Discovering Future Earnings Patterns through FP-Growth and ECLAT Algorithms with Optimized Discretization

Putthiporn Thanathamathee, Siriporn Sawangarreerak


Future earnings indicate whether the trend of earnings is increasing or decreasing in the future of a business. It is beneficial to investors and users in the analysis and planning of investments. Consequently, this study aimed to identify future earnings patterns from financial statements on the Stock Exchange of Thailand. We proposed a novel approach based on FP-Growth and ECLAT algorithms with optimized discretization to identify associated future earnings patterns. The patterns are easy to use and interpret for the co-occurrence of associated future earnings patterns that differ from other studies that have only predicted earnings or analyzed the earnings factor from accounting descriptors. We found four strongly associated increases in earnings patterns and nine strongly associated decreases. Moreover, we also established ten accounting descriptors related to earnings: 1) %∆ in long-term debt, 2) %∆ in debt-to-equity ratio, 3) %∆ in depreciation/plant assets, 4) %∆ in operating income/total assets, 5) %∆ in working capital/total assets, 6) debt-to-equity ratio, 7) issuance of long-term debt as a percentage of total long-term debt, 8) long-term debt to equity, 9) repayment of long-term debt as a percentage of total long-term debt, and 10) return on closing equity.


Doi: 10.28991/ESJ-2022-06-06-07

Full Text: PDF


Future Earnings Patterns; Financial Statement; Association Rule Mining; Optimized Discretization.


Dechow, P. M. (1994). Accounting earnings and cash flows as measures of firm performance. The role of accounting accruals. Journal of Accounting and Economics, 18(1), 3–42. doi:10.1016/0165-4101(94)90016-7.

Beaver, W. H. (1968). The Information Content of Annual Earnings Announcements. Journal of Accounting Research, 6, 67. doi:10.2307/2490070.

Block, S. B. (1999). A Study of Financial Analysts: Practice and Theory. Financial Analysts Journal, 55(4), 86–92. doi:10.2469/faj.v55.n4.2288.

Greenberg, R. R., Johnson, G. L., & Ramesh, K. (1986). Earnings versus Cash Flow as a Predictor of Future Cash Flow Measures. Journal of Accounting, Auditing & Finance, 1(4), 266–277. doi:10.1177/0148558X8600100402.

Daraghma, Z. (2013). Predicting the Future Accounting Earnings : Empirical Evidence from the Palestine Securities Exchange. Research Journal of Finance and Accounting, 4(17), 193–204.

Arthur, N., Cheng, M., & Czernkowski, R. (2010). Cash flow disaggregation and the prediction of future earnings. Accounting and Finance, 50(1), 1–30. doi:10.1111/j.1467-629X.2009.00316.x.

Shubita, M. F. (2021). The ability of cash flows to predict the earning: Evidence from Jordan. Investment Management and Financial Innovations, 18(4), 36–44. doi:10.21511/imfi.18(4).2021.04.

Ball, R., & Watts, R. (1972). Some Time Series Properties of Accounting Income. The Journal of Finance, 27(3), 663–681. doi:10.1111/j.1540-6261.1972.tb00991.x.

Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295–329. doi:10.1016/0165-4101(89)90017-7.

Ball, R. T., & Ghysels, E. (2018). Automated Earnings Forecasts: Beat Analysts or Combine and Conquer? Management Science, 64(10), 4936–4952. doi:10.1287/mnsc.2017.2864.

Hou, K., van Dijk, M. A., & Zhang, Y. (2012). The implied cost of capital: A new approach. Journal of Accounting and Economics, 53(3), 504–526. doi:10.1016/j.jacceco.2011.12.001.

Gerakos, J. J., & Gramacy, R. B. (2012). Regression-Based Earnings Forecasts. SSRN Electronic Journal. doi:10.2139/ssrn.2112137.

Li, K. K., & Mohanram, P. (2014). Evaluating cross-sectional forecasting models for implied cost of capital. Review of Accounting Studies, 19(3), 1152–1185. doi:10.1007/s11142-014-9282-y.

Azevedo, V., Bielstein, P., & Gerhart, M. (2021). Earnings forecasts: the case for combining analysts’ estimates with a cross-sectional model. Review of Quantitative Finance and Accounting, 56(2), 545–579. doi:10.1007/s11156-020-00902-z.

