A Review on Neutrino Oscillation Probabilities and Sterile Neutrinos

Kendra Jean-Jacques, Anna Roland, Christelle Billan, Preet Sharma

Abstract


In the past decades, there have been many groundbreaking discoveries and advancements in the field of particle physics. One of the important elementary breakthroughs is the phenomenology of neutrino oscillations. This includes the properties of neutrinos in the Standard Model (SM) and how neutrino oscillations and their properties have been so important in strengthening the SM. Neutrino oscillations also play a vital role in understanding the current nature of our Universe and the way it behaves. There is also a great interest in neutrino oscillations and their connection with dark matter. In this review, we start with the introduction and discuss the theoretical background of neutrino oscillations and some experiments, which are working to detect the properties of neutrinos. Then the fundamentals of neutrino oscillations and their interactions were described. Since there are multiple sources of neutrinos, we have described the three sectors through which we can expect neutrinos to be produced. These are the atmospheric, solar, and reactor sectors. A brief section on the important milestones in neutrino oscillations is included because of the experiments and what they use to detect neutrino properties. Finally, we also include a section on sterile neutrinos since they have been under study for a long time and there is a possibility of them being connected to dark matter interactions.

 

Doi: 10.28991/ESJ-2022-06-02-015

Full Text: PDF


Keywords


Neutrino Oscillation Probabilities; Standard Model; Particle Physics; Quantum Field Theory.

References


Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., ... Wilkes, R. J., Young, K. K. (1998). Super-Kamiokande Collaboration: Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8), 1562-1567. doi:10.1103/PhysRevLett.81.1562.

Ashie, Y., Hosaka, J., Ishihara, K., Itow, Y., Kameda, J., Koshio, Y., ... Washburn, K., and Wilkes, R. J. (2004). Super-Kamiokande Collaboration: Evidence for an oscillatory signature in atmospheric neutrino oscillations. Physical review letters, 93(10), 101801. doi:10.1103/PhysRevLett.93.101801.

Pontecorvo, B. (1957). Mesonium and antimesonium. Soviet Journal of Experimental and Theoretical Physics, 6, 429-431.

Pontecorvo, B. (1958). Inverse Beta Processes and Nonconservation of Lepton Charge. Joint Inst. of Nuclear Research, Zhur. Eksptl'. i Teoret. Fiz, 34. (In Russian).

Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., … Wilkes, R. J., Young, K. K. (1999). Super-Kamiokande Collaboration: Measurement of the flux and zenith-angle distribution of upward throughgoing muons by Super-Kamiokande. Physical Review Letters, 82(13), 2644. doi:10.1103/PhysRevLett.82.2644.

Ahmad, Q. R., Allen, R. C., Andersen, T. C., Anglin, J. D., Barton, J. C., Beier, E. W., ... & Smith, A. R. (2002). Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Physical review letters, 89(1), 011301. doi:10.1103/PhysRevLett.89.011301.

Eguchi, K., Enomoto, S., Furuno, K., Goldman, J., Hanada, H., Ikeda, H., ... Wang, Y.-F. (2003). KamLAND Collaboration: First results from KamLAND: evidence for reactor antineutrino disappearance. Physical Review Letters, 90(2), 021802. doi:10.1103/PhysRevLett.90.021802.

Kaether, F., Hampel, W., Heusser, G., Kiko, J., & Kirsten, T. (2010). Reanalysis of the Gallex solar neutrino flux and source experiments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 685(1), 47–54. doi:10.1016/j.physletb.2010.01.030.

Hayes, A. C., & Vogel, P. (2016). Reactor Neutrino Spectra: Annual Review of Nuclear and Particle Science, 66, 219–244. doi:10.1146/annurev-nucl-102115-044826.

Sharma, P. (2014). Probing New Physics through Third Generation Leptons, Ph.D. Thesis, and University of Mississippi, Mississippi, United States.

Abratenko, P., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., ... & Spentzouris, P. (2020). Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector. Physical Review D, 101(5), 052001. doi:/doi.org/10.1103/PhysRevD.101.052001.

Abe, Y., Aberle, C., Akiri, T., Dos Anjos, J. C., Ardellier, F., Barbosa, A. F., ... & Schwetz, T. (2012). Indication of reactor ν¯e disappearance in the Double Chooz experiment. Physical Review Letters, 108(13), 131801. doi:10.1103/PhysRevLett.108.131801.

Davis, R., Harmer, D. S., & Hoffman, K. C. (1968). Search for neutrinos from the sun. Physical Review Letters, 20(21), 1205–1209. doi:10.1103/PhysRevLett.20.1205.

An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., ... & Morgan, J. E. (2012). Observation of electron-antineutrino disappearance at Daya Bay. Physical Review Letters, 108(17), 171803. doi:10.1103/PhysRevLett.108.171803.

Aliu, E., Andringa, S., Aoki, S., Argyriades, J., Asakura, K., Ashie, R., ... & Yamada, S. (2005). The K2K Collaboration collaboration: Evidence for muon neutrino oscillation in an accelerator-based experiment. Physical review letters, 94(8), 081802.

