
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 6, No. 1, February, 2022 

 

 

Page | 151 

 

Expected Values of Molecular Descriptors in Random        

Polyphenyl Chains 
 

Zahid Raza 1*, Kiran Naz 2, Sarfraz Ahmad 2 

1 Department of Mathematics, College of Sciences, University of Sharjah, UAE. 

2 Department of Mathematics, COMSATS University Islamabad, Lahore Campus Pakistan. 

 

 

Abstract 

A chemical graph is a model used to indicate a chemical combination. In a molecular graph, 

vertices define atoms, and edges are represented as chemical bonds. A topological index is a single 

number to characterize the graph of a molecule. In this article, we study the topological properties 

of some special chains. The polyphenyl chains with hexagons are graphs of aromatic organic 

compounds. The key purpose of this article is to explore the expected value of Sombor, reduced 

Sombor, and average Sombor index for this category of organic compounds. It was investigated 

that the Sombor, reduced Sombor and average Sombor index revealed adequate discriminative 

potential of alkanes. It has been tested that these indicators can be used effectively in modeling 

chemical thermodynamic structures. The average value of the Sombor, reduced Sombor, and 

average Sombor index for the set of all spiro and random polyphenyl chains has been determined. 

Finally, the ratio between the expected values of these mentioned indices for both random chains 

has been resolved. 
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1- Introduction 

Aromatic organic compounds are main building blocks for many natural and synthetic chemical compounds as well 

as constituents of petrochemicals. Topological index was first created in 1971 by Hossoya. The simplest topological 

index does not acknowledge double bonds in hydrocarbons. Polycyclic aromatic hydrocarbons are well studied and 

much explored chemicals in food. Polyphenols are plant defense system (secondary metabolites) originate in 

vegetables, fruits and seeds. Polyphenols have diversity in their chemical structure along with a wide range in their 

properties and applications like as natural antioxidants, cardiovascular inflammatory, and neurodegenerative diseases, 

food supplements, pharmaceutical and cosmetic additive. These days, there are many topological indicators [1], some 

of which are incorporated into chemistry. They can be distinguished by the structure of the graphs used for their 

calculation. For example, there is a Hosoya index, which is calculated by counting non-incident edges on a graph. In 

addition, the Estrada index is based on graph width, the Randić link index, and the Zagreb group indicators are 

calculated using degrees of vertices, etc. Topological indices have many applications in QSPR/QSAR research. The 

degree based topological index play an important part in chemical graph theory. The Sombor index [2-4] family was 

introduced by Gutman with a view to a chemical graph. In this article we are concerned about Sombor's index of 

chemical graphs. Topological indices are related to vertex adjacency or the topological distances in a graph. Wiener 

index [5-7] is the first topological index, which is equal to the sum of all distances between the vertices. In this article, 

we will compute the topological index like 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔. The 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑 and 𝑆𝑂𝑎𝑣𝑔 [8] are defined as: 
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SO(G) = ∑ √deg(vi)
2 + deg(vj)

2
ei,jϵE(G)   (1) 

SOred(G) = ∑ √deg((vi) − 1)
2

+ deg ((vj) − 1)
2

ei,jϵE(G)   (2) 

SOavg(G) = ∑ √(deg(vi) −
2m

n
)

2

+ (deg(vj) −
2m

n
)

2

ei,jϵE(G)   (3) 

where m denotes the number of edges and n denotes the number of vertices. Let us consider hexagons 

ħ_1,ħ_2,ħ_3,….,ħ_k. We can get a Polyphenyl chains (Ŕ𝑃𝐶) by adding an edge to each pair of successive hexagons 

[9]. Since two successive hexagons can be attached by three different schemes as shown in Figure 1. For k>2, random 

Polyphenyl chains (Ŕ𝑃𝐶𝑘) may not be unique. The three types of order denoted by Ŕ𝑃𝐶𝑘
1, Ŕ𝑃𝐶𝑘

2, and Ŕ𝑃𝐶𝑘
3. Let us 

associate the probabilities ζ1, ζ2 and 1 − ζ1 − ζ2 for acquiring Ŕ𝑃𝐶𝑘
1, Ŕ𝑃𝐶𝑘

2, and Ŕ𝑃𝐶𝑘
3. 

 

Figure 1. Polyphenyl Chains 

If we squeeze each bridge between successive hexagons in (Ŕ𝑃𝐶𝑘), after that we will get a spiro-chain which is 

symbolized by (Ŕ𝑃𝐶𝑘). For 𝑘 > 2, spiro chain [6, 10, 11] is not unique and has following three arrangements as 

shown in Figure 2, denoted by Ŕ𝑃𝐶𝑘
1, Ŕ𝑃𝐶𝑘

2, and Ŕ𝑃𝐶𝑘
3. Let us link the probabilities ζ1, ζ2 and 1 − ζ1 − ζ2 for 

acquiring Ŕ𝑃𝐶𝑘
1, Ŕ𝑃𝐶𝑘

2, and Ŕ𝑃𝐶𝑘
3. 

 

Figure 2. Spiro Chain 

2- Sombor, Reduced Sombor and Average Sombor in Random Polyphenyl Chains 

In this part, we examine the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 in the random Polyphenyl chains Ŕ𝑃𝐶𝑘 Let Ŕ𝑃𝐶𝑘  be the poly-

phenyl chain [12] obtained by Ŕ𝑃𝐶𝑘−1. Clearly, there are only (2,2), (2,3) and (3,3) − edges in Ŕ𝑃𝐶𝑘 By using the 

Equations 1 and 2 and Equation 3 in random Polyphenyl chains [13] we have the following equations: 

SO(ŔPCk) = 2√2ω22(ŔPCk) + √13ω23(ŔPCk) + 3√2ω33(ŔPCk)  (4) 

SOred(ŔPCk) = √2ω22(ŔPCk) + √5ω23(ŔPCk) + 2√2ω33(ŔPCk)  (5) 

SOavg(ŔPCk) = √2 (
k−1

3k
) ω22(ŔPCk) +

√5k2+2k+2

3k
ω23(ŔPCk) + √2 (

2k+1

3k
) ω33(ŔPCk)  (6) 



Emerging Science Journal | Vol. 6, No. 1 

Page | 153 

Thus, to find the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 of  Ŕ𝑃𝐶𝑘, we just need to evaluate the ω22(Ŕ𝑃𝐶𝑘), ω23(Ŕ𝑃𝐶𝑘) and 

ω23(Ŕ𝑃𝐶𝑘). Since Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2) is a random Polyphenyl chains. So, 𝑆𝑂 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2)) , 𝑆𝑂𝑟𝑒𝑑 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2))  

and 𝑆𝑂𝑎𝑣𝑔 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2)) are also arbitrary variables. We symbolize the anticipated values of given indices by 

𝐸𝑘
𝑆𝑂 = 𝐸𝑆𝑂 [𝑆𝑂 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2))] , 𝐸𝑘

𝑟𝑒𝑑 = 𝐸𝑟𝑒𝑑 [𝑆𝑂 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2))] and 𝐸𝑘
𝑎𝑣𝑔

= 𝐸𝑎𝑣𝑔 [𝑆𝑂 (Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2))] respectively. 

