Enhancing Trajectory Tracking in Humanoid Robots Using Neural Network-Based Dynamic Gain Control
Downloads
Doi: 10.28991/ESJ-2025-09-02-02
Full Text: PDF
Downloads
Kahraman, C., Deveci, M., Boltürk, E., & Türk, S. (2020). Fuzzy controlled humanoid robots: A literature review. Robotics and Autonomous Systems, 134. doi:10.1016/j.robot.2020.103643.
Tzafestas, S. G. (2013). Introduction to Mobile Robot Control. Elsevier, Amsterdam, Netherlands. doi:10.1016/C2013-0-01365-5.
Parsianmehr, S., Moosavian, S. A. A., & Fakharian, A. (2017). An experimental system identification modeling and robust control for NAO humanoid robot. 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 506–511. doi:10.1109/ICRoM.2016.7886793.
Almeida, L., Santos, V., & Ferreira, J. (2024). Enhancement of humanoid robot locomotion on slippery floors using an adaptive controller. Robotica, 42(4), 1055–1073. doi:10.1017/S0263574724000080.
Iffath Unnisa Begum. (2024). Role of Artificial Intelligence in Higher Education- An Empirical Investigation. International Research Journal on Advanced Engineering and Management, 2(03), 49–53. doi:10.47392/irjaem.2024.0009.
Obrenovic, B., Gu, X., Wang, G., Godinic, D., & Jakhongirov, I. (2024). Generative AI and human–robot interaction: implications and future agenda for business, society and ethics. AI & Society, 40(2), 677–690. doi:10.1007/s00146-024-01889-0.
Mahamood, S. F., Fikry, A., Hamzah, M. I., Khalid, M. M., & Bhari, A. (2023). Fiqh Robotic For Artificial Intelligent In Humanoids Used For Therapy, Services and Other Social Activities: An Integration of Artificial Intelligence (AI) and Maqasid Shariah. Journal of Fatwa Management and Research, 28(2), 1–13. doi:10.33102/jfatwa.vol28no2.527.
Podpečan, V. (2023). Can You Dance? A Study of Child–Robot Interaction and Emotional Response Using the NAO Robot. Multimodal Technologies and Interaction, 7(9), 85. doi:10.3390/mti7090085.
Venkataswamy, R., Janamala, V., & Cherukuri, R. C. (2023). Realization of Humanoid Doctor and Real-Time Diagnostics of Disease Using Internet of Things, Edge Impulse Platform, and ChatGPT. Annals of Biomedical Engineering, 52(4), 738–740. doi:10.1007/s10439-023-03316-9.
Pot, E., Monceaux, J., Gelin, R., & Maisonnier, B. (2009). Choregraphe: a graphical tool for humanoid robot programming. RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, 46-51. doi:10.1109/roman.2009.5326209.
Ramkumar, A., Akhil Krishna, U., Madhan, M. S., & Prajit, K. K. (2019). Control of Nao robot arm using Myo Armband. International Journal of Innovative Technology and Exploring Engineering, 8(9S2), 409–413. doi:10.35940/ijitee.I1087.0789S219.
Hassan, N., & Saleem, A. (2022). Neural Network-Based Adaptive Controller for Trajectory Tracking of Wheeled Mobile Robots. IEEE Access, 10, 13582–13597. doi:10.1109/ACCESS.2022.3146970.
Zalama, E., Paul, M., & Perán, J. R. (1998). Neural Network for the Behavioral Navigation of a Mobile Robot. IFAC Proceedings Volumes, 31(3), 93–98. doi:10.1016/s1474-6670(17)44067-5.
Marichal, G. N., Toledo, J., Acosta, L., González, E. J., & Coll, G. (2007). A neuro-fuzzy method applied to the motors of a stereovision system. Engineering Applications of Artificial Intelligence, 20(7), 951–958. doi:10.1016/j.engappai.2006.12.010.
Asai, M., Chen, G., & Takami, I. (2019). Neural network trajectory tracking of tracked mobile robot. 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), 225–230. doi:10.1109/ssd.2019.8893152.
Chen, Z., Liu, Y., He, W., Qiao, H., & Ji, H. (2021). Adaptive-Neural-Network-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot with Velocity Constraints. IEEE Transactions on Industrial Electronics, 68(6), 5057–5067. doi:10.1109/TIE.2020.2989711.