Michael, D. G., Adamson, P., Alexopoulos, T., Allison, W. W. M., Alner, G. J., Anderson, K., ... & McDonald, J. (2006). Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. Physical review letters, 97(19), 191801. doi:10.1103/PhysRevLett.97.191801

Cleveland, B. T., Daily, T., Davis Jr, R., Distel, J. R., Lande, K., Lee, C. K., ... & Ullman, J. (1998). Measurement of the solar electron neutrino flux with the Homestake chlorine detector. The Astrophysical Journal, 496(1), 505. doi:10.1086/305343.

Rashed, A., Sharma, P., & Datta, A. (2013). Tau-neutrino as a probe of nonstandard interaction. Nuclear Physics B, 877(3), 662–682. doi:10.1016/j.nuclphysb.2013.10.022.

Duraisamy, M., Sharma, P., & Datta, A. (2014). Azimuthal B →d∗τ- ν - τ angular distribution with tensor operators. Physical Review D - Particles, Fields, Gravitation and Cosmology, 90(7), 74013. doi:10.1103/PhysRevD.90.074013.

Abdurashitov, J. N., Gavrin, V. N., Gorbachev, V. V., Gurkina, P. P., Ibragimova, T. V., Kalikhov, A. V., ... Wilkerson, J. F. . (2009). SAGE Collaboration: Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Physical Review C, 80(1), 015807. doi:0.1103/PhysRevC.80.015807.

Auger, M., Berner, R., Chen, Y., Ereditato, A., Goeldi, D., Koller, P. P., ... & Asaadi, J. (2019). A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. arXiv preprint arXiv:1908.10956.

Abratenko, P., An, R., Anthony, J., Arellano, L., Asaadi, J., Ashkenazi, A., ... & Snider, E. L. (2021). First Measurement of Energy-dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector. arXiv preprint arXiv:2110.14023.

MicroBooNE Collaboration. (2016). Selection and kinematic properties of νµ charged-current inclusive events in 5 × 1019 POT of MicroBooNE data. Available online: http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1010-PUB.pdf (accessed on December 2021).

Ydrefors, E., & Suhonen, J. (2012). Charged-current neutrino-nucleus scattering off the even molybdenum isotopes. In Advances in High Energy Physics (Vol. 2012), 1-12. doi:10.1155/2012/373946.

Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., ... & Tang, W. (2018). Rejecting cosmic background for exclusive neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector. arXiv preprint arXiv:1812.05679.

Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., ... & Tagg, N. (2019). First measurement of ν μ charged-current π 0 production on argon with the MicroBooNE detector. Physical Review D, 99(9), 091102. doi:10.1103/PhysRevD.99.091102.

The MicroBoone Collaboration. (2018). Automated selection of electron neutrinos from the numi beam in the microboone detector and prospects for a measurement of the charged-current inclusive cross section. Available online: https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1054-PUB.pdf (accessed on December 2021).

Abratenko, P., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., ... & Soderberg, M. (2020). First Measurement of Differential Charged Current Quasielasticlike ν μ-Argon Scattering Cross Sections with the MicroBooNE Detector. Physical review letters, 125(20), 201803. doi:10.1103/PhysRevLett.125.201803.

Hirata, K. S., Inoue, K., Ishida, T., Kajita, T., Kihara, K., Nakahata, M., Nakamura, K., Ohara, S., Sato, N., Suzuki, Y., Totsuka, Y., Yaginuma, Y., Mori, M., Oyama, Y., Suzuki, A., Takahashi, K., Yamada, M., Koshiba, M., Nishijima, K., … Zhang, W. (1991). Real-time, directional measurement of B8 solar neutrinos in the Kamiokande II detector. Physical Review D, 44(8), 2241–2260. doi:10.1103/PhysRevD.44.2241.

Hosaka, J., Ishihara, K., Kameda, J., Koshio, Y., Minamino, A., Mitsuda, C., ... &. Wilkes, R. J. (2006). Super-Kamiokande Collaboration: Solar neutrino measurements in Super-Kamiokande-I. Physical Review D, 73(11), 112001. doi:10.1103/PhysRevD.73.112001.

Cravens, J.P., Abe, K., Iida, T., Ishihara, K., Kameda, J., Koshio, Y.,... &. Wilkes, R.J. (2008). Super-Kamiokande Collaboration: Solar neutrino measurements in Super-Kamiokande-II. Physical review D, 78(3), 032002. doi:10.1103/PhysRevD.78.032002.

Abe, K., Hayato, Y., Iida, T., Ikeda, M., Ishihara, C., Iyogi, K., ... &. Wilkes, R.J. (2011). Super-Kamiokande Collaboration. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83(5), 052010. doi:10.1103/PhysRevD.83.052010.

Abe, K., Haga, Y., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., ... & Calland, R. G. (2016). Solar neutrino measurements in Super-Kamiokande-IV. Physical Review D, 94(5), 052010. doi:10.1103/PhysRevD.94.052010.