2-1-Theorem 

Let Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2) be an arbitrary Polyphenyl chains of length 𝑘, where 𝑘 ≥ 2. Then: 

Ek
SO = [(5√2 − 2√13)ζ1 + (7√2 + 4√13)]k − (10√2 − 4√13)ζ1 + (5√2 − 4√13)  

Proof: For 𝑘 = 2, we have 𝐸2
𝑆𝑂 = 19√2 + 4√13.  Now, when 𝑘 ≥ 2, it is obvious that ω22, ω23 and ω33 depend 

on the following three cases: 

1. If  Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
1 with probability ζ1 

ω22(ŔPCk
1) = ω22(ŔPCk−1) + 3  

ω23(ŔPCk
1) = ω23(ŔPCk−1) + 2  

ω33(ŔPCk
1) = ω33(ŔPCk−1) + 2  

by using Equation 4, we have: 

SO(ŔPCk
1) = SO(ŔPCk−1) + 12√2 + 2√13 

2. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
2 with probability ζ2 

ω22(Ŕ𝑃𝐶𝑘
2) = ω22(Ŕ𝑃𝐶𝑘−1) + 2 

ω23(Ŕ𝑃𝐶𝑘
2) = ω23(Ŕ𝑃𝐶𝑘−1) + 4 

ω33(Ŕ𝑃𝐶𝑘
2) = ω33(Ŕ𝑃𝐶𝑘−1) + 1 

by using Equation 4, we have: 

SO(ŔPCk
2) = SO(ŔPCk−1) + 7√2 + 4√13 

3. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
3 with probability 1 − ζ1−ζ2 

ω22(ŔPCk
3) = ω22(ŔPCk−1) + 2 

ω23(ŔPCk
3) = ω23(ŔPCk−1) + 4 

ω33(ŔPCk
3) = ω33(ŔPCk−1) + 1 

by using Equation 4, we have: 

SO(ŔPCk
3) = SO(ŔPCk−1) + 7√2 + 4√13 

Thus: 

Ek
SO = ζ1SO(ŔPCk

1) + ζ2SO(ŔPCk
2) + (1 − ζ1 − ζ2)SO(ŔPCk

3) 

Ek
SO = ζ1SO(ŔPCk−1) + (12√2 + 2√13)ζ1 + ζ2SO(ŔPCk−1) + (7√2 + 4√13)ζ2 + (1 − ζ1 − ζ2)SO(ŔPCk

3) +

(1 − ζ1 − ζ2)(12√2 + 2√13)  

Ek
SO = SO(ŔPCk−1) + (5√2 − 2√13)ζ1 + (7√2 + 4√13) (7) 

Since 𝐸[𝐸𝑘]𝑆𝑂 = 𝐸𝑘
𝑆𝑂 so apply the operator 𝐸 on Equation 7, we get: 

Ek
SO = Ek−1

SO + (5√2 − 2√13)ζ1 + (7√2 + 4√13),     k > 2 (8) 

and after solving the recurrence relation in Equation 8 with 𝐸2
𝑆𝑂 = 19√2 + 4√13,  we get 

Ek
SO = [(5√2 − 2√13)ζ1 + (7√2 + 4√13)]k − (10√2 − 4√13)ζ1 + (5√2 − 4√13). 

2-2-Theorem 

Let Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2) be an arbitrary Polyphenyl chains of length 𝑘, where 𝑘 ≥ 2. Then 

Ek
red = [(3√2 − 2√5)ζ1 + (4√2 + 4√5)]k − (6√2 − 4√5)ζ1 + (2√2 − 4√5). 
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Proof: For 𝑘 = 2, we have 𝐸2
𝑟𝑒𝑑 = 10√2 + 4√5. Now, when 𝑘 ≥ 3, it is obvious that ω22, ω23 and ω33 depend on 

the following three cases: 

If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
1 with probability ζ1 

ω22(ŔPCk
1) = ω22(ŔPCk−1) + 3 

ω23(ŔPCk
1) = ω23(ŔPCk−1) + 2 

ω33(ŔPCk
1) = ω33(ŔPCk−1) + 2 

by using Equation 5, we have: 

SOred(ŔPCk
1) = SOred(ŔPCk−1) + 7√2 + 2√5 

1. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
2 with probability ζ2 

ω22(Ŕ𝑃𝐶𝑘
2) = ω22(Ŕ𝑃𝐶𝑘−1) + 2 

ω23(Ŕ𝑃𝐶𝑘
2) = ω23(Ŕ𝑃𝐶𝑘−1) + 4 

ω33(Ŕ𝑃𝐶𝑘
2) = ω33(Ŕ𝑃𝐶𝑘−1) + 1 

by using Equation 5, we have: 

SOred(ŔPCk
2) = SOred(ŔPCk−1) + 4√2 + 4√5 

1. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
3 with probability 1 − ζ1−ζ2 

ω22(Ŕ𝑃𝐶𝑘
3) = ω22(Ŕ𝑃𝐶𝑘−1) + 2 

ω23(Ŕ𝑃𝐶𝑘
3) = ω23(Ŕ𝑃𝐶𝑘−1) + 4 

ω33(Ŕ𝑃𝐶𝑘
3) = ω33(Ŕ𝑃𝐶𝑘−1) + 1 

by using Equation 5, we have: 

SOred(ŔPCk
3) = SOred(ŔPCk−1) + 4√2 + 4√5 

Thus: 

Ek
red = ζ1SOred(ŔPCk

1) + ζ2SOred(ŔPCk
2) + (1 − ζ1 − ζ2)SOred(ŔPCk

3) 

Ek
red = ζ1SOred(ŔPCk−1) + (7√2 + 2√5)ζ1 + ζ2SOred(ŔPCk−1) + (4√2 + 4√5)ζ2 + (1 − ζ1 − ζ2)SOred(ŔPCk

3) +
(1 − ζ1 − ζ2)(4√2 + 2√5)  

Ek
red = SOred(ŔPCk−1) + (3√2 − 2√13)ζ1 + (4√2 + 4√5) (9) 

Since 𝐸[𝐸𝑘]𝑟𝑒𝑑 = 𝐸𝑘
𝑟𝑒𝑑  so apply the operator 𝐸 on Equation 9, we get: 

Ek
red = Ek−1

red + (3√2 − 2√5)ζ1 + (4√2 + 4√5),    k > 2 (10) 

And after solving the recurrence relation in Equation 10 with 𝐸2
𝑟𝑒𝑑 = 10√2 + 4√5, we get: 

Ek
red = [(3√2 − 2√5)ζ1 + (4√2 + 4√5)]k − (6√2 − 4√5)ζ1 + (2√2 − 4√5). 

