Assessing the Impact of Ghost Car Attacks on Traffic Flow in Vehicular Ad Hoc Networks
Downloads
Vehicular Ad Hoc Networks (VANETs) play a crucial role in enhancing road safety, traffic management, and driving efficiency through real-time communication between vehicles and infrastructure. However, VANETs are vulnerable to various security threats, one of which is the “ghost car” attack. In this attack, a malicious entity injects false information into the network, simulating the presence of a non-existent or “ghost” vehicle. This can lead to severe consequences such as traffic disruptions, accidents, and a compromised trust in the system’s reliability. This study aims to simulate and analyze the impacts of ghost car attacks on Vehicular Ad Hoc Networks (VANETs), focusing specifically on intersection waiting times and overall traffic flow. We used Simulation of Urban Mobility (SUMO) integrated with ns-3 for realistic VANET simulations, introducing varying numbers of ghost vehicles. Results indicate significant increases in waiting times and vehicle counts at intersections due to ghost cars, leading to traffic disruptions. This study evaluates ghost car attacks within realistic urban scenarios and proposes targeted detection and mitigation strategies, leveraging authentication, machine learning, and blockchain technologies.
Downloads
[1] Bintoro, K. B. Y. (2024). Vehicular Ad-Hoc Networks for Intelligent Transportation System: A Brief Review of Protocols, Challenges, and Future Research. Jurnal Informatika Dan Sains: JISA, 7(2), 206–216. doi:10.31326/jisa.v7i2.2125.
[2] Abdelkader, G., Elgazzar, K., & Khamis, A. (2021). Connected vehicles: Technology review, state of the art, challenges and opportunities. Sensors, 21(22), 7712. doi:10.3390/s21227712.
[3] Topman, N., & Adnane, A. (2022). Mobile applications for connected cars: Security analysis and risk assessment. Proceedings of the IEEE/IFIP Network Operations and Management Symposium 2022: Network and Service Management in the Era of Cloudification, Softwarization and Artificial Intelligence, NOMS 2022, 1–6. doi:10.1109/NOMS54207.2022.9789873.
[4] Damaj, I. W., Yousafzai, J. K., & Mouftah, H. T. (2022). Future Trends in Connected and Autonomous Vehicles: Enabling Communications and Processing Technologies. IEEE Access, 10, 42334–42345. doi:10.1109/ACCESS.2022.3168320.
[5] Yu, W., Bai, W., Luan, W., & Qi, L. (2022). State-of-the-Art Review on Traffic Control Strategies for Emergency Vehicles. IEEE Access, 10, 109729–109742. doi:10.1109/ACCESS.2022.3213798.
[6] Almarshoud, M., Sabir Kiraz, M., & Al-Bayatti, A. H. (2024). Security, Privacy, and Decentralized Trust Management in VANETs: A Review of Current Research and Future Directions. ACM Computing Surveys, 56(10), 1–39. doi:10.1145/3656166.
[7] Lone, F., Verma, H. K., & Sharma, K. P. (2024). A systematic study on the challenges, characteristics and security issues in vehicular networks. International Journal of Pervasive Computing and Communications, 20(1), 56–98. doi:10.1108/IJPCC-04-2022-0164.
[8] Vamshi Krishna, K., & Ganesh Reddy, K. (2023). Classification of Distributed Denial of Service Attacks in VANET: A Survey. Wireless Personal Communications, 132(2), 933–964. doi:10.1007/s11277-023-10643-6.
[9] Chen, Y., Lai, Y., Zhang, Z., Li, H., & Wang, Y. (2022). Malicious attack detection based on traffic-flow information fusion. 2022 IFIP Networking Conference, IFIP Networking 2022, 1–9. doi:10.23919/IFIPNetworking55013.2022.9829793.
[10] Syla, V., Lala, A., & Biberaj, A. (2024). VANET security and privacy–an overview. EIRP Proceedings, 19(1), 414-423.
[11] Liu, X., Yang, L., Alvarez, I., Sivanesan, K., Merwaday, A., Oboril, F., Buerkle, C., Sastry, M., & Baltar, L. G. (2021). MISO- V: Misbehavior detection for collective perception services in vehicular communications. IEEE Intelligent Vehicles Symposium, Proceedings, 2021-July, 369–376. doi:10.1109/IV48863.2021.9575970.
[12] Chen, Y., Lai, Y., Zhang, Z., Li, H., & Wang, Y. (2023). MDFD: A multi-source data fusion detection framework for Sybil attack detection in VANETs. Computer Networks, 224, 109608. doi:10.1016/j.comnet.2023.109608.
[13] Farsimadan, E., Moradi, L., & Palmieri, F. (2025). A review on security challenges in V2X communications technology for VANETs. IEEE Access, 13, 31069 – 31094. doi:10.1109/ACCESS.2025.3541035.
[14] Elassy, M., Al-Hattab, M., Takruri, M., & Badawi, S. (2024). Intelligent transportation systems for sustainable smart cities. Transportation Engineering, 16. doi:10.1016/j.treng.2024.100252.
[15] Ullah, N., Khan, S. U., Niazi, M., Esposito, M., Khan, A. A., & Nasir, J. A. (2025). Solutions toCybersecurity Challenges in Secure Vehicle-to-Vehicle Communications: A Multivocal Literature Review. Information and Software Technology, 179, 107639. doi:10.1016/j.infsof.2024.107639.
[16] Zeadally, S., Guerrero, J., & Contreras, J. (2020). A tutorial survey on vehicle-to-vehicle communications. Telecommunication systems, 73(3), 469-489. doi:10.1007/s11235-019-00639-8.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















