A Binary Survivability Prediction Classification Model towards Understanding of Osteosarcoma Prognosis
Abstract
Doi: 10.28991/ESJ-2023-07-04-018
Full Text: PDF
Keywords
References
Merriam-Webster. (2023). Prognosis. “Merriam-Webster.Com” Dictionary. Available online: https://www.merriam-webster.com/dictionary/prognosis (accessed on April 2023).
United Nations. (2014). Health-United Nations Sustainable Development. United Nations, New York, United States. Available online: https://www.un.org/sustainabledevelopment/health/ (accessed on April 2023).
Mackillop, W. J. (2006). The Importance of Prognosis in Cancer Medicine. TNM Online. doi10.1002/0471463736.tnmp01.pub2.
Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer, 115(7), 1531–1543. doi:10.1002/cncr.24121.
Chao, C. M., Yu, Y. W., Cheng, B. W., & Kuo, Y. L. (2014). Construction the Model on the Breast Cancer Survival Analysis Use Support Vector Machine, Logistic Regression and Decision Tree. Journal of Medical Systems, 38(10), 106. doi:10.1007/s10916-014-0106-1.
Roshani, S., Coccia, M., & Mosleh, M. (2022). Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech and Innovation Journal, 3(3), 356-375. doi:10.28991/HIJ-2022-03-03-010.
Montazeri, M., Montazeri, M., Montazeri, M., & Beigzadeh, A. (2016). Machine learning models in breast cancer survival prediction. Technology and Health Care, 24(1), 31–42. doi:10.3233/THC-151071.
Kansara, M., Teng, M. W., Smyth, M. J., & Thomas, D. M. (2014). Translational biology of osteosarcoma. Nature Reviews Cancer, 14(11), 722–735. doi:10.1038/nrc3838.
Misaghi, A., Goldin, A., Awad, M., & Kulidjian, A. A. (2018). Osteosarcoma: A comprehensive review. Sicot-J, 4, 12. doi:10.1051/sicotj/2017028.
Lindsey, B. A., Markel, J. E., & Kleinerman, E. S. (2017). Osteosarcoma Overview. Rheumatology and Therapy, 4(1), 25–43. doi:10.1007/s40744-016-0050-2.
Stewart, B. W., & Wild, C. P. (2014). World Cancer Report 2014. World Health Organization (WHO), Geneva, Switzerland.
Tharakan, S., Raja, I., Pietraru, A., Sarecha, E., Gresita, A., Petcu, E., Ilyas, A., & Hadjiargyrou, M. (2023). The Use of Hydrogels for the Treatment of Bone Osteosarcoma via Localized Drug-Delivery and Tissue Regeneration: A Narrative Review. Gels, 9(4), 274. doi:10.3390/gels9040274.
Tang, J., Wang, J. K., & Pan, X. (2022). A Web-Based Prediction Model for Overall Survival of Elderly Patients with Malignant Bone Tumors: A Population-Based Study. Frontiers in Public Health, 9, 1-12. doi:10.3389/fpubh.2021.812395.
Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. doi:10.3322/caac.21590.
Jiang, J., Pan, H., Li, M., Qian, B., Lin, X., & Fan, S. (2021). Predictive model for the 5-year survival status of osteosarcoma patients based on the SEER database and XGBoost algorithm. Scientific Reports, 11, 5542. doi:10.1038/s41598-021-85223-4.
Muthaiyah, S., Singh, V.A. (2021). Bone Cancer Survivability Prognosis with KNN and Genetic Algorithms. Concepts and Real-Time Applications of Deep Learning. EAI/Springer Innovations in Communication and Computing. Springer, Cham, Switzerland. doi.org/10.1007/978-3-030-76167-7_8.
Park, K., Ali, A., Kim, D., An, Y., Kim, M., & Shin, H. (2013). Robust predictive model for evaluating breast cancer survivability. Engineering Applications of Artificial Intelligence, 26(9), 2194–2205. doi:10.1016/j.engappai.2013.06.013.
Steyerberg, E. W., Moons, K. G. M., van der Windt, D. A., Hayden, J. A., Perel, P., Schroter, S., Riley, R. D., Hemingway, H., & Altman, D. G. (2013). Prognosis Research Strategy (Progress) 3: Prognostic Model Research. PLoS Medicine, 10(2), e1001381. doi:10.1371/journal.pmed.1001381.
Kyburz, D., & Finckh, A. (2013). The importance of early treatment for the prognosis of rheumatoid arthritis. Swiss Medical Weekly, 143. doi:10.4414/smw.2013.13865.