2-3-Theorem 

Let Ŕ𝑃𝐶𝑘(𝑘, ζ1, ζ2) be an arbitrary Polyphenyl chains of length 𝑘, where 𝑘 ≥ 2. Then 

Ek
avg

= [(√2 −
2√5k2+2k+2

3k
) ζ1 + (

4√2k−√2

3k
+

4√5k2+2k+2

3k
)] k − (2√2 −

4√5k2+2k+2

3k
) ζ1 − (

8√2k−2√2

3k
+

8√5k2+2k+2

3k
) +

13√2

6
+

2√26

3
.  

Proof: For 𝑘 = 2, we have 𝐸2
𝑎𝑣𝑔

=
13√2

6
+

2√26

3
. Now, when 𝑘 ≥ 3, it is obvious that ω22, ω23 and ω33 depend on 

the following three cases: 

1. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
1 with probability ζ1 

ω22(ŔPCk
1) = ω22(ŔPCk−1) + 3 

ω23(ŔPCk
1) = ω23(ŔPCk−1) + 2 

ω33(ŔPCk
1) = ω33(ŔPCk−1) + 2 
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by using Equation 5, we have: 

SOavg(ŔPCk
1) = SOavg(ŔPCk−1) + (

7√2k−√2

3k
) + (

2√5k2+2k+2

3k
)  

2. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
2 with probability ζ2 

ω22(ŔPCk
2) = ω22(ŔPCk−1) + 2 

(ŔPCk
2) = ω23(ŔPCk−1) + 4 

ω33(ŔPCk
2) = ω33(ŔPCk−1) + 1 

by using Equation 5, we have: 

SOavg(ŔPCk
2) = SOavg(ŔPCk−1) + (

4√2k−√2

3k
) + (

4√5k2+2k+2

3k
)  

3. If Ŕ𝑃𝐶𝑘−1 ⟶ Ŕ𝑃𝐶𝑘
3 with probability 1 − ζ1−ζ2 

ω22(ŔPCk
3) = ω22(ŔPCk−1) + 2 

ω23(ŔPCk
3) = ω23(ŔPCk−1) + 4 

ω33(ŔPCk
3) = ω33(ŔPCk−1) + 1 

by using Equation 5, we have: 

SOavg(ŔPCk
3) = SOavg(ŔPCk−1) + (

4√2k−√2

3k
) + (

4√5k2+2k+2

3k
)  

Thus: 

Ek
avg

= ζ1SOavg(ŔPCk
1) + ζ2SOavg(ŔPCk

2) + (1 − ζ1 − ζ2)SOavg(ŔPCk
3) 

Ek
avg

= ζ1SOavg(ŔPCk−1) + [(
7√2k−√2

3k
) + (

2√5k2+2k+2

3k
)] ζ1 + ζ2SOavg(ŔPCk−1) + [(

4√2k−√2

3k
) + (

4√5k2+2k+2

3k
)] ζ2 +

(1 − ζ1 − ζ2)SOavg(ŔPCk
3) + (1 − ζ1 − ζ2) [(

4√2k−√2

3k
) + (

4√5k2+2k+2

3k
)]  

Ek
avg

= SOavg(ŔPCk−1) + (√2 −
2√5k2+2k+2

3k
) ζ1 + [

4√2k−√2

3k
+

4√5k2+2k+2

3k
]  (11) 

Since 𝐸[𝐸𝑘]𝑎𝑣𝑔 = 𝐸𝑘
𝑎𝑣𝑔

 so apply the operator 𝐸 on Equation 11, we get: 

Ek
avg

= Ek−1
avg

+ [√2 −
2√5k2+2k+2

3k
] ζ1 + [

4√2k−√2

3k
+

4√5k2+2k+2

3k
] ,   k > 2  (12) 

and after solving the recurrence relation in Equation 12 with 𝐸2
𝑎𝑣𝑔

=
13√2

6
+

2√26

3
,  we get: 

Ek
avg

= [[√2 −
2√5k2+2k+2

3k
] ζ1 + [

4√2k−√2

3k
+

4√5k2+2k+2

3k
]] k − (2√2 −

4√5k2+2k+2

3k
) ζ1 − (

8√2k−2√2

3k
+

8√5k2+2k+2

3k
) +

13√2

6
+

2√26

3
.  

These indices can be computed for three chains meta 𝑀𝑘 = Ŕ𝑃𝐶(𝑘; 0,1) para 𝑃𝑘 = Ŕ𝑃𝐶(𝑘; 0,0) and ortho 𝑂𝑘 =
Ŕ𝑃𝐶(𝑘; 1,0). 

 

Figure 1. Polyphenyl ortho, meta and para Chains 
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2-4-Corollary 

For 𝑘 ≥ 2,  we have: 

▪SO(Ok) = (12√2 + 2√13)k − 5√2 

▪SO(Pk) = SO(Mk) = (7√2 + 4√13)k + (5√2 − 4√13) 

▪SOred(Ok) = (7√2 + 2√5)k − 4√2 

▪SOred(Pk) = SOred(Mk) = (4√2 + 4√5)k + (2√2 − 4√5) 

▪SOavg(Ok) = (
7√2−√2

3k
+

2√5k2+2k+2

3k
) k −

5√2

2
+

2√2

3k
−

4√5k2+2k+2

3k
+

2√26

3
. 

▪SOavg(Pk) = SOavg(Mk) = (
4√2−√2

3k
+

4√5k2+2k+2

3k
) k − [

8√2k

3k
−

2√2

3k
+

8√5k2+2k+2

3k
] +

13√2

6
+

2√26

3
 

3- Average Value of Indices in Polyphenyl chains  

In this part, the average values of 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 have been resolved for the set of random Polyphenyl chains 

[14]. The average values over the set Ŕ𝑃𝑘 are: 

SOavg(ŔPk) =
1

|ŔPk|
∑ SO(G)GϵŔPk

  

(SOred)avg(ŔPk) =
1

|ŔPk|
∑ SOred(G)GϵŔPk

  

(SOavg)
avg

(ŔPk) =
1

|ŔPk|
∑ SOavg(G)GϵŔPk

  

As a result ζ1 = ζ2 = 1 − ζ1 − ζ2, we can use theorem (2-1, 2-2, 2-3) by setting ζ1 = ζ2 = 1 − ζ1 − ζ2 =
1

3
 and the 

results will be in the form of following expression. 

3-1-Theorem 

Let Ŕ𝑃𝑘 be the set of arbitrary Polyphenyl chains, then: 

SO(ŔPk) = [
26√2

3
+

10√13

3
] k +

5√2

3
−

8√13

3
.  

SOred(ŔPk) = [5√2 +
10√5

3
] k −

8√5

3
.  

SOavg(ŔPk) = [
5√2

3
+

√2

3k
+

10√5k2+2k+2

9k
] k −

20√5k2+2k+2

9k
−

7√2

6
+

2√2

3k
+

2√26

3
.  

from corollary (2-4); 

1

3
[𝑆𝑂(𝑂𝑘) + 𝑆𝑂(𝑃𝑘) + 𝑆𝑂(𝑀𝑘)] = [

26√2

3
+

10√13

3
] 𝑘 +

5√2

3
−

8√13

3
.  

