Mapping of Sensing Performance of Concentric and Non-Concentric Silver Nanoring

Mulda Muldarisnur, Ilham Perdana, E. Elvaswer, Dwi Puryanti

Abstract


Sensors play a critical role in improving overall human quality of life. They have been employed in most aspects of our lives. A recently emerging sensing platform is based on plasmonic resonance at the boundary of metals and dielectrics. Localized surface plasmon resonances–based sensors offer miniaturization, a simple setup, and relatively high sensitivity for real-time measurements. The reported figure of merit (FOM) of the LSPR-based sensor is generally limited, primarily due to its broad resonance peak. Nanorings composed of metal nanoparticles are known for their broad-range resonance tunability, high field localization, and large sensing area. Asymmetry of the nanoring with the introduction of core offset relaxes the selection rule for mode mixing, thus resulting in a narrower resonance peak. This may overcome broad resonance peak restriction. Concentric and non-concentric nanorings were simulated using the boundary element method implemented with the MNPBEM toolbox. We map the performance of nanoring sensors over a wide range of geometrical variations, namely, diameter, ring shell thickness, and the offset of the inner ring to the center of the outer ring wall (core offset). Sensitivity and FOM were found to rely substantially on the nanoring size parameters. The sensing performance map helps to obtain optimized nanoring parameters for the intended spectral range region. The obtained high sensitivity and FOM are much higher than the data available in the literature over visible and NIR ranges. The findings demonstrate the potential of nanorings for biosensing applications.

 

Doi: 10.28991/ESJ-2023-07-04-04

Full Text: PDF


Keywords


Localized Surface Plasmon Resonance; Nanoring; Sensing; Sensitivity; Biosensors; The Figure of Merit.

References


Li, X., Li, W., Guo, X., Lou, J., & Tong, L. (2013). All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. Optics Express, 21(13), 15698. doi:10.1364/oe.21.015698.

Ricciardi, A., Crescitelli, A., Vaiano, P., Quero, G., Consales, M., Pisco, M., Esposito, E., & Cusano, A. (2015). Lab-on-fiber technology: A new vision for chemical and biological sensing. Analyst, 140(24), 8068–8079. doi:10.1039/c5an01241d.

Wu, X., Zhou, L., Su, Y., & Dong, C. M. (2016). Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy. Biomacromolecules, 17(7), 2489–2501. doi:10.1021/acs.biomac.6b00721.

Lazic, V., Palucci, A., De Dominicis, L., Nuvoli, M., Pistilli, M., Menicucci, I., Colao, F., & Almaviva, S. (2019). Integrated laser sensor (ILS) for remote surface analysis: Application for detecting explosives in fingerprints. Sensors (Switzerland), 19(19), 4269. doi:10.3390/s19194269.

Shrivastav, A. M., Cvelbar, U., & Abdulhalim, I. (2021). A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Communications Biology, 4(1), 1–12. doi:10.1038/s42003-020-01615-8.

Kim, H. M., Park, J. H., & Lee, S. K. (2019). Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor. Scientific Reports, 9(1), 15605. doi:10.1038/s41598-019-52056-1.

Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International, 2, 100110. doi:10.1016/j.sintl.2021.100110.

Bhattacharya, S., Agarwal, A. K., Prakash, O., & Singh, S. (2019). Sensors for Automotive and Aerospace Applications. Energy, Environment, and Sustainability, Springer, Singapore. doi:10.1007/978-981-13-3290-6.

Rifat, A. A., Ahmed, R., Mahdiraji, G. A., & Adikan, F. R. M. (2017). Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sensors Journal, 17(9), 2776–2783. doi:10.1109/JSEN.2017.2677473.

Fan, M., Andrade, G. F. S., & Brolo, A. G. (2020). A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 1097, 1–29. doi:10.1016/j.aca.2019.11.049.

