Developing Data Integrity in an Electronic Health Record System using Blockchain and InterPlanetary File System (Case Study: COVID-19 Data)

Imam Riadi, Tohari Ahmad, Riyanarto Sarno, Purwono Purwono, Alfian Ma'arif


The misuse of health data stored in the Electronic Health Record (EHR) system can be uncontrolled. For example, mishandling of privacy and data security related to Corona Virus Disease-19 (COVID-19), containing patient diagnosis and vaccine certificate in Indonesia. We propose a system framework design by utilizing the InterPlanetary File System (IPFS) and Blockchain technology to overcome this problem. The IPFS environment supports a large data storage with a distributed network powered by Ethereum blockchain. The combination of this technology allows data stored in the EHR to be secure and available at any time. All data are secured with a blockchain cryptographic algorithm and can only be accessed using a user's private key. System testing evaluates the mechanism and process of storing and accessing data from 346 computers connected to the IPFS network and Blockchain by considering several parameters, such as gas unit, CPU load, network latency, and bandwidth used. The obtained results show that 135205 gas units are used in each transaction based on the tests. The average execution speed ranges from 12.98 to 14.08 GHz, 26 KB/s is used for incoming, and 4 KB/s is for outgoing bandwidth. Our contribution is in designing a blockchain-based decentralized EHR system by maximizing the use of private keys as an access right to maintain the integrity of COVID-19 diagnosis and certificate data. We also provide alternative storage using a distributed IPFS to maintain data availability at all times as a solution to the problem of traditional cloud storage, which often ignores data availability.


Doi: 10.28991/esj-2021-SP1-013

Full Text: PDF


COVID-19; EHR; Blockchain; IPFS; Network Security.


Sarno, R., Sungkono, K. R., Taufiqulsa’di, M., Darmawan, H., Fahmi, A., & Triyana, K. (2021). Improving efficiency for discovering business processes containing invisible tasks in non-free choice. In Journal of Big Data (Vol. 8, Issue 1). doi:10.1186/s40537-021-00487-x.

Ahmad, T., & Samudra, Y. (2020). Reversible data hiding with segmented secrets and smoothed samples in various audio genres. Journal of Big Data, 7(1), 1-19. doi:10.1186/s40537-020-00360-3.

Reuters, (2021). Privacy alarm in Indonesia over president’s leaked vaccine certificate. Available online: (accessed on September 2021).

BBC. (2021). Covid-19 death rate: Central and regional government data difference reaches 19,000 cases, “green outside red inside. Available online: (accessed on September 2021).

Annaka, S. (2020). Political Regime and Suspected COVID-19 Death Data Manipulation. doi:10.33774/apsa-2020-1xfvz.

Sarno, R., Sinaga, F., & Sungkono, K. R. (2020). Anomaly detection in business processes using process mining and fuzzy association rule learning. Journal of Big Data, 7(1). doi:10.1186/s40537-019-0277-1.

Fatokun, T., Nag, A., & Sharma, S. (2021). Towards a blockchain assisted patient owned system for electronic health records. Electronics (Switzerland), 10(5), 1–14. doi:10.3390/electronics10050580.

De Aguiar, E. J., Faiçal, B. S., Krishnamachari, B., & Ueyama, J. (2020). A Survey of Blockchain-Based Strategies for Healthcare. ACM Computing Surveys, 53(2), 1–27. doi:10.1145/3376915.

Sun, J., Ren, L., Wang, S., & Yao, X. (2020). A blockchain-based framework for electronic medical records sharing with fine-grained access control. PLoS ONE, 15(10 October), 239946. doi:10.1371/journal.pone.0239946.

Balistri, E., Casellato, F., Giannelli, C., & Stefanelli, C. (2021). BlockHealth: Blockchain-based secure and peer-to-peer health information sharing with data protection and right to be forgotten. ICT Express, 7(3), 308–315. doi:10.1016/j.icte.2021.08.006.

Qu, J. (2022). Blockchain in medical informatics. Journal of Industrial Information Integration, 25, 100258. doi:10.1016/j.jii.2021.100258.

Liao, C. H., Lin, H. E., & Yuan, S. M. (2020). Blockchain-Enabled Integrated Market Platform for Contract Production. IEEE Access, 8, 211007–211027. doi:10.1109/ACCESS.2020.3039620.

Sestrem Ochôa, I., Reis Quietinho Leithardt, V., Calbusch, L., De Paz Santana, J. F., Delcio Parreira, W., Oriel Seman, L., & Zeferino, C. A. (2021). Performance and Security Evaluation on a Blockchain Architecture for License Plate Recognition Systems. Applied Sciences, 11(3), 1255.

Hernández-Ramos, J. L., Karopoulos, G., Geneiatakis, D., Martin, T., Kambourakis, G., & Fovino, I. N. (2021). Sharing Pandemic Vaccination Certificates through Blockchain: Case Study and Performance Evaluation. In W. Li (Ed.), Wireless Communications and Mobile Computing (Vol. 2021, pp. 1–12). doi:10.1155/2021/2427896.

Kalla, A., Hewa, T., Mishra, R. A., Ylianttila, M., & Liyanage, M. (2020). The Role of Blockchain to Fight against COVID-19. IEEE Engineering Management Review, 48(3), 85–96. doi:10.1109/EMR.2020.3014052.