1

3
[𝑆𝑂(𝑂𝑘) + 𝑆𝑂(𝑃𝑘) + 𝑆𝑂(𝑀𝑘)] = [5√2 +

10√5

3
] 𝑘 −

8√5

3
.  

1

3
[𝑆𝑂(𝑂𝑘) + 𝑆𝑂(𝑃𝑘) + 𝑆𝑂(𝑀𝑘)] = [

5√2

3
+

√2

3𝑘
+

10√5𝑘2+2𝑘+2

9𝑘
] 𝑘 −

20√5𝑘2+2𝑘+2

9𝑘
−

7√2

6
+

2√2

3𝑘
+

2√26

3
.  

Thus the average value of these indices 𝑆𝑂 (Ŕ𝑃𝐶(𝑘, ζ1, ζ2)) , 𝑆𝑂𝑟𝑒𝑑 (Ŕ𝑃𝐶(𝑘, ζ1, ζ2))  𝑜𝑟 𝑆𝑂𝑎𝑣𝑔 (Ŕ𝑃𝐶(𝑘, ζ1, ζ2)) is 

always equal over the set {𝑂𝑘 , 𝑃𝑘 , 𝑀𝑘}. 

4- Ratio between Sombor, Reduced Sombor and Average Sombor Index for Polyphenyl Chains 

Now, by getting results from theorem (2-1, 2-2) and (2-3) we will assemble the ratio between the anticipated values 

for the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 of an arbitrary Polyphenyl chains [15] with probability ζ1 and ζ2. 

4-1-Theorem 

If 𝑘 ≥ 2, then: 

𝐸𝑆𝑂[𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))] > 𝐸𝑟𝑒𝑑[𝑟𝑒𝑑𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))]. 

Proof: The statement is true for 𝑘 = 2. Thus for 𝑘 > 2, by applying theorem (2-1) and (2-2) we get; 
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𝐸𝑆𝑂[𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))] − 𝐸𝑟𝑒𝑑 [𝑟𝑒𝑑𝑆𝑂 (Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))]

= {[(5√2 − 2√13)𝜁1 + (7√2 + 4√13)](𝑘 − 2) + (19√2 + 4√13)}

− {[(3√2 − 2√5)𝜁1 + (4√2 + 4√5)](𝑘 − 2) + (10√2 + 4√5)}

= [(2√2 − 2√13 + 2√5)𝜁1 + (3√2 + 4√13 − 4√5)](𝑘 − 2) + (9√2 + 4√13 − 4√5) 

Since: 

(2√2 − 2√13 + 2√5) > 0, (3√2 + 4√13 − 4√5) > 0, (9√2 + 4√13 − 4√5) > 0 

So 

= [(2√2 − 2√13 + 2√5)𝜁1 + (3√2 + 4√13 − 4√5)](𝑘 − 2) + (9√2 + 4√13 − 4√5) > 0, 

∵ 𝑘 ≥ 2, 0 < 𝜁1 < 1 

4-2-Theorem 

If  𝑘 ≥ 2, then: 

Ered[redSO(ŔPC(k, ζ1, ζ2))] > Eavg[avgSO(ŔPC(k, ζ1, ζ2))]. 

Proof: The statement is true for 𝑘 = 2. Thus for 𝑘 > 2, by applying theorem (2-2) and (2-3), we get; 

Ered[redSO(ŔPC(k, ζ1, ζ2))] − Eavg [avgSO (ŔPC(k, ζ1, ζ2))] = {[(3√2 − 2√5)ζ1 + (4√2 + 4√5)](k − 2) +

(10√2 + 4√5)} − {[(√2 −
2√5k2+2k+2

3k
) ζ1 + (

4√2k−√2

3k
+

4√5k2+2k+2

3k
)] (k − 2) + (

13√2

6
+

2√26

3
)}  

= [(2√2 − 2√5 +
2√5k2+2k+2

3k
) ζ1 + (

8√2

3
+ 4√5 −

√2

3k
−

4√5k2+2k+2

3k
)] (k − 2) + (

47√2

6
+ 4√5 −

2√26

3
)  

= [(2√5 −
2√5k2+2k+2

3k
) (2 − ζ1) + (

8√2

3
−

√2

3k
− 2√2ζ1)] (k − 2) + (

47√2

6
+ 4√5 −

2√26

3
)  

Since:  

(2√5 −
2√5+

2

k
+

2

k2

3
) > 0, (

√2

3
(

8k−1

k
) + 2√2ζ1) > 0, (

47√2

6
+ 4√5 −

2√26

3
) > 0, k ≥ 2  

So 

= [(2√5 −
2√5k2+2k+2

3k
) (2 − ζ1) + (

8√2

3
−

√2

3k
− 2√2ζ1)] (k − 2) + (

47√2

6
+ 4√5 −

2√26

3
) > 0,  

∵ k ≥ 2, 0 < ζ1 < 1 

4-3-Theorem 

If  k ≥ 2, then: 

ESO[SO(ŔPC(k, ζ1, ζ2))] > Eavg[avgSO(ŔPC(k, ζ1, ζ2))]. 

Proof: The statement is true for k = 2. Thus for k > 2, by applying theorem (2-1) and (2-3) we get; 

ESO[SO(ŔPC(k, ζ1, ζ2))] − Eavg [avgSO (ŔPC(k, ζ1, ζ2))] = {[(5√2 − 2√13)ζ1 + (7√2 + 4√13)](k − 2) +

(19√2 + 4√13)} − {[(√2 −
2√5k2+2k+2

3k
) ζ1 + (

4√2k−√2

3k
+

4√5k2+2k+2

3k
)] (k − 2) + (

13√2

6
+

2√26

3
)}  

= [(4√2 − 2√13 +
2√5k2+2k+2

3k
) ζ1 + (

17√2

3
+ 4√13 −

√2

3k
−

4√5k2+2k+2

3k
)] (k − 2) + (

101√2

6
+ 4√13 −

2√26

3
)  

= [(2√13 −
2√5k2+2k+2

3k
) (2 − ζ1) + (

17√2

3
−

√2

3k
− 4√2ζ1)] (k − 2) + (

101√2

6
+ 4√13 −

2√26

3
)  

Since 

(2√13 −
2√5+

2

k
+

2

k2

3
) > 0, (

101√2

6
+ 4√13 −

2√26

3
) > 0, (

8√2

3
−

√2

3k
+ 2√2ζ1) > 0, k ≥ 2.  
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So  

= [(2√13 −
2√5k2+2k+2

3k
) (2 − ζ1) + (

17√2

3
−

√2

3k
− 4√2ζ1)] (k − 2) + (

101√2

6
+ 4√13 −

2√26

3
) > 0,  

∵  k ≥ 2, 0 < ζ1 < 1. 

4-4-Corollary 

For 𝑘 ≥ 2, 𝐸𝑆𝑂[𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))] > 𝐸𝑟𝑒𝑑[𝑟𝑒𝑑𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))] > 𝐸𝑎𝑣𝑔[𝑎𝑣𝑔𝑆𝑂(Ŕ𝑃𝐶(𝑘, 𝜁1, 𝜁2))] as shown in 

Figure 4. 

