Crop Monitoring System Using IoT, Solar Energy and Decision Tree Algorithm
Downloads
Doi: 10.28991/ESJ-2025-09-02-06
Full Text: PDF
Downloads
Farooq, M. S., Sohail, O. O., Abid, A., & Rasheed, S. (2022). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Livestock Environment. IEEE Access, 10, 9483–9505. doi:10.1109/ACCESS.2022.3142848.
Flores-Rojas, J. L., Silva, Y., Suárez-Salas, L., Estevan, R., Valdivia-Prado, J., Saavedra, M., Giraldez, L., Piñas-Laura, M., Scipión, D., Milla, M., Kumar, S., & Martinez-Castro, D. (2021). Article analysis of extreme meteorological events in the central andes of peru using a set of specialized instruments. Atmosphere, 12(3), 408. doi:10.3390/atmos12030408.
Pizarro, S. E., Pricope, N. G., Vargas-Machuca, D., Huanca, O., & Ñ.aupari, J. (2022). Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine. Remote Sensing, 14(7). doi:10.3390/rs14071562.
Tseng, F. H., Cho, H. H., & Wu, H. Te. (2019). Applying big data for intelligent agriculture-based crop selection analysis. IEEE Access, 7, 116965–116974. doi:10.1109/ACCESS.2019.2935564.
Kumar, G. K., Bangare, M. L., Bangare, P. M., Kumar, C. R., Raj, R., Arias-Gonzáles, J. L., Omarov, B., & Mia, M. S. (2024). Internet of things sensors and support vector machine integrated intelligent irrigation system for agriculture industry. Discover Sustainability, 5(1), 6. doi:10.1007/s43621-024-00179-5.
Kaplun, D., Deka, S., Bora, A., Choudhury, N., Basistha, J., Purkayastha, B., Mazumder, I. Z., Gulvanskii, V., Sarma, K. K., & Misra, D. D. (2024). An intelligent agriculture management system for rainfall prediction and fruit health monitoring. Scientific Reports, 14(1), 512. doi:10.1038/s41598-023-49186-y.
Rahman, M. A., Chakraborty, N. R., Sufiun, A., Banshal, S. K., & Tajnin, F. R. (2024). An AIoT-based hydroponic system for crop recommendation and nutrient parameter monitorization. Smart Agricultural Technology, 8, 100472. doi:10.1016/j.atech.2024.100472.
Montoya, E. A. Q., Colorado, S. F. J., Muñoz, W. Y. C., & Golondrino, G. E. C. (2017). Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 24, 39–56. doi:10.17013/risti.24.39-56.
Alaica, A. K., & Bélisle, V. (2023). Bone and antler artifact use in the 1st millennium CE of Cusco, Peru: Insights on textile production and food processing from the site of Ak'awillay. Quaternary International, 665–666, 176–186. doi:10.1016/j.quaint.2023.05.009.
Subahi, A. F., & Bouazza, K. E. (2020). An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access, 8, 125488–125500. doi:10.1109/ACCESS.2020.3007955.
Pandi, M. S. M., Seman, R., Saod, A. H. M., Ramlan, S. A., Harron, N. A., Abdullah, M. H., & Soh, Z. H. C. (2024). IoT Based Greenhouse Condition Monitoring System for Chili Plant Growth. Journal of Advanced Research in Applied Sciences and Engineering Technology, 41(1), 142–153. doi:10.37934/araset.41.1.142153.
Yauri, R., Lezama, J., & Rios, M. (2021). Evaluation of a wireless low-energy mote with fuzzy algorithms and neural networks for remote environmental monitoring. Indonesian Journal of Electrical Engineering and Computer Science, 23(2), 717–724. doi:10.11591/ijeecs.v23.i2.pp717-724.
Cohen-Manrique, C. S., Burbano-Bustos, A. F., Salgado-Ordosgoitia, R. D., & Merlano-Porto, R. H. (2020). Irrigation control in ahuyama crops in Sincelejo, Sucre (Colombia) managed through the Internet of Things. Technological Information, 31(5), 79-88. doi:10.4067/s0718-07642020000500079. (In Spanish).
Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. F. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. doi:10.1016/j.jafr.2023.100880.
