Photoconductivity Relaxation Time in Macroporous Silicon

Volodymyr Fedorovych Onyshchenko, L. A. Karachevtseva, M. I. Karas’


Macroporous silicon has found applications in sensors, receivers, integrated microchips and solar cells. In this work, we first showed analytically the photoconductivity relaxation time of in macroporous silicon is determined from a system of two transcendental equations. The analytical description of the photoconductivity relaxation model contains the diffusion equation solution both in single crystal substrate and in an effective medium of macroporous layer, as well as boundary conditions recorded for the surfaces of the layer of macroporous silicon and single crystal substrate. We showed that the photoconductivity relaxation time in macroporous silicon rapidly decreases with increasing macropore depth from 0 to 25 μm and reduced thicknesses of the single crystal substrate from 250 to 0 μm. The photoconductivity recombination time in the sample of macroporous silicon is limited by the diffusion of charge carriers from the substrate to the recombination surfaces in the macroporous layer. The system of transcendental equations that we have found will find application in calculating the relaxation time of photoconductivity in macroporous silicon devices such as sensors, receivers, and solar cells.


Macroporous Silicon; Photoconductivity; Relaxation Time; Photoconductivity Time Constant.


Ernst, Marco, Rolf Brendel, Rafel Ferré, and Nils-Peter Harder. “Thin Macroporous Silicon Heterojunction Solar Cells.” Physica Status Solidi (RRL) - Rapid Research Letters 6, no. 5 (April 5, 2012): 187–189. doi:10.1002/pssr.201206113.

Ernst, Marco, and Rolf Brendel. “Macroporous Silicon Solar Cells With an Epitaxial Emitter.” IEEE Journal of Photovoltaics 3, no. 2 (April 2013): 723–729. doi:10.1109/jphotov.2013.2247094.

Maiolo, James R., Harry A. Atwater, and Nathan S. Lewis. “Macroporous Silicon as a Model for Silicon Wire Array Solar Cells.” The Journal of Physical Chemistry C 112, no. 15 (April 2008): 6194–6201. doi:10.1021/jp711340b.

Sachenko, A. V., V. P. Kostylyov, V. M. Vlasyuk, R. M. Korkishko, I. O. Sokolovskyi, V. V. Chernenko, B. F. Dvernikov, O. A. Serba, and M. A. Evstigneev. “Key Parameters of Commercial Silicon Solar Cells with Rear Metallization.” Semiconductor Physics, Quantum Electronics and Optoelectronics 22, no. 3 (September 16, 2019): 277–284. doi:10.15407/spqeo22.03.277.

Sachenko, A. V., V. P. Kostylyov, M. V. Gerasymenko, R. M. Korkishko, M. R. Kulish, M. I. Slipchenko, I. O. Sokolovskyi, V. V. Chernenko. “Analysis of the Silicon Solar Cells Efficiency. Type of Doping and Level Optimization.” Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 1 (April 8, 2016): 67–74. doi:10.15407/spqeo19.01.067.

Selj, Josefine H., Erik Stensrud Marstein, Annett Thøgersen, and Sean Erik Foss. “Porous Silicon Multilayer Antireflection Coating for Solar Cells; Process Considerations.” Physica Status Solidi (c) 8, no. 6 (April 7, 2011): 1860–1864. doi:10.1002/pssc.201000033.

Evtukh, A.A., V.G. Litovchenko, N.I. Klyui, M.O. Semenenko, E.B. Kaganovich, and E.G. Manoilov. “Electron Field Emission from Porous Silicon Prepared at Low Anodisation Currents.” International Journal of Nanotechnology 3, no. 1 (2006): 89. doi:10.1504/ijnt.2006.008723.

Ernst, Marco, and Rolf Brendel. “Modeling Effective Carrier Lifetimes of Passivated Macroporous Silicon Layers.” Solar Energy Materials and Solar Cells 95, no. 4 (April 2011): 1197–1202. doi:10.1016/j.solmat.2011.01.017.