 

Figure 2. Comparison between the expected values of Sombor 𝑬𝒌
𝑺𝑶 (blue), reduced Sombor 𝑬𝒌

𝒓𝒆𝒅 (yellow) and average 

Sombor 𝑬𝒌
𝒂𝒗𝒈

 (green) index in random Polyphenyl chains 

5- Sombor, Reduced Sombor and Average Sombor Index in Random Spiro Chain 

In the following part, we consider the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 in the arbitrary spiro-chain Ŕ𝑆𝐶𝑘. Let Ŕ𝑆𝐶𝑘 be the spiro 

chain [16-20] acquired by Ŕ𝑆𝐶𝑘−1. Clearly, there are only (2,2), (2,4) and (4,4) − edges in Ŕ𝑆𝐶𝑘. By using the 

definition of 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑 and 𝑆𝑂𝑎𝑣𝑔, we have the following equation: 

SO(ŔSCk) = 2√2ω22(ŔSCk) + 2√5ω24(ŔSCk) + 4√2ω44(ŔSCk) (13) 

SOred(ŔSCk) = √2ω22(ŔSCk) + √10ω24(ŔSCk) + 3√2ω44(ŔSCk) (14) 

SOavg(ŔSCk) = 2√2 (
k − 1

5k + 1
) ω22(ŔSCk) +

2√17k2 + 14k + 5

5k + 1
ω24(ŔSCk) + 4√2 (

2k + 1

5k + 1
) ω44(ŔSCk) (15) 

Thus, to find the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 of Ŕ𝑆𝐶𝑘 , we just need to evaluate the ω22(Ŕ𝑆𝐶𝑘), ω24(Ŕ𝑆𝐶𝑘) and ω44(Ŕ𝑆𝐶𝑘). 

Since Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2) is an arbitrary spiro-chain. So, 𝑆𝑂 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2)) , 𝑆𝑂𝑟𝑒𝑑 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2)) and 𝑆𝑂𝑎𝑣𝑔 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2)) 

are also arbitrary variables. We symbolize the anticipated values of these indices by𝐸𝑘
𝑆𝑂 =

𝐸𝑆𝑂 [𝑆𝑂 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2))] ,  𝐸𝑘
𝑟𝑒𝑑 = 𝐸𝑟𝑒𝑑 [𝑆𝑂𝑟𝑒𝑑 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2))] and 𝐸𝑘

𝑎𝑣𝑔
= 𝐸𝑎𝑣𝑔 [𝑆𝑂𝑎𝑣𝑔 (Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2))] respectively. 

5-1-Theorem 

Let Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2) be an arbitrary spiro-chain of length 𝑘, where 𝑘 ≥ 2. Then: 

Ek
SO = [(6√2 − 4√5)ζ1 + (4√2 + 8√5)]k − (12√2 − 8√5)ζ1 + (8√2 − 8√5). 

Proof: For 𝑘 = 2, we have 𝐸2
𝑆𝑂 = 16√2 + 8√5. Now, when 𝑘 ≥ 3, it is obvious that 𝜔22, 𝜔24 and 𝜔44 depend on 

the following three cases: 
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1. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
1 with probability ζ1 

ω22(Ŕ𝑆𝐶𝑘
1) = ω22(Ŕ𝑆𝐶𝑘−1) + 3 

ω24(Ŕ𝑆𝐶𝑘
1) = ω24(Ŕ𝑆𝐶𝑘−1) + 2 

ω44(Ŕ𝑆𝐶𝑘
1) = ω44(Ŕ𝑆𝐶𝑘−1) + 1 

by using Equation 13: 

SO(ŔSCk
1) = SO(ŔSCk−1) + 10√2 + 4√5 

2. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
2 with probability ζ2 

ω22(Ŕ𝑆𝐶𝑘
2) = ω22(Ŕ𝑆𝐶𝑘−1) + 2 

ω24(Ŕ𝑆𝐶𝑘
2) = ω24(Ŕ𝑆𝐶𝑘−1) + 4 

ω44(Ŕ𝑆𝐶𝑘
2) = ω44(Ŕ𝑆𝐶𝑘−1) 

by using Equation 13: 

SO(ŔSCk
2) = SO(ŔSCk−1) + 4√2 + 8√5 

3. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
3 with probability 1 − ζ1 − ζ2 

ω22(Ŕ𝑆𝐶𝑘
3) = ω22(Ŕ𝑆𝐶𝑘−1) + 2 

ω24(Ŕ𝑆𝐶𝑘
3) = ω24(Ŕ𝑆𝐶𝑘−1) + 4 

ω44(Ŕ𝑆𝐶𝑘
3) = ω44(Ŕ𝑆𝐶𝑘−1) 

by using Equation 13: 

SO(ŔSCk
3) = SO(ŔSCk−1) + 4√2 + 8√5 

Thus: 

Ek
SO = ζ1SO(ŔSCk

1) + ζ2SO(ŔSCk
2) + (1 − ζ1 − ζ2)SO(ŔSCk

3) 

Ek
SO = ζ1SO(ŔSCk−1) + (10√2 + 4√5)ζ1 + ζ2SO(ŔSCk−1) + (4√2 + 8√5)ζ2 + (1 − ζ1 − ζ2)SO(ŔSCk

3) +

(1 − ζ1 − ζ2)(4√2 + 8√5)  

Ek
SO = SO(ŔSCk−1) + (6√2 − 4√5)ζ1 + (4√2 + 8√5) (16) 

Since  𝐸[𝐸𝑘]𝑆𝑂 = 𝐸𝑘
𝑆𝑂 so apply the operator 𝐸 on Equation 16, we get: 

Ek
SO = Ek−1

SO + (6√2 − 4√5)ζ1 + (4√2 + 8√5),     k > 2 (17) 

and after solving the recurrence relation in Equation 17 with 𝐸2
𝑆𝑂 = 16√2 + 8√5, we get: 

Ek
SO = [(6√2 − 4√5)ζ1 + (4√2 + 8√5)]k − (12√2 − 8√5)ζ1 + (8√2 − 8√5) 

5-2-Theorem 

Let Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2) be an arbitrary spiro chain of length 𝑘, where 𝑘 ≥ 2. Then; 

Ek
red = [(4√2 − 2√10)ζ

1
+ (2√2 + 4√10)]k − (8√2 − 4√10)ζ

1
+ (4√2 − 4√10). 