Anand, V., Brunner, R., Ikegwu, K., & Sougiannis, T. (2019). Predicting Profitability Using Machine Learning. SSRN Electronic Journal. doi:10.2139/ssrn.3466478.

Hunt, J. O. S., Myers, J. N., & Myers, L. A. (2022). Improving Earnings Predictions and Abnormal Returns with Machine Learning. Accounting Horizons, 36(1), 131–149. doi:10.2308/HORIZONS-19-125.

Nguyen, J. P. (2020). Man vs. Machine: Comparing Machine Learning and Analysts' Predictions for Earnings. Wharton Research Scholars, University of Pennsylvania, Philadelphia, United States.

Chen, X., Cho, Y. H., Dou, Y., & Lev, B. (2022). Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data. Journal of Accounting Research, 60(2), 467–515. doi:10.1111/1475-679X.12429.

Ishibashi, K., Iwasaki, T., Otomasa, S., & Yada, K. (2016). Model Selection for Financial Statement Analysis: Variable Selection with Data Mining Technique. Procedia Computer Science, 96, 1681–1690. doi:10.1016/j.procs.2016.08.216.

Sawangarreerak, S., & Thanathamathee, P. (2021). Detecting and analyzing fraudulent patterns of financial statement for open innovation using discretization and association rule mining. Journal of Open Innovation: Technology, Market, and Complexity, 7(2), 128. doi:10.3390/joitmc7020128.

Kamsu-Foguem, B., Rigal, F., & Mauget, F. (2013). Mining association rules for the quality improvement of the production process. Expert systems with applications, 40(4), 1034-1045. doi:10.1016/j.eswa.2012.08.039.

Park, J., Cha, Y., Jassmi, H. Al, Han, S., & Hyun, C. T. (2020). Identification of defect generation rules among defects in construction projects using association rule mining. Sustainability (Switzerland), 12(9), 3875. doi:10.3390/su12093875.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87. doi:10.1023/B:DAMI.0000005258.31418.83.

Zhang, X., Tang, Y., Liu, Q., Liu, G., Ning, X., & Chen, J. (2021). A fault analysis method based on association rule mining for distribution terminal unit. Applied Sciences (Switzerland), 11(11), 5221. doi:10.3390/app11115221.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390. doi:10.1109/69.846291.

Navas-Palencia, G. (2020). Optimal binning: mathematical programming formulation. arXiv preprint, arXiv:2001.08025. doi:10.48550/arXiv.2001.08025.

Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. Journal of Open Source Software, 3(24), 638. doi:10.21105/joss.00638.

Penman, S. H., & Zhang, X. J. (2002). Accounting conservatism, the quality of earnings, and stock returns. Accounting Review, 77(2), 237–264. doi:10.2308/accr.2002.77.2.237.

TFRS (2022). Federation of Accounting Professions. Thai financial reporting standard, Bangkok, Thailand. Available online: (accessed on June 2022).

Chu, K., & Ohlson, J. A. (2019). Accruals and Forecasting. SSRN Electronic Journal. doi:10.2139/ssrn.3340355.

Warren, C. S., Reeve, J. M., & Duchac, J.E. (2017). Accounting. (27th Ed.). Cengage Learning, Boston, United States.

Nasution, A. A. (2020). Effect of inventory turnover on the level of profitability. IOP Conference Series: Materials Science and Engineering, 725(1), 012137. doi:10.1088/1757-899X/725/1/012137.

Ahmed, R., & Bhuyan, R. (2020). Capital Structure and Firm Performance in Australian Service Sector Firms: A Panel Data Analysis. Journal of Risk and Financial Management, 13(9), 214. doi:10.3390/jrfm13090214.

Ooi, J. T. l. (2000). Managerial opportunism and the capital structure decisions of property companies. Journal of Property Investment & Finance, 18(3), 316–331. doi:10.1108/14635780010338317.

Caylor, M. L., & Whisenant, S. (2019). Depreciation Choice and Future Operating Performance. International Journal of Accounting and Financial Reporting, 9(1), 89. doi:10.5296/ijafr.v9i1.13997.

Abor, J. (2005). The effect of capital structure on profitability: an empirical analysis of listed firms in Ghana. Journal of Risk Finance, 6(5), 438–445. doi:10.1108/15265940510633505.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-07


  • There are currently no refbacks.

Copyright (c) 2022 Siriporn Sawangarreerak, Putthiporn Thanathamathee