Bülbül, G., Hayat, A., & Andreescu, S. (2015). Portable nanoparticle-based sensors for food safety assessment. Sensors (Switzerland), 15(12), 30736–30758. doi:10.3390/s151229826.

Mehrotra, P. (2016). Biosensors and their applications - A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153–159. doi:10.1016/j.jobcr.2015.12.002.

Zheng, Y., Bian, S., Sun, J., Wen, L., Rong, G., & Sawan, M. (2022). Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection. Biosensors, 12(3), 151. doi:10.3390/bios12030151.

Justino, C. I. L., Duarte, A. C., & Rocha-Santos, T. A. P. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors (Switzerland), 17(12), 2918. doi:10.3390/s17122918.

Liu, J., Jalali, M., Mahshid, S., & Wachsmann-Hogiu, S. (2020). Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst, 145(2), 364–384. doi:10.1039/c9an02149c.

Justino, C. I. L., Rocha-Santos, T. A., & Duarte, A. C. (2010). Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC - Trends in Analytical Chemistry, 29(10), 1172–1183. doi:10.1016/j.trac.2010.07.008.

Anas, N. A. A., Fen, Y. W., Omar, N. A. S., Daniyal, W. M. E. M. M., Ramdzan, N. S. M., & Saleviter, S. (2019). Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors, 19(18), 3850. doi:10.3390/s19183850.

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured plasmonic sensors. Chemical Reviews, 108(2), 494–521. doi:10.1021/cr068126n.

Tong, L. M., & Xu, H. X. (2012). Surface plasmons-mechanisms, application and perspectives. Physics, 41(9), 582-588.

Svedendahl, M., Chen, S., Dmitriev, A., & Käll, M. (2009). Refractometric sensing using propagating versus localized surface plasmons: A direct comparison. Nano Letters, 9(12), 4428–4433. doi:10.1021/nl902721z.

Haes, A. J., & Van Duyne, R. P. (2002). A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society, 124(35), 10596–10604. doi:10.1021/ja020393x.

Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22(1), 47–52. doi:10.1038/nbt927.

Aizpurua, J., Bryant, G. W., Richter, L. J., García de Abajo, F. J., Kelley, B. K., & Mallouk, T. (2005). Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 71(23). doi:10.1103/physrevb.71.235420.

Le, F., Brandl, D. W., Urzhumov, Y. A., Wang, H., Kundu, J., Halas, N. J., Aizpurua, J., & Nordlander, P. (2008). Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano, 2(4), 707–718. doi:10.1021/nn800047e.

Nakayama, K., Tanabe, K., & Atwater, H. A. (2008). Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 93(12), 121904. doi:10.1063/1.2988288.

Perdana, I., & Muldarisnur, M. (2021). Optimization of Ag-SiO2 core-shell nanoparticles arrangement for light absorption enhancement in organic solar cells. AIP Conference Proceedings. doi10.1063/5.0037507.

Aćimović, S. S., Ortega, M. A., Sanz, V., Berthelot, J., Garcia-Cordero, J. L., Renger, J., Maerkl, S. J., Kreuzer, M. P., & Quidant, R. (2014). LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Letters, 14(5), 2636–2641. doi:10.1021/nl500574n.

Turcheniuk, K., Dumych, T., Bilyy, R., Turcheniuk, V., Bouckaert, J., Vovk, V., Chopyak, V., Zaitsev, V., Mariot, P., Prevarskaya, N., Boukherroub, R., & Szunerits, S. (2016). Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Advances, 6(2), 1600–1610. doi:10.1039/c5ra24662h.

Yildiz, A. A. (2016). On-Chip Drug Screening and Nanomedicine Applications via (L)SPR. Journal of Nanomedicine Research, 4(4), 94. doi:10.15406/jnmr.2016.04.00094.

Suarez, M. A., Grosjean, T., Charraut, D., & Courjon, D. (2007). Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications. Optics Communications, 270(2), 447–454. doi:10.1016/j.optcom.2006.09.020.