Onyshchenko, V. F., L. A. Karachevtseva, O. O. Lytvynenko, M. M. Plakhotnyuk, O. Y. Stronska. “Effective Lifetime of Minority Carriers in Black Silicon Nano-Textured by Cones and Pyramids.” Semiconductor Physics Quantum Electronics and Optoelectronics 20, no. 3 (October 9, 2017): 325–329. doi:10.15407/spqeo20.03.325.

Monastirs' kij, L. S., V. S. Sokolovs' kij, and M. R. Pavlik. "Analytical and numerical calculations of photoconductivity in porous silicon." Ukrayins' kij Fyizichnij Zhurnal (Kyiv) 56, no. 9 (2011): 904-909.

Karachevtseva, Lyudmyla A., Mikola I. Karas’, Volodimir Onishchenko, and Fiodor F. Sizov. “Enhancement of the Photoconductivity in 2D Photonic Macroporous Silicon Structures.” Edited by Ali Adibi, Axel Scherer, and Shawn-Yu Lin. Photonic Crystal Materials and Devices II (July 9, 2004): 381–389. doi:10.1117/12.530446.

Karachevtseva, L. A., V. F. Onyshchenko, A. V. Sachenko. “Photoconductivity Relaxation and Electron Transport in Macroporous Silicon Structures.” Semiconductor Physics Quantum Electronics and Optoelectronics 20, no. 4 (December 7, 2017): 475–480. doi:10.15407/spqeo20.04.475.

Evtukh, A. A., É. B. Kaganovich, É. G. Manoĭlov, and N. A. Semenenko. “A Mechanism of Charge Transport in Electroluminescent Structures Consisting of Porous Silicon and Single-Crystal Silicon.” Semiconductors 40, no. 2 (February 2006): 175–179. doi:10.1134/s1063782606020126.

Karachevtseva, L., V. Onyshchenko, and A. Sachenko. “Photocarrier Transport in 2D Macroporous Silicon Structures.” Opto-Electronics Review 18, no. 4 (January 1, 2010). doi:10.2478/s11772-010-0042-7.

Onyshchenko, V.F., and L.A. Karachevtseva. “Effective Minority Carrier Lifetime in Double-Sided Macroporous Silicon.” Semiconductor Physics, Quantum Electronics and Optoelectronics 23, no. 1 (March 23, 2020): 29–36. doi:10.15407/spqeo23.01.029.

Cardador, D., D. Vega, D. Segura, T. Trifonov, and A. Rodríguez. “Enhanced Geometries of Macroporous Silicon Photonic Crystals for Optical Gas Sensing Applications.” Photonics and Nanostructures - Fundamentals and Applications 25 (July 2017): 46–51. doi:10.1016/j.photonics.2017.04.005.

Maza, David Cardador, Daniel Segura Garcia, Ioannis Deriziotis, Angel Rodriguez, and Jordi Llorca. “Macroporous Silicon Filters, a Versatile Platform for NDIR Spectroscopic Gas Sensing in the MIR.” Journal of the Electrochemical Society 166, no. 12 (2019): B1010–B1015. doi:10.1149/2.1051912jes.

Al-Hardan, Naif, Muhammad Abdul Hamid, Roslinda Shamsudin, Ensaf AL-Khalqi, Lim Kar Keng, and Naser Ahmed. “Electrochemical Hydrogen Peroxide Sensor Based on Macroporous Silicon.” Sensors 18, no. 3 (February 28, 2018): 716. doi:10.3390/s18030716.

Cardador Maza, David, Daniel Segura Garcia, Ioannis Deriziotis, Moisés Garín, Jordi Llorca, and Angel Rodriguez. “Empirical Demonstration of CO2 Detection Using Macroporous Silicon Photonic Crystals as Selective Thermal Emitters.” Optics Letters 44, no. 18 (September 11, 2019): 4535. doi:10.1364/ol.44.004535.

García, Daniel Segura, David Cardador Maza, Ángel Rodríguez Martínez, and Jordi Llorca. “Absorption Mechanisms in Macroporous Silicon Photonic Crystals.” Sensors and Actuators A: Physical 303 (March 2020): 111698. doi:10.1016/j.sna.2019.111698.

Full Text: PDF

DOI: 10.28991/esj-2020-01223


  • There are currently no refbacks.

Copyright (c) 2020 Volodymyr Fedorovych Onyshchenko