Odor Profiling of Blood Shells Using TGS Gas Sensor and PCA-SVM Analysis
Downloads
Blood cockles (Andara granulosa) are among the most popular animal protein sources due to their rich nutritional content and high economic value. The storage period and temperature are two critical factors that significantly influence the freshness of blood cockles. One key indicator of blood cockle quality is the odor they emit. An unpleasant or inappropriate odor can indicate contamination or a decline in quality, posing potential food safety risks. However, conventional methods of odor quality testing are often subjective, require specialized skills, and may not always be reliable. To address the limitations of human olfaction, advancements in gas sensor technology, specifically gas array sensors (also known as the electronic nose), have been developed. This research aims to profile the freshness of blood cockles by identifying their odor under different storage conditions using electronic nose technology. The study used fresh blood cockle meat, which was stored under varying temperature conditions: at room temperature, in a cooler, and in a freezer. The storage periods for the samples were 1, 2, 3, 4, and 5 days. The samples were placed in sealed bottles and tested using a gas array sensor. The data collected from this process were in the form of voltage readings, which were analyzed using machine learning techniques, specifically Principal Component Analysis (PCA). The data were then classified using a Support Vector Machine (SVM) model. The study results showed that the gas array sensor successfully classified the odor profiles, with PCA explaining 93.83% of the variance in the data. The SVM model achieved an accuracy of 89.66% for PCA-reduced data and 91.44% for non-PCA data.
Downloads
[1] Grassi, S., Benedetti, S., Magnani, L., Pianezzola, A., & Buratti, S. (2022). Seafood freshness: e-nose data for classification purposes. Food Control, 138, 108994. doi:10.1016/j.foodcont.2022.108994.
[2] Munekata, P. E. S., Finardi, S., de Souza, C. K., Meinert, C., Pateiro, M., Hoffmann, T. G., Domínguez, R., Bertoli, S. L., Kumar, M., & Lorenzo, J. M. (2023). Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. Sensors, 23(2), 672. doi:10.3390/s23020672.
[3] Wang, B., Liu, K., Wei, G., He, A., Kong, W., & Zhang, X. (2024). A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics. Biosensors, 14(10), 468. doi:10.3390/bios14100468.
[4] Nath, V. G., Bharath, S. P., Dsouza, A., & Subramanian, A. (2024). Machine Learning Algorithms for Smart Gas Sensor Arrays. Nanostructured Materials for Electronic Nose, 185–225. doi:10.1007/978-981-97-1390-5_8.
[5] Singh, R., Nickhil, C., R.Nisha, Upendar, K., Jithender, B., & Deka, S. C. (2025). A Comprehensive Review of Advanced Deep Learning Approaches for Food Freshness Detection. Food Engineering Reviews, 17(1), 127–160. doi:10.1007/s12393-024-09385-3.
[6] Gliszczyńska-Świgło, A., & Chmielewski, J. (2017). Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Analytical Methods, 10(6), 1800–1816. doi:10.1007/s12161-016-0739-4.
[7] Wilson, A. D., & Baietto, M. (2011). Advances in electronic-nose technologies developed for biomedical applications. Sensors, 11(1), 1105–1176. doi:10.3390/s110101105.
[8] Baietto, M., & Wilson, A. D. (2015). Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors (Switzerland), 15(1), 899–931. doi:10.3390/s150100899.
[9] Astuti, S. D., Mukhammad, Y., Duli, S. A. J., Putra, A. P., Setiawatie, E. M., & Triyana, K. (2019). Gas sensor array system properties for detecting bacterial biofilms. Journal of Medical Signals and Sensors, 9(3), 158–164. doi:10.4103/jmss.JMSS_60_18.
[10] Astuti, S. D., Fanany Al Isyrofie, A. I., Nashichah, R., Kashif, M., Mujiwati, T., Susilo, Y., Winarno, & Syahrom, A. (2022). Gas Array Sensors based on Electronic Nose for Detection of Tuna (Euthynnus Affinis) Contaminated by Pseudomonas Aeruginosa. Journal of Medical Signals and Sensors, 12(4), 306–316. doi:10.4103/jmss.jmss_139_21.