Kumar, S., Bharti, A. K., & Amin, R. (2021). Decentralized secure storage of medical records using Blockchain and IPFS : A comparative analysis with future directions . Security and Privacy, 4(5). doi:10.1002/spy2.162.

Nasir, M. H., Arshad, J., Khan, M. M., Fatima, M., Salah, K., & Jayaraman, R. (2022). Scalable blockchains — A systematic review. Future Generation Computer Systems, 126, 136–162. doi:10.1016/j.future.2021.07.035.

Hasan, H. R., Salah, K., Jayaraman, R., Arshad, J., Yaqoob, I., Omar, M., & Ellahham, S. (2020). Blockchain-Based Solution for COVID-19 Digital Medical Passports and Immunity Certificates. In IEEE Access 8, 222093–222108. doi:10.1109/ACCESS.2020.3043350.

Sarmah, S. S. (2018). Understanding Blockchain Technology. Computer Science and Engineering, 8(2), 23–29. doi:10.5923/

Satapathy, U., Mohanta, B. K., Panda, S. S., Sobhanayak, S., & Jena, D. (2019). A Secure Framework for Communication in Internet of Things Application using Hyperledger based Blockchain. 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019. doi:10.1109/ICCCNT45670.2019.8944811.

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017 (pp. 557–564). doi:10.1109/BigDataCongress.2017.85.

dos Santos, R. P. (2019). Consensus Algorithms: A Matter of Complexity? Between Science and Economics, 147–170. doi:10.1142/9781786346391_0008.

Lucas, B., & Paez, R. V. (2019). Consensus algorithm for a private blockchain. ICEIEC 2019 - Proceedings of 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication, July, 264–271. doi:10.1109/ICEIEC.2019.8784500.

Agung, A. A. G., Dillak, R. G., Suchendra, D. R., & Robbi, H. (2019). Proof of work: Energy inefficiency and profitability. Journal of Theoretical and Applied Information Technology, 97(5), 1623–1633.

Muchtadi-Alamsyah, I., Imdad, M. T., & Sutikno, S. (2020). Group signature based ethereum transaction. International Journal on Electrical Engineering and Informatics, 12(1), 19–32. doi:10.15676/ijeei.2020.12.1.2.

Gupta, S., & Sadoghi, M. (2019). Blockchain Transaction Processing. Encyclopedia of Big Data Technologies, 366–376. doi:10.1007/978-3-319-77525-8_333.

Shahnaz, A., Qamar, U., & Khalid, A. (2019). Using Blockchain for Electronic Health Records. IEEE Access, 7, 147782–147795. doi:10.1109/ACCESS.2019.2946373.

Hegedűs, P. (2019). Towards Analyzing the Complexity Landscape of Solidity Based Ethereum Smart Contracts. Technologies, 7(1), 6. doi:10.3390/technologies7010006.

Alharby, M., Aldweesh, A., & Van Moorsel, A. (2018). Blockchain-based Smart Contracts: A Systematic Mapping Study of Academic Research (2018). International Conference on Cloud Computing, Big Data and Blockchain, ICCBB 2018, 1–6. doi:10.1109/ICCBB.2018.8756390.

Khatoon, A. (2020). A Blockchain-Based Smart Contract System for Healthcare Management. Electronics, 9(1), 94. doi:10.3390/electronics9010094.

Hu, B., Zhang, Z., Liu, J., Liu, Y., Yin, J., Lu, R., & Lin, X. (2021). A comprehensive survey on smart contract construction and execution: paradigms, tools, and systems. Patterns, 2(2), 100179. doi:10.1016/j.patter.2020.100179.

Ye, H., & Park, S. (2021). Reliable vehicle data storage using blockchain and ipfs. Electronics (Switzerland), 10(10), 2021. doi:10.3390/electronics10101130.

Battah, A. A., Madine, M. M., Alzaabi, H., Yaqoob, I., Salah, K., & Jayaraman, R. (2020). Blockchain-based multi-party authorization for accessing iPFS encrypted data. In IEEE Access 8, 196813–196825. doi:10.1109/ACCESS.2020.3034260.

Ethereum. “Decentralized Storage”. Available online: (accessed on December 2021).

IPFS. (2021). Content addressing and CIDs IPFS. Available online: (accessed on December 2021).

Liang, X., Zhao, J., Shetty, S., Liu, J., & Li, D. (2017, October). Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1-5). IEEE.

Alkhushyni, S. M., Alzaleq, D. M., & Kengne, N. L. G. (2019). Blockchain technology applied to electronic health records. EPiC Series in Computing, 63, 34–42. doi:10.29007/2x3r.

IPFS. (2021). IPFS powers the Distributed Web. Available online: (accessed September 2021).

Kufel, L. (2015). Network latency in systems event monitoring for multiple locations. Scientific Programming (Vol. 2015, pp. 1–6). doi:10.1155/2015/371620.

Full Text: PDF

DOI: 10.28991/esj-2021-SP1-013


  • There are currently no refbacks.

Copyright (c) 2020 Imam Riadi, Tohari Ahmad, Riyanarto Sarno, Purwono Purwono, Alfian Ma'arif