Davies, A. T., Froggatt, C. D., & Moorhouse, R. G. (1996). Electroweak baryogenesis in the next to minimal supersymmetric model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 372(1–2), 88–94. doi:10.1016/0370-2693(96)00076-7.

Hirata, K. S., Inoue, K., Ishida, T., Kajita, T., Kihara, K., Nakahata, M., ... & Zhang, W. (1992). Observation of a small atmospheric vμ/ve ratio in Kamiokande. Physics Letters B, 280(1-2), 146-152. doi:10.1016/0370-2693(92)90788-6.

de Salas, P. F., Forero, D. V., Ternes, C. A., Tórtola, M., & Valle, J. W. F. (2018). Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 782, 633–640. doi:10.1016/j.physletb.2018.06.019.

Wallraff, M., & Wiebusch, C. (2015). Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft. Computer Physics Communications, 197, 185–189. doi:10.1016/j.cpc.2015.07.010.

Anamiati, G., Fonseca, R. M., & Hirsch, M. (2018). Quasi-Dirac neutrino oscillations. Physical Review D, 97(9), 095008. doi:10.1103/PhysRevD.97.095008.

Bridle, S., Elvin-Poole, J., Evans, J., Fernandez, S., Guzowski, P., & Söldner-Rembold, S. (2017). A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements. Physics Letters B, 764, 322-327. doi:10.1016/j.physletb.2016.11.050.

Dasgupta, B., & Kopp, J. (2021). Sterile neutrinos. Physics Reports, 928, 1–63. doi:10.1016/j.physrep.2021.06.002.

Fukuda, Y., Hayakawa, T., Inoue, K., Ishida, T., Joukou, S., Kajita, T., ... & Zhang, W. (1994). Atmospheric vμve ratio in the multi-GeV energy range. Physics Letters B, 335(2), 237-245. doi:10.1016/0370-2693(94)91420-6.

Casper, D., Becker-Szendy, R., Bratton, C. B., Cady, D. R., Claus, R., Dye, S. T., Gajewski, W., Goldhaber, M., Haines, T. J., Halverson, P. G., Jones, T. W., Kielczewska, D., Kropp, W. R., Learned, J. G., Losecco, J. M., McGrew, C., Matsuno, S., Matthews, J., Mudan, M. S., … Van Der Velde, J. C. (1991). Measurement of atmospheric neutrino composition with the IMB-3 detector. Physical Review Letters, 66(20), 2561–2564. doi:10.1103/PhysRevLett.66.2561.

Kajita, T., Kearns, E., & Shiozawa, M. (2016). Establishing atmospheric neutrino oscillations with Super-Kamiokande. Nuclear Physics B, 908, 14–29. doi:10.1016/j.nuclphysb.2016.04.017.

Akhmedov, E., Lipari, P., & Lusignoli, M. (1993). Matter effects in atmospheric neutrino oscillations. Physics Letters B, 300(1–2), 128–136. doi:10.1016/0370-2693(93)90759-B.

Liu, Q. Y., & Smirnov, A. Y. (1998). Neutrino mass spectrum with νμ → νs oscillations of atmospheric neutrinos. Nuclear Physics B, 524(3), 505–523. doi:10.1016/S0550-3213(98)00269-7.

Peltoniemi, J. T., & Valle, J. W. F. (1993). Reconciling dark matter, solar and atmospheric neutrinos. Nuclear Physics, Section B, 406(1–2), 409–422. doi:10.1016/0550-3213(93)90174-N.

Fuller, G. M., Primack, J. R., & Qian, Y. Z. (1995). Do experiments and astrophysical considerations suggest an inverted neutrino mass hierarchy? Physical Review D, 52(2), 1288–1291. doi:10.1103/PhysRevD.52.1288.

Gomez-Cadenas, J. J., & Gonzalez-Garcia, M. C. (1996). Futurev τ oscillation experiments and present data. Zeitschrift für Physik C Particles and Fields, 71(3), 443-454. doi:10.1007/BF02907002.

Okada, N., & Yasuda, O. (1997). A sterile neutrino scenario constrained by experiments and cosmology. International Journal of Modern Physics A, 12(21), 3669–3694. doi:10.1142/S0217751X97001894.

Dasgupta, B., & Kopp, J. (2021). Sterile neutrinos. Physics Reports, 928, 1–63. doi:10.1016/j.physrep.2021.06.002.

Athanassopoulos, C., Auerbach, L. B., Bauer, D., Bolton, R. D., Burman, R. L., Cohen, I., ... & Yellin, S. (1997). The Liquid scintillator neutrino detector and LAMPF neutrino source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 388(1-2), 149-172. doi:10.1016/S0168-9002(96)01155-2.

Akhmedov, E. K. (2000). Neutrino Physics. arXiv preprint hep-ph/0001264. Available online: https://arxiv.org/pdf/hep-ph/0001264.pdf (accessed on January 2022).

Beuthe, M. (2003). Oscillations of neutrinos and mesons in quantum field theory. Physics Report, 375(2–3), 105–218. doi:10.1016/S0370-1573(02)00538-0.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-02-015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Kendra Jean Jacques, Christelle Billan, Anna Roland, Preet Sharma