Generative Adversarial Networks for Dynamic Cybersecurity Threat Detection and Mitigation
Downloads
Doi: 10.28991/ESJ-2025-09-02-029
Full Text: PDF
Downloads
Kamil, S., Siti Norul, H. S. A., Firdaus, A., & Usman, O. L. (2022). The Rise of Ransomware: A Review of Attacks, Detection Techniques, and Future Challenges. 2022 International Conference on Business Analytics for Technology and Security, ICBATS 2022. doi:10.1109/ICBATS54253.2022.9759000.
Olawale, O. P., & Ebadinezhad, S. (2023). The Detection of Abnormal Behavior in Healthcare IoT Using IDS, CNN, and SVM. Lecture Notes on Data Engineering and Communications Technologies, 166, 375–394. doi:10.1007/978-981-99-0835-6_27.
Pachika, S., Reddy, A. B., Pachika, B., & Karnam, A. (2024). Generative Adversarial Networks: Overview. Lecture Notes in Networks and Systems, 897, 319–328. doi:10.1007/978-981-99-9704-6_29.
Shirazi, S. A. R., & Shaikh, M. (2024). A Novel Approach to Android Malware Intrusion Detection Using Zero-Shot Learning GANs. Sir Syed University Research Journal of Engineering & Technology, 13(2). doi:10.33317/ssurj.584.
Li, Z., Wang, P., & Wang, Z. (2024). FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning. Chinese Journal of Electronics, 33(1), 58–71. doi:10.23919/cje.2022.00.173.
Oyelakin, A. M. (2024). Overview and Exploratory Analyses of CICIDS2017 Intrusion Detection Dataset. Indonesian Journal of Data and Science, 4(3). doi:10.56705/ijodas.v4i3.80.
More, S., Idrissi, M., Mahmoud, H., & Asyhari, A. T. (2024). Enhanced Intrusion Detection Systems Performance with UNSW-NB15 Data Analysis. Algorithms, 17(2). doi:10.3390/a17020064.
Zhang, L., Bai, W., Xie, X., Chen, L., & Dong, P. (2024). TMANomaly: Time-Series Mutual Adversarial Networks for Industrial Anomaly Detection. IEEE Transactions on Industrial Informatics, 20(2), 2263–2271. doi:10.1109/TII.2023.3288226.
Sun, H., Zhu, T., Zhang, Z., Jin, D., Xiong, P., & Zhou, W. (2023). Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3367–3388. doi:10.1109/TKDE.2021.3130903.
Chougule, A., Agrawal, K., & Chamola, V. (2023). SCAN-GAN: Generative Adversarial Network Based Synthetic Data Generation Technique for Controller Area Network. IEEE Internet of Things Magazine, 6(3), 126–130. doi:10.1109/IOTM.001.2300013.
Lim, W., Yong, K. S. C., Lau, B. T., & Tan, C. C. L. (2024). Future of generative adversarial networks (GAN) for anomaly detection in network security: A review. Computers and Security, 139. doi:10.1016/j.cose.2024.103733.
Prabu, S., & Padmanabhan, J. (2024). Bi-channel hybrid GAN attention based anomaly detection system for multi-domain SDN environment. Journal of Intelligent and Fuzzy Systems, 46(1), 457–478. doi:10.3233/JIFS-233668.
Agrawal, G., Kaur, A., & Myneni, S. (2024). A Review of Generative Models in Generating Synthetic Attack Data for Cybersecurity. Electronics (Switzerland), 13(2), 322. doi:10.3390/electronics13020322.
Sayegh, H. R., Dong, W., & Al-madani, A. M. (2024). Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, and SMOTE for Imbalanced Data. Applied Sciences (Switzerland), 14(2), 479. doi:10.3390/app14020479.
Almomani, O., Alsaaidah, A., Shareha, A. A. A., Alzaqebah, A., & Almomani, M. (2024). Performance Evaluation of Machine Learning Classifiers for Predicting Denial-of-Service Attack in Internet of Things. International Journal of Advanced Computer Science and Applications, 15(1), 263–271. doi:10.14569/IJACSA.2024.0150125.