Harting, M. T., Lally, K. P., Andrassy, R. J., Vaporciyan, A. A., Cox, C. S., Hayes-Jordan, A., & Blakely, M. L. (2010). Age as a prognostic factor for patients with osteosarcoma: An analysis of 438 patients. Journal of Cancer Research and Clinical Oncology, 136(4), 561–570. doi:10.1007/s00432-009-0690-5.
LeCornu, M. G., Chuang, S. K., Kaban, L. B., & August, M. (2011). Osteosarcoma of the jaws: Factors influencing prognosis. Journal of Oral and Maxillofacial Surgery, 69(9), 2368–2375. doi:10.1016/j.joms.2010.10.023.
Duchman, K. R., Gao, Y., & Miller, B. J. (2015). Prognostic factors for survival in patients with high-grade osteosarcoma using the Surveillance, Epidemiology, and End Results (SEER) Program database. Cancer Epidemiology, 39(4), 593–599. doi:10.1016/j.canep.2015.05.001.
Kim, J., & Shin, H. (2013). Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. Journal of the American Medical Informatics Association, 20(4), 613–618. doi:10.1136/amiajnl-2012-001570.
Wang, P., Li, Y., & Reddy, C. K. (2019). Machine Learning for Survival Analysis. ACM Computing Surveys, 51(6), 1–36. doi:10.1145/3214306.
Dudley, W. N., Wickham, R., & Coombs, N. (2016). An Introduction to Survival Statistics: Kaplan-Meier Analysis. Journal of the Advanced Practitioner in Oncology, 7(1), 91-100. doi:10.6004/jadpro.2016.7.1.8.
Stel, V. S., Dekker, F. W., Tripepi, G., Zoccali, C., & Jager, K. J. (2011). Survival analysis I: The Kaplan-Meier method. Nephron - Clinical Practice, 119 (1): c83–c88. doi:10.1159/000324758.
Etikan, I. (2017). The Kaplan Meier Estimate in Survival Analysis. Biometrics & Biostatistics International Journal, 5(2), 55-59. doi:10.15406/bbij.2017.05.00128.
Datema, F. R., Moya, A., Krause, P., Bäck, T., Willmes, L., Langeveld, T., Baatenburg De Jong, R. J., & Blom, H. M. (2012). Novel head and neck cancer survival analysis approach: Random survival forests versus cox proportional hazards regression. Head and Neck, 34(1), 50–58. doi:10.1002/hed.21698.
Li, L., Yang, Z., Hou, Y., & Chen, Z. (2020). Moving beyond the Cox proportional hazards model in survival data analysis: A cervical cancer study. BMJ Open, 10(7), e033965. doi:10.1136/bmjopen-2019-033965.
Matsuo, K., Purushotham, S., Jiang, B., Mandelbaum, R. S., Takiuchi, T., Liu, Y., & Roman, L. D. (2019). Survival outcome prediction in cervical cancer: Cox models vs. deep-learning model. American Journal of Obstetrics and Gynecology, 220(4), 381.e1-381.e14. doi:10.1016/j.ajog.2018.12.030.
Miladinovic, B., Kumar, A., Mhaskar, R., Kim, S., Schonwetter, R., & Djulbegovic, B. (2012). A Flexible Alternative to the Cox Proportional Hazards Model for Assessing the Prognostic Accuracy of Hospice Patient Survival. PLoS ONE, 7(10), e47804. doi:10.1371/journal.pone.0047804.
Shafique, U., & Qaiser, H. (2014). A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217-222.
Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. Eurasip Journal on Advances in Signal Processing, 2016(1), 2351–8014. doi:10.1186/s13634-016-0355-x.
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. doi:10.1016/j.csbj.2014.11.005.
Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2017). Disease Prediction by Machine Learning over Big Data from Healthcare Communities. IEEE Access, 5, 8869–8879. doi:10.1109/ACCESS.2017.2694446.
Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J. F., & Hua, L. (2012). Data mining in healthcare and biomedicine: A survey of the literature. Journal of Medical Systems, 36(4), 2431–2448. doi:10.1007/s10916-011-9710-5.
Li, Z., Soroushmehr, S. M. R., Hua, Y., Mao, M., Qiu, Y., & Najarian, K. (2017). Classifying osteosarcoma patients using machine learning approaches. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea. doi:10.1109/embc.2017.8036768.
DOI: 10.28991/ESJ-2023-07-04-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Saravanan Muthaiyah, Vivek Singh, Thein Oak Kyaw Zaw, Kalaiarasi Sonai Muthu Anbananthen, Byeonghwa Park, Myung Joon Kim