[11] Xu, J., Liu, K., & Zhang, C. (2021). Electronic nose for volatile organic compounds analysis in rice aging. Trends in Food Science & Technology, 109, 83–93. doi:10.1016/j.tifs.2021.01.027.
[12] Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3–4), 183–207. doi:10.1007/s00604-006-0623-9.
[13] Park, S. Y., Kim, Y., Kim, T., Eom, T. H., Kim, S. Y., & Jang, H. W. (2019). Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat, 1(3), 289–316. doi:10.1002/inf2.12029.
[14] Astuti, S. D., Tamimi, M. H., Pradhana, A. A. S., Alamsyah, K. A., Purnobasuki, H., Khasanah, M., Susilo, Y., Triyana, K., Kashif, M., & Syahrom, A. (2021). Gas sensor array to classify the chicken meat with E. coli contaminant by using random forest and support vector machine. Biosensors and Bioelectronics: X, 9, 100083. doi:10.1016/j.biosx.2021.100083.
[15] Wang, M., & Chen, Y. (2024). Electronic nose and its application in the food industry: a review. European Food Research and Technology, 250(1), 21–67. doi:10.1007/s00217-023-04381-z.
[16] Astuti, S. D., Wicaksono, I. R., Soelistiono, S., Permatasari, P. A. D., Yaqubi, A. K., Susilo, Y., Putra, C. D., & Syahrom, A. (2024). Electronic nose coupled with artificial neural network for classifying of coffee roasting profile. Sensing and Bio-Sensing Research, 43, 100632. doi:10.1016/j.sbsr.2024.100632.
[17] Figaro Engineering Inc. (2015). TGS 2620 - for the detection of Solvent Vapors. Product Information. Figaro Engineering Inc, Osaka, Japan.
[18] Putra, C. D., Al Isyrofie, A. I. F., Astuti, S. D., Putri, B. D., Ummah, D. R., Khasanah, M., Permatasari, P. A. D., & Syahrom, A. (2023). Variational autoencoder analysis gas sensor array on the preservation process of contaminated mussel shells (Mytilus edulis). Sensing and Bio-Sensing Research, 40, 100564. doi:10.1016/j.sbsr.2023.100564.
[19] Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. doi:10.1016/j.aiia.2020.06.003.
[20] Johnson, R. A., & Wichern, D. W. (2002). Applied Multivariate Statistical Analysis. Prentice Hall, New Jersey, United States.
[21] Pradhana, A. A. S., Astuti, S. D., Khasanah, M., & Ardianti, R. K. D. (2020). Detection of gas concentrations based on age on Staphylococcus aureus biofilms with gas array sensors. AIP Conference Proceedings, 2314. doi:10.1063/5.0034112.
[22] Saputra, B. E., Bintari, Y. R., & Risandiansyah, R. (2022). ccuracy and Precision Validation Test of Simple Staphylococcus Aureus and Escherichia Coli Staining Methods Using Methanolic Extract of Hibiscus sabdariffa Linn. Jurnal Bio Komplementer Medicine, 9(1). (In Indonesian).
[23] Everitt, B., & Rencher, A. C. (1996). Methods of Multivariate Analysis. The Statistician, 45(4), 535. doi:10.2307/2988560.
[24] Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science and Technology, 99, 1–10. doi:10.1016/j.tifs.2020.02.028.
[25] Hidayat, S. N. (2015). Application of a gas sensor array system to identify the aroma profile of tempeh during the fermentation process. PhD Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia. (In Indonesian).
[26] Aleixandre, M., Lozano, J., Gutiérrez, J., Sayago, I., Fernández, M. J., & Horrillo, M. C. (2008). Portable e-nose to classify different kinds of wine. Sensors and Actuators, B: Chemical, 131(1), 71–76. doi:10.1016/j.snb.2007.12.027.
[27] Tazi, I., Isnaini, N. L., Mutmainnah, M., & Ainur, A. (2019). Principal Component Analysis (PCA) Method for Classification of Beef and Pork Aroma Based on Electronic Nose. Indonesian Journal of Halal Research, 1(1), 5–8. doi:10.15575/ijhar.v1i1.4155.
