Enhancing Trajectory Tracking in Humanoid Robots Using Neural Network-Based Dynamic Gain Control

NAO ANN Kinematic Controller Coppelia Sim.

Authors

  • Darwin Trujillo Departamento de Automatización Y Control Industrial, Escuela Politécnica Nacional, Quito,, Ecuador
  • Luis A. Morales Departamento de Automatización Y Control Industrial, Escuela Politécnica Nacional, Quito,, Ecuador
  • Danilo Chávez Departamento de Automatización Y Control Industrial, Escuela Politécnica Nacional, Quito,, Ecuador
  • Marí­a Trujillo Departamento de Automatización Y Control Industrial, Escuela Politécnica Nacional, Quito,, Ecuador
  • David F. Pozo-Espí­n
    david.pozo@udla.edu.ec
    Facultad de Ingenierí­a y Ciencias Aplicadas, Ingenierí­a en Electrónica y Automatización, Universidad de Las Américas, Quito,, Ecuador https://orcid.org/0000-0002-7436-3838

Downloads

This paper presents the development and evaluation of a dynamic gain controller utilizing neural networks to enhance trajectory tracking performance in the NAO humanoid robot. The proposed controller employs a differential kinematic model and dynamically adjusts its gains using a backpropagation algorithm, eliminating the need for manual gain tuning and simplifying the robot's setup process. Experimental validation was conducted in a simulated environment using CoppeliaSim, with the NAOqi library facilitating integration. The analysis results demonstrate that the dynamic controller using a neural network provides better trajectory tracking accuracy than the traditional kinematic controller. Adaptability of the dynamic controller, which adjusts gain parameters in real-time, contributes to improved robustness and precision across various trajectory types. These findings demonstrate the potential of dynamic, self-tuning controllers in enhancing the performance, efficiency, and versatility of humanoid robots in complex navigation tasks.

 

Doi: 10.28991/ESJ-2025-09-02-02

Full Text: PDF