VyšniŠ«nas, T., Čeponis, D., Goranin, N., & Čenys, A. (2024). Risk-Based System-Call Sequence Grouping Method for Malware Intrusion Detection. Electronics (Switzerland), 13(1), 206. doi:10.3390/electronics13010206.
Ibrahim Alsumaidaie, M. S., Ali Alheeti, K. M., & Alaloosy, A. K. (2024). An Assessment of Ensemble Voting Approaches, Random Forest, and Decision Tree Techniques in Detecting Distributed Denial of Service (DDoS) Attacks. Iraqi Journal for Electrical and Electronic Engineering, 20(1), 16–24. doi:10.37917/ijeee.20.1.2.
Adiban, M., Siniscalchi, S. M., & Salvi, G. (2023). A step-by-step training method for multi generator GANs with application to anomaly detection and cybersecurity. Neurocomputing, 537, 296–308. doi:10.1016/j.neucom.2023.03.056.
Wang, H., Miller, D. J., & Kesidis, G. (2023). Anomaly detection of adversarial examples using class-conditional generative adversarial networks. Computers and Security, 124. doi:10.1016/j.cose.2022.102956.
Zerhouni, K., Gaba, G. S., Hedabou, M., Maksymyuk, T., Gurtov, A., & Amhoud, E. M. (2024). GAN-Based Evasion Attack in Filtered Multicarrier Waveforms Systems. IEEE Transactions on Machine Learning in Communications and Networking, 2, 210–220. doi:10.1109/tmlcn.2024.3361834.
Choudhary, S., & Kesswani, N. (2020). Analysis of KDD-Cup'99, NSL-KDD and UNSW-NB15 Datasets using Deep Learning in IoT. Procedia Computer Science, 167, 1561–1573. doi:10.1016/j.procs.2020.03.367.
Kumar, P., Bagga, H., Netam, B. S., & Uduthalapally, V. (2022). SAD-IoT: Security Analysis of DDoS Attacks in IoT Networks. Wireless Personal Communications, 122(1), 87–108. doi:10.1007/s11277-021-08890-6.
Moustafa, N. (2021). The UNSW-NB15 Dataset | UNSW Research. The University of New South Wales, Sydney, Australia.
Wireshark. (2019). Cybersecurity Blue Team Toolkit, 83–96, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119552963.ch7.
Iqbal, R., Hussain, R., Arif, S., Ansari, N. M., & Shaikh, T. A. (2023). Data Analysis of Network Parameters for Secure Implementations of SDN-Based Firewall. Computers, Materials and Continua, 77, 1575–1598. doi:10.32604/cmc.2023.042432.
Aziz, O., Klenk, J., Schwickert, L., Chiari, L., Becker, C., Park, E. J., Mori, G., & Robinovitch, S. N. (2017). Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS ONE, 12(7), 0180318. doi:10.1371/journal.pone.0180318.
Long, Z., & Jinsong, W. (2022). A hybrid method of entropy and SSAE-SVM based DDoS detection and mitigation mechanism in SDN. Computers and Security, 115. doi:10.1016/j.cose.2022.102604.
de Carvalho, A. M. X., de Souza, M. R., Marques, T. B., de Souza, D. L., & de Souza, E. F. M. (2023). Familywise type I error of ANOVA and ANOVA on ranks in factorial experiments. Ciencia Rural, 53(7), e20220146. doi:10.1590/0103-8478cr20220146.
Adnan, M., Imam, M. O., Javed, M. F., & Murtza, I. (2024). Improving spam email classification accuracy using ensemble techniques: a stacking approach. International Journal of Information Security, 23(1), 505–517. doi:10.1007/s10207-023-00756-1.
Altulaihan, E., Almaiah, M. A., & Aljughaiman, A. (2024). Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms. Sensors, 24(2), 713. doi:10.3390/s24020713.
Zeeshan, M., Riaz, Q., Bilal, M. A., Shahzad, M. K., Jabeen, H., Haider, S. A., & Rahim, A. (2022). Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets. IEEE Access, 10, 2269–2283. doi:10.1109/ACCESS.2021.3137201.
Cekič, M. (2024). Anomaly Detection in Medical Time Series with Generative Adversarial Networks: A Selective Review. Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.112582.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