Hong, Y., Huh, Y. M., Yoon, D. S., & Yang, J. (2012). Nanobiosensors based on localized surface plasmon resonance for biomarker detection. Journal of Nanomaterials, 2012. doi:10.1155/2012/759830.

Das, A., Kumar, K., & Dhawan, A. (2021). Periodic arrays of plasmonic crossed-bowtie nanostructures interspaced with plasmonic nanocrosses for highly sensitive LSPR based chemical and biological sensing. RSC Advances, 11(14), 8096–8106. doi:10.1039/d0ra09012c.

Zalyubovskiy, S. J., Bogdanova, M., Deinega, A., Lozovik, Y., Pris, A. D., An, K. H., Hall, W. P., & Potyrailo, R. A. (2012). Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. Journal of the Optical Society of America A, 29(6), 994. doi:10.1364/josaa.29.000994.

Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108(2), 462–493. doi:10.1021/cr068107d.

Liang, Y., Zhang, H., Zhu, W., Agrawal, A., Lezec, H., Li, L., Peng, W., Zou, Y., Lu, Y., & Xu, T. (2017). Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing. ACS Sensors, 2(12), 1796–1804. doi:10.1021/acssensors.7b00607.

Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Switzerland), 15(5), 10481–10510. doi:10.3390/s150510481.

Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58, 267–297. doi:10.1146/annurev.physchem.58.032806.104607.

Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442–453. doi:10.1038/nmat2162.

Kazuma, E., & Tatsuma, T. (2014). Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale, 6(4), 2397–2405. doi:10.1039/c3nr05846h.

Hamza, M. E., Othman, M. A., & Swillam, M. A. (2022). Plasmonic Biosensors: Review. Biology, 11(5), 621. doi:10.3390/biology11050621.

Wiley, B. J., Im, S. H., Li, Z. Y., McLellan, J., Siekkinen, A., & Xia, Y. (2006). Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 110(32), 15666–15675. doi:10.1021/jp0608628.

Muldarisnur, M., Oktorina, E., Fridayanti, N., Zeni, E., Elvaswer, E., & Syukri, S. (2019). Size and aspect ratio dependency of sensitivity of ellipsoidal metal nanoparticle based liquid sensor. IOP Conference Series: Materials Science and Engineering, 578(1), 12035. doi:10.1088/1757-899X/578/1/012035.

Muldarisnur, M., Fridayanti, N., Oktorina, E., Zeni, E., Elvaswer, E., & Syukri, S. (2019). Effect of nanoparticle geometry on sensitivity of metal nanoparticle based sensor. IOP Conference Series: Materials Science and Engineering, 578(1), 12036. doi:10.1088/1757-899X/578/1/012036.

Sherry, L. J., Chang, S. H., Schatz, G. C., Van Duyne, R. P., Wiley, B. J., & Xia, Y. (2005). Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters, 5(10), 2034–2038. doi:10.1021/nl0515753.

Chen, H., Shao, L., Li, Q., & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chemical Society Reviews, 42(7), 2679–2724. doi:10.1039/c2cs35367a.

Jakab, A., Rosman, C., Khalavka, Y., Becker, J., Trügler, A., Hohenester, U., & Sönnichsen, C. (2011). Highly sensitive plasmonic silver nanorods. ACS Nano, 5(9), 6880–6885. doi:10.1021/nn200877b.

Wiley, B. J., Chen, Y., McLellan, J. M., Xiong, Y., Li, Z. Y., Ginger, D., & Xia, Y. (2007). Synthesis and optical properties of silver nanobars and nanorice. Nano Letters, 7(4), 1032–1036. doi:10.1021/nl070214f.

Washio, I., Xiong, Y., Yin, Y., & Xia, Y. (2006). Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 18(13), 1745–1749. doi:10.1002/adma.200600675.

Pastoriza-Santos, I., & Liz-Marzán, L. M. (2002). Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2(8), 903–905. doi:10.1021/nl025638i.