Proof: For 𝑘 = 2, we have 𝐸2
𝑟𝑒𝑑 = 8√2 + 4√10. Now, when 𝑘 ≥ 3, it is obvious that 𝜔22, 𝜔24 and 𝜔44 depend on 

the following three cases: 

1. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
1 with probability ζ1 

ω22(Ŕ𝑆𝐶𝑘
1) = ω22(Ŕ𝑆𝐶𝑘−1) + 3 

ω24(Ŕ𝑆𝐶𝑘
1) = ω24(Ŕ𝑆𝐶𝑘−1) + 2 

ω44(Ŕ𝑆𝐶𝑘
1) = ω44(Ŕ𝑆𝐶𝑘−1) + 1 

by using Equation 14: 
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SOred(ŔSCk
1) = SOred(ŔSCk−1) + 6√2 + 2√10 

2. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
2 with probability ζ2 

ω22(Ŕ𝑆𝐶𝑘
2) = ω22(Ŕ𝑆𝐶𝑘−1) + 2 

ω24(Ŕ𝑆𝐶𝑘
2) = ω24(Ŕ𝑆𝐶𝑘−1) + 4 

ω44(Ŕ𝑆𝐶𝑘
2) = ω44(Ŕ𝑆𝐶𝑘−1) 

by using Equation 14: 

SOred(ŔSCk
2) = SOred(ŔSCk−1) + 2√2 + 4√10 

3. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
3 with probability 1 − ζ1 − ζ2 

ω22(Ŕ𝑆𝐶𝑘
3) = ω22(Ŕ𝑆𝐶𝑘−1) + 2 

ω24(Ŕ𝑆𝐶𝑘
3) = ω24(Ŕ𝑆𝐶𝑘−1) + 4 

ω44(Ŕ𝑆𝐶𝑘
3) = ω44(Ŕ𝑆𝐶𝑘−1) 

by using Equation 14: 

SOred(ŔSCk
3) = SOred(ŔSCk−1) + 2√2 + 4√10 

Thus: 

Ek
red = ζ1SOred(ŔSCk

1) + ζ2SOred(ŔSCk
2) + (1 − ζ1 − ζ2)SOred(ŔSCk

3) 

Ek
red = ζ1SOred(ŔSCk−1) + (6√2 + 2√10)ζ1 + ζ2SOred(ŔSCk−1) + (2√2 + 4√10)ζ2 + (1 − ζ1 −

ζ2)SOred(ŔSCk
3) + (1 − ζ1 − ζ2)(2√2 + 4√10)  

Ek
red = SOred(ŔSCk−1) + (4√2 − 2√10)ζ

1
+ (2√2 + 4√10)  (18) 

Since  𝐸[𝐸𝑘]𝑟𝑒𝑑 = 𝐸
𝑘

𝑟𝑒𝑑
 so apply the operator 𝐸 on Equation 18, we get; 

Ek
red = E

k−1

red
+ (4√2 − 2√10)ζ

1
+ (2√2 + 4√10),     k > 2 (19) 

and after solving the recurrence relation in Equation 19 with initial condition, we get: 

Ek
red = [(4√2 − 2√10)ζ

1
+ (2√2 + 4√10)]k − (8√2 − 4√10)ζ

1
+ (4√2 − 4√10)  

5-3-Theorem 

Let Ŕ𝑆𝐶(𝑘; 𝜁1, 𝜁2) be an arbitrary spiro chain of length 𝑘, where 𝑘 ≥ 2. Then; 

Ek
avg

= [(
10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
) ζ1 + (

4√2k−4√2

5k+1
+

8√17k2+14k+5

5k+1
)] k − (

20√2k+4√2

5k+1
−

8√17k2+14k+5

5k+1
) ζ1 +

(
8√2k−4√2

5k+1
+

16√17k2+14k+5

5k+1
) +

16√2

11
+

8√101

11
.  

Proof: For 𝑘 = 2, we have 𝐸2
𝑎𝑣𝑔

=
16√2

11
+

8√101

11
. Now, when 𝑘 ≥ 3, it is obvious that 𝜔22, 𝜔24 and 𝜔44 depend on 

the following three cases: 

1. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
1 with probability ζ1 

ω22(Ŕ𝑆𝐶𝑘
1) = ω22(Ŕ𝑆𝐶𝑘−1) + 3 

ω24(Ŕ𝑆𝐶𝑘
1) = ω24(Ŕ𝑆𝐶𝑘−1) + 2 

ω44(Ŕ𝑆𝐶𝑘
1) = ω44(Ŕ𝑆𝐶𝑘−1) + 1 

by using Equation 15: 

SOavg(ŔSCk
1) = SOavg(ŔSCk−1) + (

14√2k−2√2

5k+1
) + (

4√17k2+14k+5

5k+1
)  

2. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
2 with probability ζ2 
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ω22(Ŕ𝑆𝐶𝑘
2) = ω22(Ŕ𝑆𝐶𝑘−1) + 2 

ω24(Ŕ𝑆𝐶𝑘
2) = ω24(Ŕ𝑆𝐶𝑘−1) + 4 

ω44(Ŕ𝑆𝐶𝑘
2) = ω44(Ŕ𝑆𝐶𝑘−1) 

by using Equation 15: 

𝑆𝑂𝑎𝑣𝑔(Ŕ𝑆𝐶𝑘
2) = 𝑆𝑂𝑎𝑣𝑔(Ŕ𝑆𝐶𝑘−1) + 4√2 (

𝑘−1

5𝑘+1
) + (

8√17𝑘2+14𝑘+5

5𝑘+1
)  

3. If Ŕ𝑆𝐶𝑘−1 ⟶ Ŕ𝑆𝐶𝑘
3 with probability 1 − ζ1 − ζ2 

ω22(ŔSCk
3) = ω22(ŔSCk−1) + 2 

ω24(ŔSCk
3) = ω24(ŔSCk−1) + 4 

ω44(ŔSCk
3) = ω44(ŔSCk−1) 

by using Equation 15: 

𝑆𝑂𝑎𝑣𝑔(Ŕ𝑆𝐶𝑘
3) = 𝑆𝑂𝑎𝑣𝑔(Ŕ𝑆𝐶𝑘−1) + 4√2 (

𝑘−1

5𝑘+1
) + (

8√17𝑘2+14𝑘+5

5𝑘+1
)  

Thus: 

Ek
avg

= ζ1SOavg(ŔSCk
1) + ζ2SOavg(ŔSCk

2) + (1 − ζ1 − ζ2)SOavg(ŔSCk
3) 

Ek
avg

= ζ1SOavg(ŔSCk−1) + [(
14√2k−2√2

5k+1
) + (

4√17k2+14k+5

5k+1
)] ζ1 + ζ2SOavg(ŔSCk−1) + [(

4√2k−4√2

5k+1
) +

(
8√17k2+14k+5

5k+1
)] ζ2 + (1 − ζ1 − ζ2)SOavg(ŔSCk

3) + (1 − ζ1 − ζ2) [(
4√2k−4√2

5k+1
) + (

8√17k2+14k+5

5k+1
)]  

Ek

avg
= SOavg(ŔSCk−1) + [

10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
] ζ

1
+ [

4√2k−4√2

5k+1
+

8√17k2+14k+5

5k+1
]  (20) 

Since  𝐸[𝐸𝑘]𝑎𝑣𝑔 = 𝐸
𝑘

𝑎𝑣𝑔
 so apply the operator 𝐸 on Equation 20, we get: 

Ek

avg
= E

k−1

avg
+ [

10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
] ζ

1
+ [

4√2k−4√2

5k+1
+

8√17k2+14k+5

5k+1
] ,     k > 2  (21) 

And after solving the recurrence relation in Equation 21 with initial condition, we get: 

Ek
avg

= [(
10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
) ζ1 + (

10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
)] k − (

20√2k+4√2

5k+1
−

8√17k2+14k+5

5k+1
) ζ1 −

(
8√2k−8√2

5k+1
+

16√17k2+14k+5

5k+1
) +

16√2

11
+

8√101

11
.  

