noise' in our measurement, we could 

observe the improvement when applying the interpolation and regression technique. Fingerprint databases generated 

from the replacement of measurement data are also labeled as fp+intBil_db, fp+regPoly_db, fp+intPoly_db, and 

fp_meas_db for bilinear interpolation, polynomial regression, polynomial interpolation, and actual fingerprint database, 

respectively. These techniques not only augment the data inside the data range but are also used to generate data outside 

the range (i.e., extrapolation). Figure 24 shows the results for three scenarios in the 3D environment. 

   

(a) (b) (c) 

Figure 24. Localization results comparison, a) clean environment, b) human body effects, c) furniture/book effects  

A clean environment can also be called ideal conditions that we set up without any obstacles in the area of interest. 

We observe that all enhancement methods can reduce ADE compared to actual fingerprints in this condition. Data 

quantity enhancement using bilinear interpolation has the most significant ADE reduction. Polynomial interpolation and 

regression have the same results as shown in Figure 24.a). In the human body effects scenario, we can observe that the 

localization results were less accurate than the clean environment.  

For human body effects, an approach of interpolation applying Kriging for wireless body area network (WBAN) 

indoor localization has been proposed in [55]. Kriging is a mechanism to predict spatial information for estimating a 

value at a specific location using actual locations. The paper discussed the possibility of implementing Kriging 

interpolation to the constructed artificial database and found that by Kriged fingerprint, the accuracy is improved. In this 

paper, we did not analyze the propagation mechanism. However, we expect that a person standing near the bookshelf 

will likely affect the localization results. From Figure 24.b), there was a slightly added measured error for 3~8 cm. 

Polynomial interpolation and regression achieved the same result, but they were less accurate than the actual 

measurement fingerprint data. Bilinear interpolation has a very tiny accuracy margin better than measurement fingerprint 

database.  
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For the furniture effects scenario, all enhancement methods can reduce ADE almost twice than using measurement 

fingerprint data. In other case studies, positioning results using polynomial interpolation and regression gave the same 

results in furniture obstacles. The bilinear interpolation always gave the minor error position. The object's existence 

between reference nodes created shadowing effects that even the synthesis database cannot handle. From these results, 

we can conclude that in the 3D cases, the signal obstruction in the horizontal direction affected the localization results 

because of the random signal fluctuation. Table 5 compares the results between our proposal and other studies. We 

emphasized the interpolation technique, the environment, and the performance metric. 

Table 5. Performance Comparison with Other studies. 

No. 
Indoor 

Localization 

Parameter and 

Technology 
Techniques Environment Performance Metric 

1. 
The proposed 

method 
RSSI, ZigBee 

Bilinear, polynomial and 

polynomial regression 

Real environment: 2D 

and 3D 

Interpolation reduces estimated error 

up to 0.2m for 2D and 0.13m for 3D. 

2. 
Jingxue Bi, et.al. 

[33] 
RSSI, Wi-Fi 

Crowdsourcing and 

interpolation 

Real environment: total 

3200 m2 area. 

Improving the accuracy results up to 

20% manual fingerprint, by using only 

25% reference points. 

3. 
Yanwei Li, et.al. 

[32] 
RSSI, Wi-Fi 

Classic narrowband path 

loss model 
Dataset from [56] 

Refined map with size 0.75×0.75 m2 

(grid) improve accuracy up to 63% 

from 3.6164 m to 1.3294 m 

4. 
Julie Yixuan 

Zhu, et.al. [34] 
RSSI, Wi-Fi 

Spatio-temporal (S-T) 

similarity model which 

Real environment, area 

of 36×18 m2 

By using the proposed method, the 

improvement in interpolation and 

positioning accuracy up to 7% and 

32%, respectively. 

5. 
Yongliang Sun, 

et.al. [35] 
RSSI, Wi-Fi 

Fuzzy-C-Means and 

interpolation 

Rectangle area with 

dimensions 51.6×20.4 

m2 

Localization results using kNN 

fingerprinting yield improvement 

0.23m 

6. 
V. Moghtadaiee, 

et.al. 
RSSI, Wi-Fi 

New interpolation method, 

zone-based Weighted 

Ring-based (WRB). 

2D assumption: 51×18 

m2 

Decreases the error (up to 57%) 

between the measured and 

reconstructed RSSI values. 

The previous publications, mainly Wi-Fi-based RSSI as the Wi-Fi is more popular. However, if considering IoT-

based indoor localization, we select the ZigBee standard devices in our case. The techniques and methods mentioned in 

Table 5 can vary from linear interpolation to path loss model-based RSSI data reconstruction. Most of the results of 

these publications and our proposed method can reduce the localization errors.  

5- Conclusions 

The database enhancement by applying interpolation and regression techniques to tackle one of the drawbacks of the 

fingerprint technique is presented. The actual measurement campaign in 2D and 3D environments was conducted, and 

RSSI values were used for the database fingerprint for both environments. We used a device for measurement based on 

IoT technology which cost-effective and straightforward implementation of ZigBee standards. The WSNs-based indoor 

localization is built and validated by some scenarios; the four target type placements, namely diagonal positions both 

left and right, the horizontal and vertical position for the 2D environment, while three scenarios tested 3D environment; 

clean, human body effects, and furniture effects. From all scenarios, almost all results agreed that enhancing the database 

to expand the database grids by artificial data can reduce localization prediction error. From all scenarios, the simple 

bilinear interpolation stood out as the best accuracy performance. For the 2D environment, it can reduce to 0.2 m error, 

and 0.13 m for the 3D environment, which is in this environment the grid size is 0.22 m (22 cm). The performance 

improvement by replacing and adding the synthesis or artificial database can facilitate actual implementation. Thus, the 

sparsity issues in the fingerprint database can be tackled, and the offline database construction will be less burden. 

Our research interest is in fingerprint database enhancement; for the next step, we consider applying machine or deep 

learning-based both supervised and unsupervised learning, both offline and online phase to increase the performance 

metric of indoor localization system and its flexibility and adaptability in the dynamic indoor environment.  
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