Hao, E., Bailey, R. C., Schatz, G. C., Hupp, J. T., & Li, S. (2004). Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Letters, 4(2), 327–330. doi:10.1021/nl0351542.

Zhang, Q., Large, N., & Wang, H. (2014). Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced raman spectroscopy: Concave nanocubes, nanotrisoctahedra, and nanostars. ACS Applied Materials and Interfaces, 6(19), 17255–17267. doi:10.1021/am505245z.

Nehl, C. L., Liao, H., & Hafner, J. H. (2006). Optical properties of star-shaped gold nanoparticles. Nano Letters, 6(4), 683–688. doi:10.1021/nl052409y.

Huang, C., Ye, J., Wang, S., Stakenborg, T., & Lagae, L. (2012). Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Applied Physics Letters, 100(17), 173114. doi:10.1063/1.4707382.

Mu, S., Chen, H., Shi, C., Zhang, J., & Yang, B. (2021). Au nanoring arrays with tunable morphological features and plasmonic resonances. Nano Research, 14(12), 4674–4679. doi:10.1007/s12274-021-3402-3.

Sonnefraud, Y., Verellen, N., Sobhani, H., Vandenbosch, G. A. E., Moshchalkov, V. V., Van Dorpe, P., Nordlander, P., & Maier, S. A. (2010). Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. ACS Nano, 4(3), 1664–1670. doi:10.1021/nn901580r.

Hao, F., Sonnefraud, Y., Dorpe, P. V., Maier, S. A., Halas, N. J., & Nordlander, P. (2008). Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters, 8(11), 3983–3988. doi:10.1021/nl802509r.

Fan, J. A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N. J., Manoharan, V. N., Nordlander, P., Shvets, G., & Capasso, F. (2010). Self-assembled plasmonic nanoparticle clusters. Science, 328(5982), 1135–1138. doi:10.1126/science.1187949.

Lassiter, J. B., Sobhani, H., Fan, J. A., Kundu, J., Capasso, F., Nordlander, P., & Halas, N. J. (2010). Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability. Nano Letters, 10(8), 3184–3189. doi:10.1021/nl102108u.

Kamarauskas, A., Seliuta, D., Šlekas, G., Sadauskas, M., Kvietkauskas, E., Trusovas, R., Ratautas, K., & Kancleris, Ž. (2022). Experimental demonstration of multiple Fano resonances in a mirrored array of split-ring resonators on a thick substrate. Scientific Reports, 12(1), 15846. doi:10.1038/s41598-022-20434-x.

Rahmani, M., Luk’yanchuk, B., & Hong, M. (2013). Fano resonance in novel plasmonic nanostructures. Laser and Photonics Reviews, 7(3), 329–349. doi:10.1002/lpor.201200021.

Dana, B. D., Koya, A. N., Song, X., & Lin, J. (2022). Enhanced FANO resonance in asymmetric nano dimer for sensing applications. Physica B: Condensed Matter, 631, 413706. doi:10.1016/j.physb.2022.413706.

Roshani, S., Coccia, M., & Mosleh, M. (2022). Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech and Innovation Journal, 3(3), 356-375. doi:10.28991/HIJ-2022-03-03-010.

Agharazy Dormeny, A., Abedini Sohi, P., & Kahrizi, M. (2020). Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures. Results in Physics, 16, 102869. doi:10.1016/j.rinp.2019.102869.

Khoshdel, V., & Shokooh-Saremi, M. (2019). Plasmonic nano bow-tie arrays with enhanced LSPR refractive index sensing. Micro and Nano Letters, 14(5), 566–571. doi:10.1049/mnl.2018.5588.

An, T., Wen, J., Dong, Z., Zhang, Y., Zhang, J., Qin, F., Wang, Y., & Zhao, X. (2023). Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis. Sensors, 23(1), 445. doi:10.3390/s23010445.