These indices can be computed for three chains meta 𝑀𝑘̅̅ ̅ = Ŕ𝑆𝐶(𝑘; 0,1), para 𝑃𝑘̅ = Ŕ𝑆𝐶(𝑘; 0,0) and ortho 𝑂𝑘̅ =
Ŕ𝑆𝐶(𝑘; 1,0) as shown in Figure 5. 

 

Figure 5. Special spiro ortho, meta and para chains 
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5-4-Corollary 

For 𝑘 ≥ 2, we have: 

▪𝑆𝑂(𝑂𝑘
̅̅̅̅ ) = (10√2 + 4√5)𝑘 − 4√2 

▪𝑆𝑂(𝑃𝑘
̅̅ ̅) = 𝑆𝑂(𝑀𝑘

̅̅ ̅̅ ) = (4√2 + 8√5)𝑘 + (8√2 − 8√5) 

▪𝑆𝑂𝑟𝑒𝑑(𝑂𝑘
̅̅̅̅ ) = (6√2 + 2√10)𝑘 − 4√2 

▪𝑆𝑂𝑟𝑒𝑑(𝑃𝑘
̅̅ ̅) = 𝑆𝑂𝑟𝑒𝑑(𝑀𝑘

̅̅ ̅̅ ) = (2√2 + 4√10)𝑘 + (4√2 − 4√10) 

▪𝑆𝑂𝑎𝑣𝑔(𝑂𝑘
̅̅̅̅ ) = (

14√2𝑘+4√2

5𝑘+1
+

4√17𝑘2+14𝑘+5

5𝑘+1
) 𝑘 +

28√2𝑘

5𝑘+1
+

4√2

5𝑘+1
−

8√17𝑘2+14𝑘+5

5𝑘+1
+

16√2

11
+

8√101

11
.  

▪𝑆𝑂𝑎𝑣𝑔(𝑃𝑘̅) = 𝑆𝑂𝑎𝑣𝑔(𝑀𝑘̅̅ ̅) = (
4√2𝑘−4√2

5𝑘+1
+

8√17𝑘2+14𝑘+5

5𝑘+1
) 𝑘 +

28√2𝑘

5𝑘+1
+

4√2

5𝑘+1
−

8√17𝑘2+14𝑘+5

5𝑘+1
+

16√2

11
+

8√101

11
 

6- Average Value of Indices for Spiro Chain 

In this part, the average value of 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑  and 𝑆𝑂𝑎𝑣𝑔 have been resolved for the set of arbitrary spiro chain. The 

average values over the set 𝑆𝑃𝑘  are: 

SOavg(SPk) =
1

|SPk|
∑ SO(G)

GϵSPk

 

(SOred)avg(SPk) =
1

|SPk|
∑ SOred(G)

GϵSPk

 

(SOavg)
avg

(SPk) =
1

|SPk|
∑ SOavg(G)

GϵSPk

 

As a result ζ
1

= ζ
2

= 1 − ζ
1

− ζ
2

, we can use theorems (5-1, 5-2, 5-3) by setting ζ
1

= ζ
2

= 1 − ζ
1

− ζ
2

=
1

3
 and 

the results will be in the form of following expression: 

6-1-Theorem 

Let 𝑆𝑃𝑘 be the set of spiro chain, then; 

SO(ŔPk) = [16√2 +
20√5

3
] k + 4√2 −

16√5

3
.  

SOred(ŔPk) = [
10√2

3
+

10√10

3
] k +

4√2

3
−

8√10

3
.  

SOavg(ŔPk) = [
22√2k

3(5k+1)
−

10√2

3(5k+1)
+

20√17k2+14k+5

3(5k+1)
] k −

44√2

3(5k+1)
+

20√2

3(5k+1)
−

40√17k2+14k+5

3(5k+1)
+

16√2

11
+

8√101

11
.   

from corollary (5-4); 

1

3
[𝑆𝑂(𝑂𝑘

̅̅̅̅ ) + 𝑆𝑂(𝑃𝑘
̅̅ ̅) + 𝑆𝑂(𝑀𝑘

̅̅ ̅̅ )] = [16√2 +
20√5

3
] 𝑘 + 4√2 −

16√5

3
.  

1

3
[𝑆𝑂𝑟𝑒𝑑(𝑂𝑘

̅̅̅̅ ) + 𝑆𝑂𝑟𝑒𝑑(𝑃𝑘
̅̅ ̅) + 𝑆𝑂𝑟𝑒𝑑(𝑀𝑘

̅̅ ̅̅ )] = [
10√2

3
+

10√10

3
] 𝑘 +

4√2

3
−

8√10

3
.  

1

3
[𝑆𝑂𝑎𝑣𝑔(𝑂𝑘

̅̅̅̅ ) + 𝑆𝑂𝑎𝑣𝑔(𝑃𝑘
̅̅ ̅) + 𝑆𝑂𝑎𝑣𝑔(𝑀𝑘

̅̅ ̅̅ )] = [
22√2𝑘

3(5𝑘+1)
−

10√2

3(5𝑘+1)
+

20√17𝑘2+14𝑘+5

3(5𝑘+1)
] 𝑘 −

44√2

3(5𝑘+1)
+

20√2

3(5𝑘+1)
−

40√17𝑘2+14𝑘+5

3(5𝑘+1)
+

16√2

11
+

8√101

11
.  

Thus, the average value of these indices 𝑆𝑂 (Ŕ𝑆𝐶(𝑘, ζ1, ζ2)) , 𝑆𝑂𝑟𝑒𝑑 (Ŕ𝑆𝐶(𝑘, ζ1, ζ2))  𝑜𝑟 𝑆𝑂𝑎𝑣𝑔 (Ŕ𝑆𝐶(𝑘, ζ1, ζ2)) is 

equal to the average value of the special chains in the set {𝑂𝑘̅, 𝑃𝑘̅, 𝑀𝑘̅̅ ̅}. 

7- Ratio between Sombor, Reduced Sombor and Average Sombor Index for Spiro Chain 

By getting results from theorem (5-1, 5-2) and (5-3), we will make the ratio between the expected values for the 𝑆𝑂, 

𝑆𝑂𝑟𝑒𝑑 and 𝑆𝑂𝑎𝑣𝑔 with the same probabilities ζ
1
 and ζ

2
 of a random spiro-chain. 
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7-1-Theorem 

If  𝑘 ≥ 2, then: 

ESO[SO(ŔSC(k, ζ1, ζ2))] > Ered[redSO(ŔSC(k, ζ1, ζ2))]. 