Artetxe, E., Barambones, O., Martín Toral, I., Uralde, J., Calvo, I., & del Rio, A. (2024). Smart IoT Irrigation System Based on Fuzzy Logic, LoRa, and Cloud Integration. Electronics (Switzerland), 13(10), 1949. doi:10.3390/electronics13101949.
Et-taibi, B., Abid, M. R., Boufounas, E. M., Morchid, A., Bourhnane, S., Abu Hamed, T., & Benhaddou, D. (2024). Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results in Engineering, 22, 102283. doi:10.1016/j.rineng.2024.102283.
Nooriman, W. M., Abdullah, A. H., Rahim, N. A., & Kamarudin, K. (2018). Development of wireless sensor network for Harumanis Mango orchard's temperature, humidity and soil moisture monitoring. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE-2018), 263–268. doi:10.1109/iscaie.2018.8405482.
Singh, J., Srivastava, A., & Dalal, V. (2023). Designing of Real-time Communication Method to Monitor Water Quality using WSN Based on IOT. International Journal on Recent and Innovation Trends in Computing and Communication, 11(7s), 437–446. doi:10.17762/ijritcc.v11i7s.7020.
Prasanna Lakshmi, G. S., Asha, P. N., Sandhya, G., Vivek Sharma, S., Shilpashree, S., & Subramanya, S. G. (2023). An intelligent IOT sensor coupled precision irrigation model for agriculture. Measurement: Sensors, 25, 100608. doi:10.1016/j.measen.2022.100608.
Siva, T., Beno, A., Lanitha, B., Yogalakshmi, V., Manikandan, M., Kumar, S. S., Peroumal, V., Darwin Nesakumar, A., & Prasad, V. R. R. (2022). Hybrid LSTM-PCA-Powered Renewable Energy-Based Battery Life Prediction and Management for IoT Applications. Journal of Nanomaterials, 2022, 9807511. doi:10.1155/2022/9807511.
Raghuvanshi, A., Singh, U. K., Sajja, G. S., Pallathadka, H., Asenso, E., Kamal, M., Singh, A., & Phasinam, K. (2022). Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming. Journal of Food Quality, 2022, 3955514. doi:10.1155/2022/3955514.
Hue, Y., Kim, J. H., Lee, G., Choi, B., Sim, H., Jeon, J., Ahn, M. Il, Han, Y. K., & Kim, K. T. (2024). Artificial Intelligence Plant Doctor: Plant Disease Diagnosis Using GPT4-vision. Research in Plant Disease, 30(1), 99–102. doi:10.5423/RPD.2024.30.1.99.
Niswar, M. (2024). Design and Implementation of an Automated Indoor Hydroponic Farming System based on the Internet of Things. International Journal of Computing and Digital Systems, 15(1), 337–346. doi:10.12785/ijcds/150126.
Wang, Z., Qiao, X., Wang, Y., Yu, H., & Mu, C. (2024). IoT-based system of prevention and control for crop diseases and insect pests. Frontiers in Plant Science, 15, 1323074. doi:10.3389/fpls.2024.1323074.
Latiff, N. A. A., Zaki, I. R., Ismail, I. S., Awal, M. R., Munajat, N. F., & Wahy, A. H. (2023). Soil Monitoring for Agriculture Activity using Low Power Wide Area Network. Journal of Advanced Research in Applied Sciences and Engineering Technology, 33(1), 219–230. doi:10.37934/araset.33.1.219230.
Sayanthan, S., Thiruvaran, T., & Kannan, N. (2018). Arduino based soil moisture analyzer as an effective way for irrigation scheduling. 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS-2018), 1–4. doi:10.1109/iciafs.2018.8913355.
Gurung, S., Thakur, S., Smithers, B., & Acevedo, M. (2020). Wireless soil moisture sensor networks for agriculture. 2020 Waste-Management Education Research, WERC 2020, Las Cruces, NM, USA. doi:10.1109/WERC49736.2020.9146500.
Jamroen, C., Komkum, P., Fongkerd, C., & Krongpha, W. (2020). An intelligent irrigation scheduling system using low-cost wireless sensor network toward sustainable and precision agriculture. IEEE Access, 8, 172756–172769. doi:10.1109/ACCESS.2020.3025590.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