Quintanilla-Villanueva, G. E., Maldonado, J., Luna-Moreno, D., Rodríguez-Delgado, J. M., Villarreal-Chiu, J. F., & Rodríguez-Delgado, M. M. (2023). Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors, 13(1), 90. doi:10.3390/bios13010090.

Hu, Y., Noelck, S. J., & Drezek, R. A. (2010). Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano, 4(3), 1521–1528. doi:10.1021/nn901743m.

Wu, Y., & Nordlander, P. (2006). Plasmon hybridization in nanoshells with a nonconcentric core. Journal of Chemical Physics, 125(12), 124708. doi:10.1063/1.2352750.

Mangini, F., Tedeschi, N., Frezza, F., & Sihvola, A. (2014). Electromagnetic interaction with two eccentric spheres. Journal of the Optical Society of America A, 31(4), 783. doi:10.1364/josaa.31.000783.

Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370–4379. doi:10.1103/PhysRevB.6.4370.

García de Abajo, F. J., & Howie, A. (2002). Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Physical Review B, 65(11). doi:10.1103/physrevb.65.115418.

Hohenester, U., & Trugler, A. (2008). Interaction of Single Molecules with Metallic Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 14(6), 1430–1440. doi:10.1109/jstqe.2008.2007918.

Hohenester, U., & Trügler, A. (2012). MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles. Computer Physics Communications, 183(2), 370–381. doi:10.1016/j.cpc.2011.09.009.

Hohenester, U. (2014). Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Computer Physics Communications, 185(3), 1177–1187. doi:10.1016/j.cpc.2013.12.010.

Bonyár, A. (2021). Maximizing the surface sensitivity of lspr biosensors through plasmon coupling—interparticle gap optimization for dimers using computational simulations. Biosensors, 11(12), 527. doi:10.3390/bios11120527.

Liu, Z., Liu, G., Liu, X., & Fu, G. (2020). Plasmonic sensors with an ultra-high figure of merit. Nanotechnology, 31(11), 115208. doi:10.1088/1361-6528/ab5a00.

Lodewijks, K., Van Roy, W., Borghs, G., Lagae, L., & Van Dorpe, P. (2012). Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Letters, 12(3), 1655–1659. doi:10.1021/nl300044a.

Juvé, V., Cardinal, M. F., Lombardi, A., Crut, A., Maioli, P., Pérez-Juste, J., Liz-Marzán, L. M., Del Fatti, N., & Vallée, F. (2013). Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: Single gold nanorods. Nano Letters, 13(5), 2234–2240. doi:10.1021/nl400777y.

Prodan, E., & Nordlander, P. (2004). Plasmon hybridization in spherical nanoparticles. Journal of Chemical Physics, 120(11), 5444–5454. doi:10.1063/1.1647518.

Wang, H., Wu, Y., Lassiter, B., Nehl, C. L., Hafner, J. H., Nordlander, P., & Halas, N. J. (2006). Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences, 103(29), 10856–10860. doi:10.1073/pnas.0604003103.

Prodan, E., & Nordlander, P. (2003). Structural tunability of the plasmon resonances in metallic nanoshells. Nano Letters, 3(4), 543–547. doi:10.1021/nl034030m.

Farooq, S., & de Araujo, R. E. (2018). Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing. Open Journal of Applied Sciences, 08(03), 126–139. doi:10.4236/ojapps.2018.83010.

Hutter, E., & Fendler, J. H. (2004). Exploitation of localized surface plasmon resonance. Advanced Materials, 16(19), 1685–1706. doi:10.1002/adma.200400271.

Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409–453. doi:10.1080/01442350050034180.

Lee, K. S., & El-Sayed, M. A. (2006). Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B, 110(39), 19220–19225. doi:10.1021/jp062536y.

Westcott, S. L., Jackson, J. B., Radloff, C., & Halas, N. J. (2002). Relative contributions to the plasmon line shape of metal nanoshells. Physical Review B, 66(15). doi:10.1103/physrevb.66.155431.