Proof: The statement is true for 𝑘 = 2. Thus for 𝑘 > 2, by applying theorem (5-1) and (5-2), we get; 

ESO[SO(ŔSC(k, ζ1, ζ2))] − Ered [redSO (ŔSC(k, ζ1, ζ2))] = {[(6√2 − 4√5)ζ1 + (4√2 + 8√5)](k − 2) +

(16√2 + 8√5)} − {[(4√2 − 2√10)ζ1 + (2√2 + 4√10)](k − 2) + (8√2 + 4√10)}  

= [(2√2 − 4√5 + 2√10)𝜁1 + (2√2 + 8√5 − 4√10)](𝑘 − 2) + (8√2 + 8√5 − 4√5) 

Since; 

(2√2 − 4√5 + 2√10) > 0, (2√2 + 8√5 − 4√10) > 0, (8√2 + 8√5 − 4√5) > 0 

So; 

= [(2√2 − 4√5 + 2√10)𝜁1 + (2√2 + 8√5 − 4√10)](𝑘 − 2) + (8√2 + 8√5 − 4√5) > 0, 

∵ 𝑘 ≥ 2, 0 < 𝜁1 < 1 

7-2-Theorem 

If  𝑘 ≥ 2, then; 

Ered[redSO(ŔSC(k, ζ1, ζ2))] > Eavg[avgSO(ŔSC(k, ζ1, ζ2))]. 

Proof: The statement is true for 𝑘 = 2. Thus for 𝑘 > 2, by applying theorem (5-2) and (5-3), we get: 

Ered[redSO(ŔSC(k, ζ1, ζ2))] − Eavg [avgSO (ŔSC(k, ζ1, ζ2))] = {[(4√2 − 2√10)𝜁1 + (2√2 + 4√10)](𝑘 − 2) +

(8√2 + 4√10)} − {[(
10√2𝑘+2√2

5𝑘+1
−

4√17𝑘2+14𝑘+5

5𝑘+1
) 𝜁1 + (

4√2𝑘−4√2

5𝑘+1
+

8√17𝑘2+14𝑘+5

5𝑘+1
)] (𝑘 − 2) + (

16√2

11
+

8√101

11
)}  

= [(2√2 − 2√10 +
4√17𝑘2+14𝑘+5

5𝑘+1
) 𝜁1 + (

16√2(𝑘+1)

5𝑘+1
+ 4√10 −

8√17𝑘2+14𝑘+5

5𝑘+1
)] (𝑘 − 2) + (

72√2

11
+ 4√10 −

8√101

11
)  

= [(2√10 −
4√17𝑘2+14𝑘+5

5𝑘+1
) (2 − 𝜁1) + (2√10 +

16√2(𝑘+1)

5𝑘+1
)] (𝑘 − 2) + (

72√2

11
+ 4√10 −

8√101

11
)  

Since; 

(2√10 −
4√17𝑘2+14𝑘+5

5𝑘+1
) > 0, (2√10 +

16√2(𝑘+1)

5𝑘+1
) > 0, (

72√2

11
+ 4√10 −

8√101

11
) > 0, 𝑘 ≥ 2  

So; 

= [(2√10 −
4√17𝑘2+14𝑘+5

5𝑘+1
) (2 − 𝜁1) + (2√10 +

16√2(𝑘+1)

5𝑘+1
)] (𝑘 − 2) + (

72√2

11
+ 4√10 −

8√101

11
) > 0, ∵ 𝑘 ≥ 2,0 < 𝜁1 < 1  

7-3-Theorem 

If  𝑘 ≥ 2, then; 

ESO[SO(ŔSC(k, ζ1, ζ2))] > Eavg[avgSO(ŔSC(k, ζ1, ζ2))]. 

Proof: The statement is true for 𝑘 = 2. Thus for 𝑘 > 2, by applying theorem (5-1) and (5-3) we get; 

ESO[SO(ŔSC(k, ζ1, ζ2))] − Eavg [avgSO (ŔSC(k, ζ1, ζ2))] = {[(6√2 − 4√5)ζ1 + (4√2 + 8√5)](k − 2) +

(16√2 + 8√5)} − {[(
10√2k+2√2

5k+1
−

4√17k2+14k+5

5k+1
) ζ1 + (

4√2k−4√2

5k+1
+

8√17k2+14k+5

5k+1
)] (k − 2) + (

16√2

11
+

8√101

11
)}  

= [(4√2 − 4√5 +
4√17k2+14k+5

5k+1
) ζ1 + (14√2 (

19k+5

5k+1
) + 8√5 −

8√17k2+14k+5

5k+1
)] (k − 2) + (

160√2

11
+ 8√5 −

8√101

11
)  

= [(4√5 −
4√17k2+14k+5

5k+1
) (2 − ζ1) + (4√2 + 14√2 (

19k+5

5k+1
))] (k − 2) + (

160√2

11
+ 8√5 −

8√101

11
)  

Since 

(4√5 −
4√17k2+14k+5

5k+1
) > 0, (4√2 + 14√2 (

19k+5

5k+1
)) > 0, (

160√2

11
+ 8√5 −

8√101

11
) > 0, k ≥ 2.  
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So;  

= [(4√5 −
4√17𝑘2+14𝑘+5

5𝑘+1
) (2 − 𝜁1) + (4√2 + 14√2 (

19𝑘+5

5𝑘+1
))] (𝑘 − 2) + (

160√2

11
+ 8√5 −

8√101

11
) > 0, ∵ 𝑘 ≥ 2,0 < 𝜁1 < 1.  

7-4-Corollary 

For 𝑘 ≥ 2, ESO[SO(ŔSC(k, ζ1, ζ2))] > Ered[redSO(ŔSC(k, ζ1, ζ2))] > Eavg[avgSO(ŔSC(k, ζ1, ζ2))]as shown in 

Figure 6: 

 

Figure 3. Comparison between the expected values of Sombor 𝑬𝒌
𝑺𝑶

 (blue), reduced Sombor 𝑬𝒌
𝒓𝒆𝒅

 (red) and average Sombor 

𝑬𝒌

𝒂𝒗𝒈
 (green) index in random spiro chains 

8- Conclusion 

The study of topological index is very helpful in discovering the basic topologies of different networks. Gutman 

introduced the SO index as a new indicator of mathematical formulation. Many topological indices are described in the 

literature, and many of them have been found to have applications such as physical modeling, chemical, 

pharmaceutical, and other molecular properties. We have discussed the 𝑆𝑂, 𝑆𝑂𝑟𝑒𝑑 and 𝑆𝑂𝑎𝑣𝑔 to find the expected value 

of random Polyphenyl chains and random spiro-chain. The average value of indices for both chains have been 

resolved. Finally, we have computed the comparison between the expected value of all Sombor indices. Figures 4 and 

6 show that the expected value of the Sombor index is always greater than the other two mentioned indices. One can 

also deduce from it that the Sombor index is much better correlated, as compared to the other indices, with the physical 

properties of the compounds which are formed by these chains. Finding chemical applications for this Sombor index is 

an alluring task for the near future. We are also interested in building new networks and studying their geographical 

indications, which will greatly help to understand their priorities. 
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