Mohareri, O., Dhaouadi, R., & Rad, A. B. (2012). Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing, 88, 54–66. doi:10.1016/j.neucom.2011.06.035.
Yildirim, S., Savas, S., & Andruskiene, J. (2021). Controller Gain Tuning of a Nonholonomic Mobile Robot via Neural Network Predictor. 2021 25th International Conference Electronics, 1–6. doi:10.1109/ieeeconf52705.2021.9467455.
Mohamed, M., & Hamza, M. (2019). Design PID Neural Network Controller for Trajectory Tracking of Differential Drive Mobile Robot Based on PSO. Engineering and Technology Journal, 37(12A), 574–583. doi:10.30684/etj.37.12a.12.
Benbouabdallah, K., & Qi-dan, Z. (2013). Genetic Fuzzy Logic Control Technique for a Mobile Robot Tracking a Moving Target. International Journal of Computer Science Issues, 10(1), 607–613.
Farhat, M., Kali, Y., Saad, M., Rahman, M. H., & Lopez-Herrejon, R. E. (2024). Walking position commanded NAO robot using nonlinear disturbance observer-based fixed-time terminal sliding mode. ISA Transactions, 146, 592–602. doi:10.1016/j.isatra.2023.12.026.
Bai, K., Jiang, G., Jiang, G., & Liu, Z. (2019). Based on fuzzy-approximation adaptive backstepping control method for dual-arm of humanoid robot with trajectory tracking. International Journal of Advanced Robotic Systems, 16(3), 1-14. doi:10.1177/1729881419831904.
Naveed, K., Khan, Z. H., & Hussain, A. (2014). Adaptive trajectory tracking of wheeled mobile robot with uncertain parameters. Studies in Computational Intelligence, 540, 237–262. doi:10.1007/978-981-4585-36-1_8.
Alcaraz-Jiménez, J. J., Herrero-Pérez, D., & Martínez-Barberá, H. (2013). Robust feedback control of ZMP-based gait for the humanoid robot Nao. International Journal of Robotics Research, 32(9–10), 1074–1088. doi:10.1177/0278364913487566.
Duarte-Mermoud, M. A., & Prieto, R. A. (2004). Performance index for quality response of dynamical systems. ISA Transactions, 43(1), 133–151. doi:10.1016/s0019-0578(07)60026-3.
Salgado, M. E., Oyarzún, D. A., & Silva, E. I. (2007). H2 optimal ripple-free deadbeat controller design. Automatica, 43(11), 1961–1967. doi:10.1016/j.automatica.2007.03.014.
Eusebio, B.-C., & Ana Yaveni, A.-B. (2014). Visual control for training unicycle-type mobile robots under the leader-follower scheme. Engineering, Research, and Technology, 15(4), 593–602. doi:10.1016/s1405-7743(14)70657-2.
Kofinas, N., Orfanoudakis, E., & Lagoudakis, M. G. (2015). Complete Analytical Forward and Inverse Kinematics for the NAO Humanoid Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 77(2), 251–264. doi:10.1007/s10846-013-0015-4.
Li, S., & Shen, L. (2024). Seismic Optimization Design and Application of Civil Engineering Structures Integrated with Building Robot System Technology. HighTech and Innovation Journal, 5(4), 1118-1134. doi:10.28991/HIJ-2024-05-04-017.
Rossomando, F. G., Soria, C., & Carelli, R. (2011). Autonomous mobile robots navigation using RBF neural compensator. Control Engineering Practice, 19(3), 215–222. doi:10.1016/j.conengprac.2010.11.011.
SoftBank Robotics. (2025). NAO6 the versatile humanoid robot. Available online: https://developer.softbankrobotics.com/nao6 (accessed March 2025).
Shamsuddin, S., Ismail, L. I., Yussof, H., Ismarrubie Zahari, N., Bahari, S., Hashim, H., & Jaffar, A. (2011). Humanoid robot NAO: Review of control and motion exploration. IEEE International Conference on Control System, Computing and Engineering, 511-516. doi:10.1109/iccsce.2011.6190579.
Hwang, J. H., Tsay, S. Y., & Hwang, C. (2000). Tuning PID Controllers for Minimizing ISE and Satisfying Specified Gain and Phase Margins. IFAC Proceedings Volumes, 33(4), 601-606. doi:10.1016/S1474-6670(17)38309-X.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