[28] Papadopoulou, O. S., Tassou, C. C., Schiavo, L., Nychas, G.-J. E., & Panagou, E. Z. (2011). Rapid Assessment of Meat Quality by Means of an Electronic Nose and Support Vector Machines. Procedia Food Science, 1, 2003–2006. doi:10.1016/j.profoo.2011.09.295.
[29] Sujono, H. A., Rivai, M., & Amin, M. (2018). Asthma identification using gas sensors and Support Vector Machine. Telkomnika (Telecommunication Computing Electronics and Control), 16(4), 1468–1480. doi:10.12928/TELKOMNIKA.v16i4.8281.
[30] Ma, J., Fan, H., Zhang, W., Sui, J., Wang, C., Zhang, M., ... & Wang, S. (2020). High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method. Sensors and Actuators B: Chemical, 305, 127456. doi:10.1016/j.snb.2019.127456.
[31] Ólafsdóttir, G. (2005). Volatile compounds as quality indicators in chilled fish: evaluation of microbial metabolites by an electronic nose. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland.
[32] Isyrofie, A. I. F. Al, Afifudin, R., Susilo, Y., Kholimatussa’diyah, S., Winarno, & Astuti, S. D. (2023). Role of bacterial types and odor for early detection accuracy of bacteria with gas array. The 8Th International Conference and Workshop on Basic and Applied Science (Icowobas) 2021, 2554, 060003. doi:10.1063/5.0104211.
[33] Wijaya, D. R., Syarwan, N. F., Nugraha, M. A., Ananda, D., Fahrudin, T., & Handayani, R. (2023). Seafood Quality Detection Using Electronic Nose and Machine Learning Algorithms With Hyperparameter Optimization. IEEE Access, 11, 62484–62495. doi:10.1109/ACCESS.2023.3286980.
[34] Kaushal, S., Nayi, P., Rahadian, D., & Chen, H. H. (2022). Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture (Switzerland), 12(9), 1359. doi:10.3390/agriculture12091359.
[35] Shi, H., Zhang, M., & Adhikari, B. (2018). Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition, 58(16), 2700–2710. doi:10.1080/10408398.2017.1327419.
[36] Zhang, Z., Zheng, Z., He, X., Liu, K., Debliquy, M., Zhou, Y., & Zhang, C. (2024). Electronic nose based on metal oxide semiconductor sensors for medical diagnosis. Progress in Natural Science: Materials International, 34(1), 74–88. doi:10.1016/j.pnsc.2024.01.018.
[37] Jiang, Y., Wei, S., Ge, H., Zhang, Y., Wang, H., Wen, X., Guo, C., Wang, S., Chen, Z., & Li, P. (2025). Advances in the Identification Methods of Food-Medicine Homologous Herbal Materials. Foods, 14(4), 608. doi:10.3390/foods14040608.
[38] Gharibzahedi, S. M. T., Barba, F. J., Zhou, J., Wang, M., & Altintas, Z. (2022). Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. Biosensors, 12(5), 356. doi:10.3390/bios12050356.
[39] Hardoyono, F., & Windhani, K. (2023). Combination of metal oxide semiconductor gas sensor array and solid‐phase microextraction gas chromatography-mass spectrometry for odour classification of brewed coffee. Flavour and Fragrance Journal, 38(6), 451–463. doi:10.1002/ffj.3759.
[40] Peters, R., Veenstra, R., Heutinck, K., Baas, A., Munniks, S., & Knotter, J. (2023). Human scent characterization: A review. Forensic Science International, 349, 111743. doi:10.1016/j.forsciint.2023.111743.
[41] Pathak, A. K., Swargiary, K., Kongsawang, N., Jitpratak, P., Ajchareeyasoontorn, N., Udomkittivorakul, J., & Viphavakit, C. (2023). Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. Biosensors, 13(1), 114. doi:10.3390/bios13010114.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