Shabaninezhad, M., & Ramakrishna, G. (2019). Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells. Journal of Chemical Physics, 150(14), 144116. doi:10.1063/1.5090885.

Hu, M., Novo, C., Funston, A., Wang, H., Staleva, H., Zou, S., Mulvaney, P., Xia, Y., & Hartland, G. V. (2008). Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance. Journal of Materials Chemistry, 18(17), 1949–1960. doi:10.1039/b714759g.

Wang, H., Brandl, D. W., Le, F., Nordlander, P., & Halas, N. J. (2006). Nanorice: A hybrid plasmonic nanostructure. Nano Letters, 6(4), 827–832. doi:10.1021/nl060209w.

Jain, P. K., & El-Sayed, M. A. (2007). Surface plasmon resonance sensitivity of metal nanostructures: Physical basis and universal scaling in metal nanoshells. Journal of Physical Chemistry C, 111(47), 17451–17454. doi:10.1021/jp0773177.

Sun, Y., & Xia, Y. (2002). Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry, 74(20), 5297–5305. doi:10.1021/ac0258352.

Fernandes, J., & Kang, S. (2021). Numerical study on the surface plasmon resonance tunability of spherical and non-spherical core-shell dimer nanostructures. Nanomaterials, 11(7). doi:10.3390/nano11071728.

Farooq, S., Wali, F., Zezell, D. M., de Araujo, R. E., & Rativa, D. (2022). Optimizing and Quantifying Gold Nanospheres Based on LSPR Label-Free Biosensor for Dengue Diagnosis. Polymers, 14(8). doi:10.3390/polym14081592.

Chen, Y., & Ming, H. (2012). Review of surface plasmon resonance and localized surface plasmon resonance sensor? Photonic Sensors, 2(1), 37–49. doi:10.1007/s13320-011-0051-2.

Ratnawati, R., Wulandari, R., Kumoro, A. C., & Hadiyanto, H. (2022). Response surface methodology for formulating PVA/starch/lignin biodegradable plastic. Emerging Science Journal, 6(2), 238-255. doi:10.28991/ESJ-2022-06-02-03.

Martinsson, E., Shahjamali, M. M., Enander, K., Boey, F., Xue, C., Aili, D., & Liedberg, B. (2013). Local refractive index sensing based on edge gold-coated silver nanoprisms. Journal of Physical Chemistry C, 117(44), 23148–23154. doi:10.1021/jp408187e.

Lee, S. W., Lee, K. S., Ahn, J., Lee, J. J., Kim, M. G., & Shin, Y. B. (2011). Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano, 5(2), 897–904. doi:10.1021/nn102041m.

Thilsted, A. H., Pan, J. Y., Wu, K., Zór, K., Rindzevicius, T., Schmidt, M. S., & Boisen, A. (2016). Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing. Small, 12(48), 6745–6752. doi:10.1002/smll.201602299.

Xu, Y., Bai, P., Zhou, X., Akimov, Y., Png, C. E., Ang, L. K., Knoll, W., & Wu, L. (2019). Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Advanced Optical Materials, 7(9), 1801433. doi:10.1002/adom.201801433.

Minopoli, A., Acunzo, A., Della Ventura, B., & Velotta, R. (2022). Nanostructured Surfaces as Plasmonic Biosensors: A Review. Advanced Materials Interfaces, 9(2), 2101133. doi:10.1002/admi.202101133.

Ahmadivand, A., & Pala, N. (2015). Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: Efficient and precise localization of surface plasmon resonance (LSPR) sensing based on FANO resonances. Applied Spectroscopy, 69(2), 277–286. doi:10.1366/14-07589.

Hao, F., Nordlander, P., Sonnefraud, Y., Van Dorpe, P., & Maier, S. A. (2009). Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano, 3(3), 643–652. doi:10.1021/nn900012r.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mulda Muldarisnur